Search results for: machine migration
3336 Agrarian Distress and out Migration of Youths: Study of a Wet Land Village in Hirakud Command Area, Odisha
Authors: Kishor K. Podh
Abstract:
Agriculture in India treated as the backbone of its economy. It has been accommodated to more than 60 percent of its population as their economic base, directly or indirectly for their livelihood. Besides its significant role, the sharp declines in public investment and development in agriculture have witnessed. After independence Hirakud Command Area (HCA) popularly known as the Rice Bowl of State, due to its fabulous production and provides food to a larger part of the state. After the great green revolution and then liberalization agrarian families become overburden with the loan. They started working as wage laborer in other’s field and non-farm sectors to overcome from the uninvited indebtedness. Although production increases at present, still the youths of this area migrating outsides for job Tamil Nadu, Andhra Pradesh, Maharashtra, Gujarat, etc. Because agriculture no longer remains a profitable occupation; increasing input costs, the uncertainty of crops, improper pricing, poor marketing, etc. compels the youths to choose the alternative occupations. They work in industries (under contractors), construction workers and other menial jobs due to lack of skills and degrees. Kharmunda a village within HCA selected as per the convenience and 100 youth migrants were interviewed purposively selected who were present during data collection. The study analyses the types of migration; its similarity/differentiations, its determining factors, in tow geographical areas of Western Odisha, i.e., single crop and double crops in relation to agricultural situations.Keywords: agrarian distress, double crops, Hirakud Command Area, indebtedness, out migration, Western Odisha
Procedia PDF Downloads 3363335 Combined Effect of High Curing Temperature and Crack Width on Chloride Migration in Reinforced Concrete Beams
Authors: Elkedrouci Lotfi, Diao Bo, Pang Sen, Li Yi
Abstract:
Deterioration of reinforced concrete structures is a serious concern in the construction engineering, largely due to chloride induced corrosion of reinforcement. Chloride penetration is markedly influenced by one or several major factors at the same time such as cuing in combination with different crack widths which have spectacular effect on reinforced concrete structures. This research presents the results of an experimental investigation involving reinforced concrete beams with three different crack widths ranging from 0 to 0.2mm, curing temperatures of 20°C or 40°C and water-to-cement of 0.5. Chloride content profiles were determined under non-steady state diffusion at 20°C. Based on the obtained results, higher chloride content was obtained under condition of high curing temperature in combination with large crack more than 0.1mm and there are no significant differences between narrow crack width (less than 0.1 mm) and beams without crack (0mm).Keywords: crack width, high curing temperature, rapid chloride migration, reinforced concrete beam
Procedia PDF Downloads 2083334 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information
Authors: Haifeng Wang, Haili Zhang
Abstract:
Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.Keywords: computational social science, movie preference, machine learning, SVM
Procedia PDF Downloads 2603333 Sensitivity of the Estimated Output Energy of the Induction Motor to both the Asymmetry Supply Voltage and the Machine Parameters
Authors: Eyhab El-Kharashi, Maher El-Dessouki
Abstract:
The paper is dedicated to precise assessment of the induction motor output energy during the unbalanced operation. Since many years ago and until now the voltage complex unbalance factor (CVUF) is used only to assess the output energy of the induction motor while this output energy for asymmetry supply voltage does not depend on the value of unbalanced voltage only but also on the machine parameters. The paper illustrates the variation of the two unbalance factors, complex voltage unbalance factor (CVUF) and impedance unbalance factor (IUF), with positive sequence voltage component, reveals that degree and manner of unbalance in supply voltage. From this point of view the paper delineates the current unbalance factor (CUF) to exactly reflect the output energy during unbalanced operation. The paper proceeds to illustrate the importance of using this factor in the multi-machine system to precise prediction of the output energy during the unbalanced operation. The use of the proposed unbalance factor (CUF) avoids the accumulation of the error due to more than one machine in the system which is expected if only the complex voltage unbalance factor (CVUF) is used.Keywords: induction motor, electromagnetic torque, voltage unbalance, energy conversion
Procedia PDF Downloads 5603332 Beyond Juridical Approaches: The Role of Sociological Approach in Promoting Human Rights of Migrants
Authors: Ali Aghahosseini Dehaghani
Abstract:
Every year in this globalized world, thousands of migrants leave their countries hoping to find a better situation of life in other parts of the world. In this regard, many questions, from a human rights point of view, have been raised about how this phenomenon should be managed in the host countries. Although legal approaches such as legislation and litigation are inevitable in the way to respect the human rights of migrants, there is an increasing consensus about the fact that a strict juridical approach is inadequate to protect as well as to prevent violations of migrants’ rights. Indeed, given the multiplicity of factors that affect and shape the application of these rights and considering the fact that law is a social phenomenon, what is needed is an interdisciplinary approach, which combines both juridical approaches and perspectives from other disciplines. In this respect, a sociological approach is important because it shows the social processes through which human rights of migrants have been constructed or violated in particular social situations. Sociologists who study international migration ask the questions such as how many people migrate, who migrates, why people migrate, what happens to them once they arrive in the host country, how migration affects sending and receiving communities, the extent to which migrants help the economy, the effects of migration on crimes, and how migrants change the local communities. This paper is an attempt to show how sociology can promote human rights of migrants. To this end, the article first explores the usefulness and value of an interdisciplinary approach to realize how and to what extent sociology may improve and promote the human rights of migrants in the destination country. It then examines mechanisms which help to reach to a systematic integration of law and sociological discipline to advance migrants’ rights as well as to encourage legal scholars to consider the implications of societal structures in their works.Keywords: human rights, migrants, sociological approach, interdisciplinary study
Procedia PDF Downloads 4553331 Remittances and Water Access: A Cross-Sectional Study of Sub Saharan Africa Countries
Authors: Narges Ebadi, Davod Ahmadi, Hiliary Monteith, Hugo Melgar-Quinonez
Abstract:
Migration cannot necessarily relieve pressure on water resources in origin communities, and male out-migration can increase the water management burden of women. However, inflows of financial remittances seem to offer possibilities of investing in improving drinking-water access. Therefore, remittances may be an important pathway for migrants to support water security. This paper explores the association between water access and the receipt of remittances in households in sub-Saharan Africa. Data from round 6 of the 'Afrobarometer' surveys in 2016 were used (n= 49,137). Descriptive, bivariate and multivariate statistical analyses were carried out in this study. Regardless of country, findings from descriptive analyses showed that approximately 80% of the respondents never received remittance, and 52% had enough clean water. Only one-fifth of the respondents had piped water supply inside the house (19.9%), and approximately 25% had access to a toilet inside the house. Bivariate analyses revealed that even though receiving remittances was significantly associated with water supply, the strength of association was very weak. However, other factors such as the area of residence (rural vs. urban), cash income frequencies, electricity access, and asset ownership were strongly associated with water access. Results from unadjusted multinomial logistic regression revealed that the probability of having no access to piped water increased among remittance recipients who received financial support at least once a month (OR=1.324) (p < 0.001). In contrast, those not receiving remittances were more likely to regularly have a water access concern (OR=1.294) (p < 0.001), and not have access to a latrine (OR=1.665) (p < 0.001). In conclusion, receiving remittances is significantly related to water access as the strength of odds ratios for socio-demographic factors was stronger.Keywords: remittances, water access, SSA, migration
Procedia PDF Downloads 1803330 Migrant Labour in Kerala: A Study on Inter-State Migrant Workers
Authors: Arun Perumbilavil Anand
Abstract:
In the recent years, Kerala is witnessing a large inflow of migrants from different parts of the country. Though initially, the migrants were largely from the districts of Tamil Nadu and mostly of seasonal nature, but at a later period, the state started getting migrants from the far-off states like UP, Assam, Bengal, etc. Higher wages for unskilled labour, large opportunities for employment, the reluctance on the part of Kerala workers to do menial and hard physical work, and the shortage of local labour, paradoxically despite the high unemployment rate in the state, led to the massive influx of migrant labourers. This study takes a multi-dimensional overview of migrant labour in Kerala by encompassing factors such as channels of migration, nature of employment contracts entered into and the corresponding wages and benefits obtained by them. The study also analysed the circumstances that led to the large influx of migrants from different states of India. It further makes an attempt to examine the varying dimensions of living and working environment, and also the health conditions of migrants. The study is based on the empirical findings obtained as a result of the primary interviews conducted with migrants in the districts of Palakkad, Malappuram, and Ernakulam. The study concludes by noting that Kerala will inevitably have to depend on migrant labour and is likely to experience heavy in-migration of labour in future, provided that if the existing socioeconomic and demographic situations persist. Since, this is inevitable, the best way before the state is to prepare well in advance to receive and accommodate such migrant labour to lead a comfortable life in a hassle free environment, so that it would definitely play a vital role in further strengthening and sustaining the growth trajectory of not only Kerala’s economy but also the states of origin.Keywords: Kerala, labour, migration, migrant workers
Procedia PDF Downloads 2533329 Design and Performance Evaluation of Synchronous Reluctance Machine (SynRM)
Authors: Hadi Aghazadeh, Mohammadreza Naeimi, Seyed Ebrahim Afjei, Alireza Siadatan
Abstract:
Torque ripple, maximum torque and high efficiency are important issues in synchronous reluctance machine (SynRM). This paper presents a view on design of a high efficiency, low torque ripple and high torque density SynRM. To achieve this goal SynRM parameters is calculated (such as insulation ratios in the d-and q-axes and the rotor slot pitch), while the torque ripple can be minimized by determining the best rotor slot pitch in the d-axis. The presented analytical-finite element method (FEM) approach gives the optimum distribution of air gap and iron portion for the maximizing torque density with minimum torque ripple.Keywords: torque ripple, efficiency, insulation ratio, FEM, synchronous reluctance machine (SynRM), induction motor (IM)
Procedia PDF Downloads 2293328 Prandtl Number Influence Analysis on Droplet Migration in Natural Convection Flow Using the Level Set Method
Authors: Isadora Bugarin, Taygoara F. de Oliveira
Abstract:
Multiphase flows have currently been placed as a key solution for technological advances in energy and thermal sciences. The comprehension of droplet motion and behavior on non-isothermal flows is, however, rather limited. The present work consists of an investigation of a 2D droplet migration on natural convection inside a square enclosure with differentially heated walls. The investigation in question concerns the effects on drop motion of imposing different combinations of Prandtl and Rayleigh numbers while defining the drop on distinct initial positions. The finite differences method was used to compute the Navier-Stokes and energy equations for a laminar flow, considering the Boussinesq approximation. Also, a high order level set method was applied to simulate the two-phase flow. A previous analysis developed by the authors had shown that for fixed values of Rayleigh and Prandtl, the variation of the droplet initial position at the beginning of the simulation delivered different patterns of motion, in which for Ra≥10⁴ the droplet presents two very specific behaviors: it can travel through a helical path towards the center or define cyclic circular paths resulting in closed paths when reaching the stationary regime. Now, when varying the Prandtl number for different Rayleigh regimes, it was observed that this particular parameter also affects the migration of the droplet, altering the motion patterns as its value is increased. On higher Prandtl values, the drop performs wider paths with larger amplitudes, traveling closer to the walls and taking longer time periods to finally reach the stationary regime. It is important to highlight that drastic drop behavior changes on the stationary regime were not yet observed, but the path traveled from the begging of the simulation until the stationary regime was significantly altered, resulting in distinct turning over frequencies. The flow’s unsteady Nusselt number is also registered for each case studied, enabling a discussion on the overall effects on heat transfer variations.Keywords: droplet migration, level set method, multiphase flow, natural convection in enclosure, Prandtl number
Procedia PDF Downloads 1243327 Developing a Hybrid Method to Diagnose and Predict Sports Related Concussions with Machine Learning
Authors: Melody Yin
Abstract:
Concussions impact a large amount of adolescents; they make up as much as half of the diagnosed concussions in America. This research proposes a hybrid machine learning model based on the combination of human/knowledge-based domains and computer-generated feature rankings to improve the accuracy of diagnosing sports related concussion (SRC). Using a data set of symptoms collected on the sideline post-SRC events, the symptom selection criteria method has been developed by using Google AutoML's important score function to identify the top 10 symptom features. In addition, symptom domains have been introduced as another parameter, categorizing the symptoms into physical, cognitive, sleep, and emotional domains. The hybrid machine learning model has been trained with a combination of the top 10 symptoms and 4 domains. From the results, the hybrid model was the best performer for symptom resolution time prediction in 2 and 4-week thresholds. This research is a proof of concept study in the use of domains along with machine learning in order to improve concussion prediction accuracy. It is also possible that the use of domains can make the model more efficient due to reduced training time. This research examines the use of a hybrid method in predicting sports-related concussion. This achievement is based on data preprocessing, using a hybrid method to select criteria to achieve high performance.Keywords: hybrid model, machine learning, sports related concussion, symptom resolution time
Procedia PDF Downloads 1683326 Construction of a Dynamic Migration Model of Extracellular Fluid in Brain for Future Integrated Control of Brain State
Authors: Tomohiko Utsuki, Kyoka Sato
Abstract:
In emergency medicine, it is recognized that brain resuscitation is very important for the reduction of mortality rate and neurological sequelae. Especially, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) are most required for stabilizing brain’s physiological state in the treatment for such as brain injury, stroke, and encephalopathy. However, the manual control of BT, ICP, and CBF frequently requires the decision and operation of medical staff, relevant to medication and the setting of therapeutic apparatus. Thus, the integration and the automation of the control of those is very effective for not only improving therapeutic effect but also reducing staff burden and medical cost. For realizing such integration and automation, a mathematical model of brain physiological state is necessary as the controlled object in simulations, because the performance test of a prototype of the control system using patients is not ethically allowed. A model of cerebral blood circulation has already been constructed, which is the most basic part of brain physiological state. Also, a migration model of extracellular fluid in brain has been constructed, however the condition that the total volume of intracranial cavity is almost changeless due to the hardness of cranial bone has not been considered in that model. Therefore, in this research, the dynamic migration model of extracellular fluid in brain was constructed on the consideration of the changelessness of intracranial cavity’s total volume. This model is connectable to the cerebral blood circulation model. The constructed model consists of fourteen compartments, twelve of which corresponds to perfused area of bilateral anterior, middle and posterior cerebral arteries, the others corresponds to cerebral ventricles and subarachnoid space. This model enable to calculate the migration of tissue fluid from capillaries to gray matter and white matter, the flow of tissue fluid between compartments, the production and absorption of cerebrospinal fluid at choroid plexus and arachnoid granulation, and the production of metabolic water. Further, the volume, the colloid concentration, and the tissue pressure of/in each compartment are also calculable by solving 40-dimensional non-linear simultaneous differential equations. In this research, the obtained model was analyzed for its validation under the four condition of a normal adult, an adult with higher cerebral capillary pressure, an adult with lower cerebral capillary pressure, and an adult with lower colloid concentration in cerebral capillary. In the result, calculated fluid flow, tissue volume, colloid concentration, and tissue pressure were all converged to suitable value for the set condition within 60 minutes at a maximum. Also, because these results were not conflict with prior knowledge, it is certain that the model can enough represent physiological state of brain under such limited conditions at least. One of next challenges is to integrate this model and the already constructed cerebral blood circulation model. This modification enable to simulate CBF and ICP more precisely due to calculating the effect of blood pressure change to extracellular fluid migration and that of ICP change to CBF.Keywords: dynamic model, cerebral extracellular migration, brain resuscitation, automatic control
Procedia PDF Downloads 1573325 Relation between Tourism and Health: Case Study AIDS in Lebanon
Authors: Viana Hassan
Abstract:
Each year, 600 million tourists travelled abroad to practice several types of tourism. Nowadays, whatever is the type of tourism practiced it considered as a real public health problem which can contribute the spread of several diseases such as AIDS, H1N1, NDM1 With regard to HIV/AIDS, Lebanon is always considered as a low HIV prevalence country. However, the potential risks associated with the mobility of the population, migration and tourism. The total number of cases reported by the ministry of health since 1989 until the end of 2011 is of 1455 cases, with an average of 85 new cases per year over the last three years. The main reason of the increased number is Travel and migration which represent 50% of the risks reported by cumulative cases. Given the interest of this kind of epidemic it would be interesting to study the Evolution of HIV/ AIDS and its relation with travel and tourism The main aim of this research is to study in general the relation between tourism and health, more specific to understand the relation between Tourism and AIDS, the problem of the transmission of HIV in Lebanon, the ways of contamination and the countries in which these people are contaminated.Keywords: AIDS, tourism, health, Lebanon
Procedia PDF Downloads 3373324 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors
Authors: Sudhir Kumar Singh, Debashish Chakravarty
Abstract:
Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.Keywords: finite element method, geotechnical engineering, machine learning, slope stability
Procedia PDF Downloads 1013323 Practical Model of Regenerative Braking Using DC Machine and Boost Converter
Authors: Shah Krupa Rajendra, Amit Kumar
Abstract:
Increasing use of traditional vehicles driven by internal combustion engine is responsible for the environmental pollution. Further, it leads to depletion of limited energy resources. Therefore, it is required to explore alternative energy sources for the transportation. The promising solution is to use electric vehicle. However, it suffers from limited driving range. Regenerative braking increases the range of the electric vehicle to a certain extent. In this paper, a novel methodology utilizing regenerative braking is described. The model comprising of DC machine, feedback based boost converter and micro-controller is proposed. The suggested method is very simple and reliable. The proposed model successfully shows the energy being saved into during regenerative braking process.Keywords: boost converter, DC machine, electric vehicle, micro-controller, regenerative braking
Procedia PDF Downloads 2733322 Characteristics of Double-Stator Inner-Rotor Axial Flux Permanent Magnet Machine with Rotor Eccentricity
Authors: Dawoon Choi, Jian Li, Yunhyun Cho
Abstract:
Axial Flux Permanent Magnet (AFPM) machines have been widely used in various applications due to their important merits, such as compact structure, high efficiency and high torque density. This paper presents one of the most important characteristics in the design process of the AFPM device, which is a recent issue. To design AFPM machine, the predicting electromagnetic forces between the permanent magnets and stator is important. Because of the magnitude of electromagnetic force affects many characteristics such as machine size, noise, vibration, and quality of output power. Theoretically, this force is canceled by the equilibrium of force when it is in the middle of the gap, but it is inevitable to deviate due to manufacturing problems in actual machine. Such as large scale wind generator, because of the huge attractive force between rotor and stator disks, this is more serious in getting large power applications such as large. This paper represents the characteristics of Double-Stator Inner –Rotor AFPM machines when it has rotor eccentricity. And, unbalanced air-gap and inclined air-gap condition which is caused by rotor offset and tilt in a double-stator single inner-rotor AFPM machine are each studied in electromagnetic and mechanical aspects. The output voltage and cogging torque under un-normal air-gap condition of AF machines are firstly calculated using a combined analytical and numerical methods, followed by a structure analysis to study the effect to mechanical stress, deformation and bending forces on bearings. Results and conclusions given in this paper are instructive for the successful development of AFPM machines.Keywords: axial flux permanent magnet machine, inclined air gap, unbalanced air gap, rotor eccentricity
Procedia PDF Downloads 2203321 Plant Disease Detection Using Image Processing and Machine Learning
Authors: Sanskar, Abhinav Pal, Aryush Gupta, Sushil Kumar Mishra
Abstract:
One of the critical and tedious assignments in agricultural practices is the detection of diseases on vegetation. Agricultural production is very important in today’s economy because plant diseases are common, and early detection of plant diseases is important in agriculture. Automatic detection of such early diseases is useful because it reduces control efforts in large productive farms. Using digital image processing and machine learning algorithms, this paper presents a method for plant disease detection. Detection of the disease occurs on different leaves of the plant. The proposed system for plant disease detection is simple and computationally efficient, requiring less time than learning-based approaches. The accuracy of various plant and foliar diseases is calculated and presented in this paper.Keywords: plant diseases, machine learning, image processing, deep learning
Procedia PDF Downloads 123320 Machine Learning Data Architecture
Authors: Neerav Kumar, Naumaan Nayyar, Sharath Kashyap
Abstract:
Most companies see an increase in the adoption of machine learning (ML) applications across internal and external-facing use cases. ML applications vend output either in batch or real-time patterns. A complete batch ML pipeline architecture comprises data sourcing, feature engineering, model training, model deployment, model output vending into a data store for downstream application. Due to unclear role expectations, we have observed that scientists specializing in building and optimizing models are investing significant efforts into building the other components of the architecture, which we do not believe is the best use of scientists’ bandwidth. We propose a system architecture created using AWS services that bring industry best practices to managing the workflow and simplifies the process of model deployment and end-to-end data integration for an ML application. This narrows down the scope of scientists’ work to model building and refinement while specialized data engineers take over the deployment, pipeline orchestration, data quality, data permission system, etc. The pipeline infrastructure is built and deployed as code (using terraform, cdk, cloudformation, etc.) which makes it easy to replicate and/or extend the architecture to other models that are used in an organization.Keywords: data pipeline, machine learning, AWS, architecture, batch machine learning
Procedia PDF Downloads 653319 Machine Learning for Classifying Risks of Death and Length of Stay of Patients in Intensive Unit Care Beds
Authors: Itamir de Morais Barroca Filho, Cephas A. S. Barreto, Ramon Malaquias, Cezar Miranda Paula de Souza, Arthur Costa Gorgônio, João C. Xavier-Júnior, Mateus Firmino, Fellipe Matheus Costa Barbosa
Abstract:
Information and Communication Technologies (ICT) in healthcare are crucial for efficiently delivering medical healthcare services to patients. These ICTs are also known as e-health and comprise technologies such as electronic record systems, telemedicine systems, and personalized devices for diagnosis. The focus of e-health is to improve the quality of health information, strengthen national health systems, and ensure accessible, high-quality health care for all. All the data gathered by these technologies make it possible to help clinical staff with automated decisions using machine learning. In this context, we collected patient data, such as heart rate, oxygen saturation (SpO2), blood pressure, respiration, and others. With this data, we were able to develop machine learning models for patients’ risk of death and estimate the length of stay in ICU beds. Thus, this paper presents the methodology for applying machine learning techniques to develop these models. As a result, although we implemented these models on an IoT healthcare platform, helping clinical staff in healthcare in an ICU, it is essential to create a robust clinical validation process and monitoring of the proposed models.Keywords: ICT, e-health, machine learning, ICU, healthcare
Procedia PDF Downloads 1143318 How Is a Machine-Translated Literary Text Organized in Coherence? An Analysis Based upon Theme-Rheme Structure
Abstract:
With the ultimate goal to automatically generate translated texts with high quality, machine translation has made tremendous improvements. However, its translations of literary works are still plagued with problems in coherence, esp. the translation between distant language pairs. One of the causes of the problems is probably the lack of linguistic knowledge to be incorporated into the training of machine translation systems. In order to enable readers to better understand the problems of machine translation in coherence, to seek out the potential knowledge to be incorporated, and thus to improve the quality of machine translation products, this study applies Theme-Rheme structure to examine how a machine-translated literary text is organized and developed in terms of coherence. Theme-Rheme structure in Systemic Functional Linguistics is a useful tool for analysis of textual coherence. Theme is the departure point of a clause and Rheme is the rest of the clause. In a text, as Themes and Rhemes may be connected with each other in meaning, they form thematic and rhematic progressions throughout the text. Based on this structure, we can look into how a text is organized and developed in terms of coherence. Methodologically, we chose Chinese and English as the language pair to be studied. Specifically, we built a comparable corpus with two modes of English translations, viz. machine translation (MT) and human translation (HT) of one Chinese literary source text. The translated texts were annotated with Themes, Rhemes and their progressions throughout the texts. The annotated texts were analyzed from two respects, the different types of Themes functioning differently in achieving coherence, and the different types of thematic and rhematic progressions functioning differently in constructing texts. By analyzing and contrasting the two modes of translations, it is found that compared with the HT, 1) the MT features “pseudo-coherence”, with lots of ill-connected fragments of information using “and”; 2) the MT system produces a static and less interconnected text that reads like a list; these two points, in turn, lead to the less coherent organization and development of the MT than that of the HT; 3) novel to traditional and previous studies, Rhemes do contribute to textual connection and coherence though less than Themes do and thus are worthy of notice in further studies. Hence, the findings suggest that Theme-Rheme structure be applied to measuring and assessing the coherence of machine translation, to being incorporated into the training of the machine translation system, and Rheme be taken into account when studying the textual coherence of both MT and HT.Keywords: coherence, corpus-based, literary translation, machine translation, Theme-Rheme structure
Procedia PDF Downloads 2073317 Recruitment Strategies and Migration Regulations for International Students in the United States and Canada: A Comparative Study
Authors: Aynur Charkasova
Abstract:
The scientific and economic contributions of international students cannot be underestimated. International education continues to be a competitive global industry, and many countries are seeking to recruit the best and the brightest to reinforce scientific innovations, boost intercultural learning, and bring more funding to the universities and colleges. Substantial changes in international educational policies and migration regulations have been made in the hopes of recruiting global talent. This paper explores and compares recruitment strategies, employment opportunities, and a legal path to permanent residency policies related to international students in the United States of America and Canada. This study will utilize the legal information available by the government websites of both countries, peer-reviewed scholarly articles and will highlight which approach promises a better path in recruiting and retention of international students. The findings from the study will be discussed and recommendations will be provided.Keywords: international students, current immigration policies, STEM, visa reforms for international students
Procedia PDF Downloads 623316 Intelligent Tooling Embedded Sensors for Monitoring the Wear of Cutting Tools in Turning Applications
Authors: Hatim Laalej, Jon Stammers
Abstract:
In machining, monitoring of tool wear is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Currently, the task of monitoring the wear on the cutting tool is carried out by the operator who performs manual inspections of the cutting tool, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from loss of productivity. The cutting tool consumable costs may also be higher than necessary when tools are changed before the end of their useful life. Furthermore, damage can be caused to the workpiece when tools are not changed soon enough leading to a significant increase in the costs of manufacturing. The present study is concerned with the development of break sensor printed on the flank surface of poly-crystalline diamond (PCD) cutting to perform on-line condition monitoring of the cutting tool used to machine Titanium Ti-6al-4v bar. The results clearly show that there is a strong correlation between the break sensor measurements and the amount of wear in the cutting tool. These findings are significant in that they help the user/operator of the machine tool to determine the condition of the cutting tool without the need of performing manual inspection, thereby reducing the manufacturing costs such as the machine down time.Keywords: machining, manufacturing, tool wear, signal processing
Procedia PDF Downloads 2453315 Case Study of Migrants, Cultures and Environmental Crisis
Authors: Christina Y. P. Ting
Abstract:
Migration is a global phenomenon with movements of migrants from developed and developing countries to the host societies. Migrants have changed the host countries’ demography – its population structure and also its ethnic cultural diversity. Acculturation of migrants in terms of their adoption of the host culture is seen as important to ensure that they ‘fit into’ their adopted country so as to participate in everyday public life. However, this research found that the increase of the China-born migrants’ post-migration consumption level had impact on Australia’s environment reflected not only because of their adoption of elements of the host culture, but also retention of aspects of Chinese culture – indicating that the influence of bi-culturalism was in operation. This research, which was based on the face-to-face interview with 61 China-born migrants in the suburb of Box Hill, Melbourne, investigated the pattern of change in the migrants’ consumption upon their settlement in Australia. Using an ecological footprint calculator, their post-migration footprints were found to be larger than pre-migration footprint. The uniquely-derived CALD (Culturally and Linguistically Diverse) Index was used to measure individuals’ strength of connectedness to ethnic culture. Multi-variant analysis was carried out to understand which independent factors that influence consumption best explain the change in footprint (which is the difference between pre-and post-migration footprints, as a dependent factor). These independent factors ranged from socio-economic and demographics to the cultural context, that is, the CALD Index and indicators of acculturation. The major findings from the analysis were: Chinese culture (as measured by the CALD Index) and indicators of acculturation such as length of residency and using English in communications besides the traditional factors such as age, income and education level made significant contributions to the large increase in the China-born group’s post-migration consumption level. This paper as part of a larger study found that younger migrants’ large change in their footprint were related to high income and low level of education. This group of migrants also practiced bi-cultural consumption in retaining ethnic culture and adopting the host culture. These findings have importantly highlighted that for a host society to tackle environmental crisis, governments need not only to understand the relationship between age and consumption behaviour, but also to understand and embrace the migrants’ ethnic cultures, which may act as bridges and/or fences in relationships. In conclusion, for governments to deal with national issues such as environmental crisis within a cultural diverse population, it necessitates an understanding of age and aspects of ethnic culture that may act as bridges and fences. This understanding can aid in putting in place policies that enable the co-existence of a hybrid of the ethnic and host cultures in order to create and maintain a harmonious and secured living environment for population groups.Keywords: bicultural consumer, CALD index, consumption, ethnic culture, migrants
Procedia PDF Downloads 2473314 Alternative Approach to the Machine Vision System Operating for Solving Industrial Control Issue
Authors: M. S. Nikitenko, S. A. Kizilov, D. Y. Khudonogov
Abstract:
The paper considers an approach to a machine vision operating system combined with using a grid of light markers. This approach is used to solve several scientific and technical problems, such as measuring the capability of an apron feeder delivering coal from a lining return port to a conveyor in the technology of mining high coal releasing to a conveyor and prototyping an autonomous vehicle obstacle detection system. Primary verification of a method of calculating bulk material volume using three-dimensional modeling and validation in laboratory conditions with relative errors calculation were carried out. A method of calculating the capability of an apron feeder based on a machine vision system and a simplifying technology of a three-dimensional modelled examined measuring area with machine vision was offered. The proposed method allows measuring the volume of rock mass moved by an apron feeder using machine vision. This approach solves the volume control issue of coal produced by a feeder while working off high coal by lava complexes with release to a conveyor with accuracy applied for practical application. The developed mathematical apparatus for measuring feeder productivity in kg/s uses only basic mathematical functions such as addition, subtraction, multiplication, and division. Thus, this fact simplifies software development, and this fact expands the variety of microcontrollers and microcomputers suitable for performing tasks of calculating feeder capability. A feature of an obstacle detection issue is to correct distortions of the laser grid, which simplifies their detection. The paper presents algorithms for video camera image processing and autonomous vehicle model control based on obstacle detection machine vision systems. A sample fragment of obstacle detection at the moment of distortion with the laser grid is demonstrated.Keywords: machine vision, machine vision operating system, light markers, measuring capability, obstacle detection system, autonomous transport
Procedia PDF Downloads 1153313 Glucose Monitoring System Using Machine Learning Algorithms
Authors: Sangeeta Palekar, Neeraj Rangwani, Akash Poddar, Jayu Kalambe
Abstract:
The bio-medical analysis is an indispensable procedure for identifying health-related diseases like diabetes. Monitoring the glucose level in our body regularly helps us identify hyperglycemia and hypoglycemia, which can cause severe medical problems like nerve damage or kidney diseases. This paper presents a method for predicting the glucose concentration in blood samples using image processing and machine learning algorithms. The glucose solution is prepared by the glucose oxidase (GOD) and peroxidase (POD) method. An experimental database is generated based on the colorimetric technique. The image of the glucose solution is captured by the raspberry pi camera and analyzed using image processing by extracting the RGB, HSV, LUX color space values. Regression algorithms like multiple linear regression, decision tree, RandomForest, and XGBoost were used to predict the unknown glucose concentration. The multiple linear regression algorithm predicts the results with 97% accuracy. The image processing and machine learning-based approach reduce the hardware complexities of existing platforms.Keywords: artificial intelligence glucose detection, glucose oxidase, peroxidase, image processing, machine learning
Procedia PDF Downloads 2063312 Comprehensive Study of Data Science
Authors: Asifa Amara, Prachi Singh, Kanishka, Debargho Pathak, Akshat Kumar, Jayakumar Eravelly
Abstract:
Today's generation is totally dependent on technology that uses data as its fuel. The present study is all about innovations and developments in data science and gives an idea about how efficiently to use the data provided. This study will help to understand the core concepts of data science. The concept of artificial intelligence was introduced by Alan Turing in which the main principle was to create an artificial system that can run independently of human-given programs and can function with the help of analyzing data to understand the requirements of the users. Data science comprises business understanding, analyzing data, ethical concerns, understanding programming languages, various fields and sources of data, skills, etc. The usage of data science has evolved over the years. In this review article, we have covered a part of data science, i.e., machine learning. Machine learning uses data science for its work. Machines learn through their experience, which helps them to do any work more efficiently. This article includes a comparative study image between human understanding and machine understanding, advantages, applications, and real-time examples of machine learning. Data science is an important game changer in the life of human beings. Since the advent of data science, we have found its benefits and how it leads to a better understanding of people, and how it cherishes individual needs. It has improved business strategies, services provided by them, forecasting, the ability to attend sustainable developments, etc. This study also focuses on a better understanding of data science which will help us to create a better world.Keywords: data science, machine learning, data analytics, artificial intelligence
Procedia PDF Downloads 843311 Santo Niño in Canada: Religion, Migration, and the Filipino Underside
Authors: Alison Marshall
Abstract:
“Santo Niño in Canada – Religion, Migration, and the Filipino Underside” seeks to explore the intersection of religion, migration and the Filipino underside through research participant narratives, archival research, and fieldwork on the cult of Santo Niño in Canada. Santo Niño is the single most revered saint in Filipino religiosity. According to popular lore, the original statue of Santo Niño was brought to the Philippines by Portuguese explorer Ferdinand Magellan in 1521, who claimed the islands on behalf of Spain. While Santo Niño is meant to be a manifestation of Jesus as a child, in Filipino thought and culture he very much resembles pre-Hispanic spirits, as well as patron saints introduced by the Spanish. Santo Niño shrines appear in churches, restaurants, businesses, and homes throughout the diaspora suggesting that he was much more than a Catholic image. He represents a deity who often shares a business or home shrine with non-Christian statues such as lucky cats, the Buddha, Guanyin, and Guangong, and sometimes the Chinese God of the Earth. He represents how Christian culture has been refashioned through indigenous, Chinese, Malay, and Indonesian influences. He embodies the religious superstructure that defines Christian piety and habits. On the one hand, he stands for Jesus, a pious son of God, and yet, on the other hand, he can be a simple vindictive child who punishes those who ignore him. Santo Niño is a complex character linked to the past before Christianity. As Filipinos engage with Santo Niño in Canada, they connect to him as Jesus, the son of God. They are also connecting to a childlike figure who sometimes uses his spiritual power to punish. A hybrid figure who comes came into being at the beginning of the Spanish colonial moment, he is maintained throughout the American one and continues to be a powerful reminder of Filipino identity and resilience when people leave the Philippines for migrant work. As this paper argues, Santo Niño beliefs, practices, and stories unite people in the diaspora regardless of language, gender, or nation. Santo Niño enables one to think about and understand what it means to be Filipino and living migrant lives in the diaspora today. In this way, the cult of Santo Niño expresses both Catholic orthodoxy and the heterodox Filipino underside that includes the use of magical amulets, healing, visions, and spirit mediumship.Keywords: ethnography, migration, Philippines, religion
Procedia PDF Downloads 2313310 Chemotactic Behaviour of Human Mesenchymal Stem Cells in Response to Silicate Substituted Hydroxyapatite
Authors: Dinara Ikramova, Karin A. Hing, Simon C. F. Rawlinson
Abstract:
Silicate-substituted hydroxyapatite (SiHA) has been shown to enhance bone regeneration in vivo compared with phase pure stoichiometric hydroxyapatite. Evidence suggests that substrate chemistry dependent formation of a permissive protein layer on the surface of synthetic bone graft substitute materials is key for bioactivity and cell attachment. However, little information is available on whether the substrate chemistry may affect cell migration and recruitment. The aim of this study is to investigate whether or not human Mesenchymal Stem Cells (hMSCs) exhibit a chemotactic response to SiHA porous granules and if it can be linked to either the ion exchange or protein sequestering and enrichment on the surface of the material. 150mg of SiHA granules with 80% total porosity and 20% strut porosity were incubated in 1ml of either Serum Free Media (SFM) or 10% Serum Containing Media (SCM) under static cell culture conditions (37°C, 5% CO2) in absence of cells. Protein sequestering and exchange of calcium, phosphate and silicate ions were analysed at 0.5, 1, 2, 4, 8, 16 and 24 hours with n=12 per time point. Migration of hMSCs in the presence of 150mg of SiHA granules was assessed over 24 hours using a modified transwell migration system in either SFM or SCM (n=6) with 30% serum containing media acting as a positive control. At 24 hours protein sequestering and ionic exchange were analysed, and the number of cells was quantified using a high throughput confocal microscope (IN Cell Analyser 6000). In acellular condition, both calcium and phosphate ion concentrations in media showed a decrease at 24 hours which was greater in SFM than in SCM. This suggests possible formation and precipitation of a bone like apatite on the surface of SiHA. Reduction in this activity observed in SCM indicates that the presence of serum proteins is interfering with the ion exchange at the material and media interface. Adsorbed protein levels showed fluctuation over time followed by sharp decrease at 24 hours, suggesting a possible protein rearrangement on the surface of the material. The ion analysis performed on SFM and SCM after 24-hour incubation with cells in the presence of granules showed a greater reduction in phosphate concentration in both SFM and SCM compared to phosphate levels in acellular condition. Silicate concentration in SCM increased from 1.6mM (absence of cells) to 5.1mM (presence of cells). This indicates that the cells are promoting the uptake of phosphate and release of silicate ions. No significant change was seen in levels of adsorbed proteins in the presence and absence of cells. Further analysis is required to determine whether the species of these proteins change over time. The analysis of cell migration after 24-hour incubation showed more cells migrating towards the granules, 12.7% in SFM and 8.3% in SCM, than in positive control, 4.5% in SFM and 3.6% in SCM respectively. These results suggest that SiHA has a chemotactic activity independent of serum proteins. A property which has not previously been demonstrated for a synthetic bone graft material.Keywords: cell migration, hMSCs, SiHA, transwell migration system
Procedia PDF Downloads 1323309 A Text Classification Approach Based on Natural Language Processing and Machine Learning Techniques
Authors: Rim Messaoudi, Nogaye-Gueye Gning, François Azelart
Abstract:
Automatic text classification applies mostly natural language processing (NLP) and other AI-guided techniques to automatically classify text in a faster and more accurate manner. This paper discusses the subject of using predictive maintenance to manage incident tickets inside the sociality. It focuses on proposing a tool that treats and analyses comments and notes written by administrators after resolving an incident ticket. The goal here is to increase the quality of these comments. Additionally, this tool is based on NLP and machine learning techniques to realize the textual analytics of the extracted data. This approach was tested using real data taken from the French National Railways (SNCF) company and was given a high-quality result.Keywords: machine learning, text classification, NLP techniques, semantic representation
Procedia PDF Downloads 1023308 Machine Learning in Momentum Strategies
Authors: Yi-Min Lan, Hung-Wen Cheng, Hsuan-Ling Chang, Jou-Ping Yu
Abstract:
The study applies machine learning models to construct momentum strategies and utilizes the information coefficient as an indicator for selecting stocks with strong and weak momentum characteristics. Through this approach, the study has built investment portfolios capable of generating superior returns and conducted a thorough analysis. Compared to existing research on momentum strategies, machine learning is incorporated to capture non-linear interactions. This approach enhances the conventional stock selection process, which is often impeded by difficulties associated with timeliness, accuracy, and efficiency due to market risk factors. The study finds that implementing bidirectional momentum strategies outperforms unidirectional ones, and momentum factors with longer observation periods exhibit stronger correlations with returns. Optimizing the number of stocks in the portfolio while staying within a certain threshold leads to the highest level of excess returns. The study presents a novel framework for momentum strategies that enhances and improves the operational aspects of asset management. By introducing innovative financial technology applications to traditional investment strategies, this paper can demonstrate significant effectiveness.Keywords: information coefficient, machine learning, momentum, portfolio, return prediction
Procedia PDF Downloads 543307 Machine Learning Approach to Project Control Threshold Reliability Evaluation
Authors: Y. Kim, H. Lee, M. Park, B. Lee
Abstract:
Planning is understood as the determination of what has to be performed, how, in which sequence, when, what resources are needed, and their cost within the organization before execution. In most construction project, it is evident that the inherent nature of planning is dynamic, and initial planning is subject to be changed due to various uncertain conditions of construction project. Planners take a continuous revision process during the course of a project and until the very end of project. However, current practice lacks reliable, systematic tool for setting variance thresholds to determine when and what corrective actions to be taken. Rather it is heavily dependent on the level of experience and knowledge of the planner. Thus, this paper introduces a machine learning approach to evaluate project control threshold reliability incorporating project-specific data and presents a method to automate the process. The results have shown that the model improves the efficiency and accuracy of the monitoring process as an early warning.Keywords: machine learning, project control, project progress monitoring, schedule
Procedia PDF Downloads 244