Search results for: lambs output
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2069

Search results for: lambs output

1589 Efficacy of the Use of Different Teaching Approaches of Math Teachers

Authors: Nilda San Miguel, Elymar Pascual

Abstract:

The main focus of this study is exploring the effective approaches in teaching Mathematics that is being applied in public schools, s.y. 2018-2019. This research was written as connected output to the district-wide School Learning Action Cell (DISLAC) on Math teaching approaches which was recently conducted in Victoria, Laguna. Fifty-four math teachers coming from 17 schools in Victoria became the respondents of this study. Qualitative method of doing research was applied. Teachers’ responses to the following concerns were gathered, analyzed and interpreted: (1) evaluation of the recently conducted DISLAC, (2) status of the use of different approaches, (3) perception on the effective use of approaches, (4) preference of approach to explore in classroom sessions, (5) factors affecting the choice of approach, (6) difficulties encountered, (7) and perceived benefit to learners. Results showed that the conduct of DISLAC was very highly satisfactory (mean 4.41). Teachers looked at collaborative approach as very highly effective (mean 4.74). Fifty-two percent of the teachers is using collaborative approach, 17% constructivist, 11% integrative, 11% inquiry-based, and 9% reflective. Reflective approach was chosen to be explored by most of the respondents (29%) in future sessions. The difficulties encountered by teachers in using the different approaches are: (1) learners’ difficulty in following instructions, (2) lack of focus, (3) lack of willingness and cooperation, (4) teachers’ lack of mastery in using different approaches, and (5) lack of time of doing visual aids because of time mismanagement. Teachers deemed the use of various teaching approaches can help the learners to have (1) mastery of competency, (2) increased communication, (3) improved confidence, (4) facility in comprehension, and (5) better academic output. The result obtained from this study can be used as an input for SLACs. Recommendations at the end of the study were given to school/district heads and future researchers.

Keywords: approaches, collaborative, constructivism, inquiry-based, integrative, reflective

Procedia PDF Downloads 287
1588 A Single Loop Repetitive Controller for a Four Legs Matrix Converter Unit

Authors: Wesam Rohouma

Abstract:

The aim of this paper is to investigate the use of repetitive controller to regulate the output voltage of three phase four leg matric converter for an Aircraft Ground Power Supply Unit. The proposed controller improve the steady state error and provide good regulation during different loading. Simulation results of 7.5 KW converter are presented to verify the operation of the proposed controller.

Keywords: matrix converter, Power electronics, controller, regulation

Procedia PDF Downloads 1509
1587 Rest API Based System-level Test Automation for Mobile Applications

Authors: Jisoo Song

Abstract:

Today’s mobile applications are communicating with servers more and more in order to access external services or information. Also, server-side code changes are more frequent than client-side code changes in a mobile application. The frequent changes lead to an increase in testing cost increase. To reduce costs, UI based test automation can be one of the solutions. It is a common automation technique in system-level testing. However, it can be unsuitable for mobile applications. When you automate tests based on UI elements for mobile applications, there are some limitations such as the overhead of script maintenance or the difficulty of finding invisible defects that UI elements cannot represent. To overcome these limitations, we present a new automation technique based on Rest API. You can automate system-level tests through test scripts that you write. These scripts call a series of Rest API in a user’s action sequence. This technique does not require testers to know the internal implementation details, only input and expected output of Rest API. You can easily modify test cases by modifying Rest API input values and also find problems that might not be evident from the UI level by validating output values. For example, when an application receives price information from a payment server and user cannot see it at UI level, Rest API based scripts can check whether price information is correct or not. More than 10 mobile applications at our company are being tested automatically based on Rest API scripts whenever application source code, mostly server source code, is built. We are finding defects right away by setting a script as a build job in CI server. The build job starts when application code builds are completed. This presentation will also include field cases from our company.

Keywords: case studies at SK Planet, introduction of rest API based test automation, limitations of UI based test automation

Procedia PDF Downloads 450
1586 Hematuria Following Magnesium Sulfate Administration in a Pregnant Patient with Renal Tubular Acidosis

Authors: Jan Gayl Barcelon, N. Gorgonio

Abstract:

Renal tubular acidosis, a medical condition that involves the accumulation of acid in the body due to failure of the kidneys to maintain normal urine and blood pH, is rarely encountered in pregnancy. The effect of renal tubular acidosis in pregnancy is not fully established. It may worsen during pregnancy and cause maternal and fetal morbidity. A 30-year-old primigravida was diagnosed with renal tubular acidosis at age 7, but due to uncontrolled disease progression, she developed rickets at age 10. She was first seen in our institution at eight weeks gestation and maintained on bicarbonate and potassium supplementation. At 26 weeks gestation, she was diagnosed with polyhydramnios, causing on and off irregular uterine contractions. At 30 weeks gestation, despite oral Nifedipine, premature labor was uncontrolled; hence she was admitted for tocolysis. With elevated creatinine (123 umol/L) and a normal blood urea nitrogen level (6.70 mmol/L), she was referred to Nephrology Service, which cleared the patient prior to MgSO₄ drip. Dosing of 4g MgSO₄ over 20 minutes followed by a maintenance of 2g/hour x 24 hours for neuroprotection and tocolysis was ordered. Two hours after MgSO₄ drip initiation, hematuria developed with adequate urine output. The infusion was immediately stopped. The serum magnesium level was high normal at 6.7 mEq/L. After 4 hours of renal clearance, the repeat serum magnesium level was normal (2.7 mEq/L) and with clear urine output. The patient was then given Nifedipine 30mg/tab, 3x a day which controlled the uterine contractions. At 37 weeks gestation, the patient delivered via primary low transverse Cesarean Section to a live female with a birthweight of 2470gm, appropriate for gestational age. The use of MgSO₄ for the control of premature labor in patients with chronic renal disease secondary to renal tubular can cause hematuria.

Keywords: hematuria, magnesium sulfate, premature labor, renal tubular acidosis

Procedia PDF Downloads 132
1585 Features of Testing of the Neuronetwork Converter Biometrics-Code with Correlation Communications between Bits of the Output Code

Authors: B. S. Akhmetov, A. I. Ivanov, T. S. Kartbayev, A. Y. Malygin, K. Mukapil, S. D. Tolybayev

Abstract:

The article examines the testing of the neural network converter of biometrics code. Determined the main reasons that prevented the use adopted in the works of foreign researchers classical a Binomial Law when describing distribution of measures of Hamming "Alien" codes-responses.

Keywords: biometrics, testing, neural network, converter of biometrics-code, Hamming's measure

Procedia PDF Downloads 1143
1584 Gas Flow, Time, Distance Dynamic Modelling

Authors: A. Abdul-Ameer

Abstract:

The equations governing the distance, pressure- volume flow relationships for the pipeline transportation of gaseous mixtures, are considered. A derivation based on differential calculus, for an element of this system model, is addressed. Solutions, yielding the input- output response following pressure changes, are reviewed. The technical problems associated with these analytical results are identified. Procedures resolving these difficulties providing thereby an attractive, simple, analysis route are outlined. Computed responses, validating thereby calculated predictions, are presented.

Keywords: pressure, distance, flow, dissipation, models

Procedia PDF Downloads 477
1583 The Many Faces of Inspiration: A Study on Socio-Cultural Influences in Design

Authors: Nithya Venkataraman

Abstract:

The creative journey in design often starts with a spark of inspiration, the source of which can be from myriad stimuli- nature, poetry, personal experiences or even fleeting thoughts and images. While it is indeed an important source of creative exploration, interpretation of this inspiration may often times be influenced by demographic and psychographic variables of the creator - Age, gender, lifecycle stage, personal experiences and individual personality traits being some of these factors. Common sources of inspiration can thus be interpreted differently, translating to different elements of design, and using varied principles in their execution. Do such variables in the creator influence the nature of the creative output? If yes, what are the visible matrices in the output which can be differentiated? An observational study with two groups of Design students, studying in the same design institute, under the guidance of the same design mentor, was conducted to map this influence. Both the groups were unaware of each other but worked with a common source of inspiration as provided by the instructor. In order to maintain congruence, both the groups were provided with lyrical compositions from well-known ballads and poetry as the source of their inspiration. The outputs were abstract renditions using lines, colors and shapes; and these were analyzed under matrices for the elements and principles used to create the compositions. The study indicated that there was a demarcation in terms of the choice of lines, colors and shapes chosen to create the composition, between both groups. The groups also tended to use repetition, proportion and emphasis differently; giving rise to varied uses of the Design principles. The study threw interesting observations on how Design interpretation can vary for the same source of inspiration, based on demographic and psychographic variances. The implications can be traced not just to the process of creative design, but also to the deep social roots that bind creative thinking and Design ideation; which can provide an interesting commentary between different cohorts on what constitutes ‘Good Design’.

Keywords: design compositions, inspiration, interpretation, psychographic factors, social factors

Procedia PDF Downloads 124
1582 Soil Bioremediation Monitoring Systems Powered by Microbial Fuel Cells

Authors: András Fülöp, Lejla Heilmann, Zsolt Szabó, Ákos Koós

Abstract:

Microbial fuel cells (MFCs) present a sustainable biotechnological solution to future energy demands. The aim of this study was to construct soil based, single cell, membrane-less MFC systems, operated without treatment to continuously power on-site monitoring and control systems during the soil bioremediation processes. Our Pseudomonas aeruginosa 541 isolate is an ideal choice for MFCs, because it is able to produce pyocyanin which behaves as electron-shuttle molecule, furthermore, it also has a significant antimicrobial effect. We tested several materials and structural configurations to obtain long term high power output. Comparing different configurations, a proton exchange membrane-less, 0.6 m long with 0.05 m diameter MFC tubes offered the best long-term performances. The long-term electricity production were tested from starch, yeast extract (YE), carboxymethyl cellulose (CMC) with humic acid (HA) as a mediator. In all cases, 3 kΩ external load have been used. The two best-operated systems were the Pseudomonas aeruginosa 541 containing MFCs with 1 % carboxymethyl cellulose and the MFCs with 1% yeast extract in the anode area and 35% hydrogel in the cathode chamber. The first had 3.3 ± 0.033 mW/m2 and the second had 4.1 ± 0.065 mW/m2 power density values. These systems have operated for 230 days without any treatment. The addition of 0.2 % HA and 1 % YE referred to the volume of the anode area resulted in 1.4 ± 0.035 mW/m2 power densities. The mixture of 1% starch with 0.2 % HA gave 1.82 ± 0.031 mW/m2. Using CMC as retard carbon source takes effect in the long-term bacterial survivor, thus enable the expression of the long term power output. The application of hydrogels in the cathode chamber significantly increased the performance of the MFC units due to their good water retention capacity.

Keywords: microbial fuel cell, bioremediation, Pseudomonas aeruginosa, biotechnological solution

Procedia PDF Downloads 293
1581 A Systemic Review and Comparison of Non-Isolated Bi-Directional Converters

Authors: Rahil Bahrami, Kaveh Ashenayi

Abstract:

This paper presents a systematic classification and comparative analysis of non-isolated bi-directional DC-DC converters. The increasing demand for efficient energy conversion in diverse applications has spurred the development of various converter topologies. In this study, we categorize bi-directional converters into three distinct classes: Inverting, Non-Inverting, and Interleaved. Each category is characterized by its unique operational characteristics and benefits. Furthermore, a practical comparison is conducted by evaluating the results of simulation of each bi-directional converter. BDCs can be classified into isolated and non-isolated topologies. Non-isolated converters share a common ground between input and output, making them suitable for applications with minimal voltage change. They are easy to integrate, lightweight, and cost-effective but have limitations like limited voltage gain, switching losses, and no protection against high voltages. Isolated converters use transformers to separate input and output, offering safety benefits, high voltage gain, and noise reduction. They are larger and more costly but are essential for automotive designs where safety is crucial. The paper focuses on non-isolated systems.The paper discusses the classification of non-isolated bidirectional converters based on several criteria. Common factors used for classification include topology, voltage conversion, control strategy, power capacity, voltage range, and application. These factors serve as a foundation for categorizing converters, although the specific scheme might vary depending on contextual, application, or system-specific requirements. The paper presents a three-category classification for non-isolated bi-directional DC-DC converters: inverting, non-inverting, and interleaved. In the inverting category, converters produce an output voltage with reversed polarity compared to the input voltage, achieved through specific circuit configurations and control strategies. This is valuable in applications such as motor control and grid-tied solar systems. The non-inverting category consists of converters maintaining the same voltage polarity, useful in scenarios like battery equalization. Lastly, the interleaved category employs parallel converter stages to enhance power delivery and reduce current ripple. This classification framework enhances comprehension and analysis of non-isolated bi-directional DC-DC converters. The findings contribute to a deeper understanding of the trade-offs and merits associated with different converter types. As a result, this work aids researchers, practitioners, and engineers in selecting appropriate bi-directional converter solutions for specific energy conversion requirements. The proposed classification framework and experimental assessment collectively enhance the comprehension of non-isolated bi-directional DC-DC converters, fostering advancements in efficient power management and utilization.The simulation process involves the utilization of PSIM to model and simulate non-isolated bi-directional converter from both inverted and non-inverted category. The aim is to conduct a comprehensive comparative analysis of these converters, considering key performance indicators such as rise time, efficiency, ripple factor, and maximum error. This systematic evaluation provides valuable insights into the dynamic response, energy efficiency, output stability, and overall precision of the converters. The results of this comparison facilitate informed decision-making and potential optimizations, ensuring that the chosen converter configuration aligns effectively with the designated operational criteria and performance goals.

Keywords: bi-directional, DC-DC converter, non-isolated, energy conversion

Procedia PDF Downloads 103
1580 Nowcasting Indonesian Economy

Authors: Ferry Kurniawan

Abstract:

In this paper, we nowcast quarterly output growth in Indonesia by exploiting higher frequency data (monthly indicators) using a mixed-frequency factor model and exploiting both quarterly and monthly data. Nowcasting quarterly GDP in Indonesia is particularly relevant for the central bank of Indonesia which set the policy rate in the monthly Board of Governors Meeting; whereby one of the important step is the assessment of the current state of the economy. Thus, having an accurate and up-to-date quarterly GDP nowcast every time new monthly information becomes available would clearly be of interest for central bank of Indonesia, for example, as the initial assessment of the current state of the economy -including nowcast- will be used as input for longer term forecast. We consider a small scale mixed-frequency factor model to produce nowcasts. In particular, we specify variables as year-on-year growth rates thus the relation between quarterly and monthly data is expressed in year-on-year growth rates. To assess the performance of the model, we compare the nowcasts with two other approaches: autoregressive model –which is often difficult when forecasting output growth- and Mixed Data Sampling (MIDAS) regression. In particular, both mixed frequency factor model and MIDAS nowcasts are produced by exploiting the same set of monthly indicators. Hence, we compare the nowcasts performance of the two approaches directly. To preview the results, we find that by exploiting monthly indicators using mixed-frequency factor model and MIDAS regression we improve the nowcast accuracy over a benchmark simple autoregressive model that uses only quarterly frequency data. However, it is not clear whether the MIDAS or mixed-frequency factor model is better. Neither set of nowcasts encompasses the other; suggesting that both nowcasts are valuable in nowcasting GDP but neither is sufficient. By combining the two individual nowcasts, we find that the nowcast combination not only increases the accuracy - relative to individual nowcasts- but also lowers the risk of the worst performance of the individual nowcasts.

Keywords: nowcasting, mixed-frequency data, factor model, nowcasts combination

Procedia PDF Downloads 333
1579 A Continuous Real-Time Analytic for Predicting Instability in Acute Care Rapid Response Team Activations

Authors: Ashwin Belle, Bryce Benson, Mark Salamango, Fadi Islim, Rodney Daniels, Kevin Ward

Abstract:

A reliable, real-time, and non-invasive system that can identify patients at risk for hemodynamic instability is needed to aid clinicians in their efforts to anticipate patient deterioration and initiate early interventions. The purpose of this pilot study was to explore the clinical capabilities of a real-time analytic from a single lead of an electrocardiograph to correctly distinguish between rapid response team (RRT) activations due to hemodynamic (H-RRT) and non-hemodynamic (NH-RRT) causes, as well as predict H-RRT cases with actionable lead times. The study consisted of a single center, retrospective cohort of 21 patients with RRT activations from step-down and telemetry units. Through electronic health record review and blinded to the analytic’s output, each patient was categorized by clinicians into H-RRT and NH-RRT cases. The analytic output and the categorization were compared. The prediction lead time prior to the RRT call was calculated. The analytic correctly distinguished between H-RRT and NH-RRT cases with 100% accuracy, demonstrating 100% positive and negative predictive values, and 100% sensitivity and specificity. In H-RRT cases, the analytic detected hemodynamic deterioration with a median lead time of 9.5 hours prior to the RRT call (range 14 minutes to 52 hours). The study demonstrates that an electrocardiogram (ECG) based analytic has the potential for providing clinical decision and monitoring support for caregivers to identify at risk patients within a clinically relevant timeframe allowing for increased vigilance and early interventional support to reduce the chances of continued patient deterioration.

Keywords: critical care, early warning systems, emergency medicine, heart rate variability, hemodynamic instability, rapid response team

Procedia PDF Downloads 147
1578 Analysis of the Physical Behavior of Library Users in Reading Rooms through GIS: A Case Study of the Central Library of Tehran University

Authors: Roya Pournaghi

Abstract:

Measuring the extent of daily use of the libraries study space is of utmost significance in order to develop, re-organize and maintain the efficiency of the study space. The current study aimed to employ GIS in analyzing the study halls space of the document center and central library of Tehran University and determine the extent of use of the study chairs and desks by the students-intended users. This combination of survey methods - descriptive design system. In order to collect the required data and a description of the method, To implement and entering data into ArcGIS software. It also analyzes the data and displays the results on the library floor map design method were used. And spatial database design and plan has been done at the Central Library of Tehran University through the amount of space used by members of the Library and Information halls plans. Results showed that Biruni's hall is allocated the highest occupancy rate to tables and chairs compared to other halls. In the Hall of Science and Technology, with an average occupancy rate of 0.39 in the tables represents the lowest users and Rashid al-Dins hall, and Science and Technology’s hall with an average occupancy rate (0.40) represents the lowest users of seats. In this study, the comparison of the space is occupied at different period as a study’s hall in the morning, evenings, afternoons, and several months was performed through GIS. This system analyzed the space relationship effectively and efficiently. The output of this study can be used by administrators and librarians to determine the exact amount of using the Equipment of study halls and librarians can use the output map to design more efficient space at the library.

Keywords: geospatial information system, spatial analysis, reading room, academic libraries, library’s user, central library of Tehran university

Procedia PDF Downloads 237
1577 Fabrication of Glucose/O₂ Microfluidic Biofuel Cell with Double Layer of Electrodes

Authors: Haroon Khan, Chul Min Kim, Sung Yeol Kim, Sanket Goel, Prabhat K. Dwivedi, Ashutosh Sharma, Gyu Man Kim

Abstract:

Enzymatic biofuel cells (EBFCs) have drawn the attention of researchers due to its demanding application in medical implants. In EBFCs, electricity is produced with the help of redox enzymes. In this study, we report the fabrication of membraneless EBFC with new design of electrodes to overcome microchannel related limitations. The device consists of double layer of electrodes on both sides of Y-shaped microchannel to reduce the effect of oxygen depletion layer and diffusion of fuel and oxidant at the end of microchannel. Moreover, the length of microchannel was reduced by half keeping the same area of multiwalled carbon nanotubes (MWCNT) electrodes. Polydimethylsiloxane (PDMS) stencils were used to pattern MWCNT electrodes on etched Indium Tin Oxide (ITO) glass. PDMS casting was used to fabricate microchannel of the device. Both anode and cathode were modified with glucose oxidase and laccase. Furthermore, these enzymes were covalently bound to carboxyl MWCNTs with the help of EDC/NHS. Glucose used as fuel was oxidized by glucose oxidase at anode while oxygen was reduced to water at the cathode side. The resulted devices were investigated with the help of polarization curves obtained from Chronopotentiometry technique by using potentiostat. From results, we conclude that the performance of double layer EBFC is improved 15 % as compared to single layer EBFC delivering maximum power density of 71.25 µW cm-2 at a cell potential of 0.3 V and current density of 250 µA cm-2 at micro channel height of 450-µm and flow rate of 25 ml hr-1. However, the new device was stable only for three days after which its power output was rapidly dropped by 75 %. This work demonstrates that the power output of membraneless EBFC is improved comparatively, but still efforts will be needed to make the device stable over long period of time.

Keywords: EBFC, glucose, MWCNT, microfluidic

Procedia PDF Downloads 326
1576 A Multi-Regional Structural Path Analysis of Virtual Water Flows Caused by Coal Consumption in China

Authors: Cuiyang Feng, Xu Tang, Yi Jin

Abstract:

Coal is the most important primary energy source in China, which exerts a significant influence on the rapid economic growth. However, it makes the water resources to be a constraint on coal industry development, on account of the reverse geographical distribution between coal and water. To ease the pressure on water shortage, the ‘3 Red Lines’ water policies were announced by the Chinese government, and then ‘water for coal’ plan was added to that policies in 2013. This study utilized a structural path analysis (SPA) based on the multi-regional input-output table to quantify the virtual water flows caused by coal consumption in different stages. Results showed that the direct water input (the first stage) was the highest amount in all stages of coal consumption, accounting for approximately 30% of total virtual water content. Regional analysis demonstrated that virtual water trade alleviated the pressure on water use for coal consumption in water shortage areas, but the import of virtual water was not from the areas which are rich in water. Sectoral analysis indicated that the direct inputs from the sectors of ‘production and distribution of electric power and heat power’ and ‘Smelting and pressing of metals’ took up the major virtual water flows, while the sectors of ‘chemical industry’ and ‘manufacture of non-metallic mineral products’ importantly but indirectly consumed the water. With the population and economic growth in China, the water demand-and-supply gap in coal consumption would be more remarkable. In additional to water efficiency improvement measures, the central government should adjust the strategies of the virtual water trade to address local water scarcity issues. Water resource as the main constraints should be highly considered in coal policy to promote the sustainable development of the coal industry.

Keywords: coal consumption, multi-regional input-output model, structural path analysis, virtual water

Procedia PDF Downloads 303
1575 A Neural Network for the Prediction of Contraction after Burn Injuries

Authors: Ginger Egberts, Marianne Schaaphok, Fred Vermolen, Paul van Zuijlen

Abstract:

A few years ago, a promising morphoelastic model was developed for the simulation of contraction formation after burn injuries. Contraction can lead to a serious reduction in physical mobility, like a reduction in the range-of-motion of joints. If this is the case in a healing burn wound, then this is referred to as a contracture that needs medical intervention. The morphoelastic model consists of a set of partial differential equations describing both a chemical part and a mechanical part in dermal wound healing. These equations are solved with the numerical finite element method (FEM). In this method, many calculations are required on each of the chosen elements. In general, the more elements, the more accurate the solution. However, the number of elements increases rapidly if simulations are performed in 2D and 3D. In that case, it not only takes longer before a prediction is available, the computation also becomes more expensive. It is therefore important to investigate alternative possibilities to generate the same results, based on the input parameters only. In this study, a surrogate neural network has been designed to mimic the results of the one-dimensional morphoelastic model. The neural network generates predictions quickly, is easy to implement, and there is freedom in the choice of input and output. Because a neural network requires extensive training and a data set, it is ideal that the one-dimensional FEM code generates output quickly. These feed-forward-type neural network results are very promising. Not only can the network give faster predictions, but it also has a performance of over 99%. It reports on the relative surface area of the wound/scar, the total strain energy density, and the evolutions of the densities of the chemicals and mechanics. It is, therefore, interesting to investigate the applicability of a neural network for the two- and three-dimensional morphoelastic model for contraction after burn injuries.

Keywords: biomechanics, burns, feasibility, feed-forward NN, morphoelasticity, neural network, relative surface area wound

Procedia PDF Downloads 58
1574 Minimum Wages and Its Impact on Agriculture and Non Agricultural Sectors with Special Reference to Recent Labour Reforms in India

Authors: Bikash Kumar Malick

Abstract:

Labour reform is a most celebrated theme for policy makers, at the same time it is also a most misunderstood and skeptical concept even for the educated masses in India. One of the widely focused and discussed topics which needs an in-depth examination is India’s labour laws. It may actually help to reach points to understand the exact requirements in labour reforms by making the labour laws more simple and concise in form and its implementation. It is also a requirement to guide states in India in terms of making laws on it as Indian Constitution itself is federal in form and unitary in spirit. Recently, Codes of Wages Bill has been introduced in Indian Parliament while other three codes are waiting to come in the same line and those codes actually highlight the simplified features of labour laws to enable labour reform in a succinct manner. However, it still brings more confusion in minds of people. To wipe out the confusion and to bring a note and to put it for correlation among the labour reforms of both centre and states which both generates employment and make growth sustainable in India providing clear public understanding. This time is also ripe minimizing the apprehension about all the coming labour laws simplified in different codes in India. This article attempts to highlight the need of labour reform and its possible impact. It also examines the higher rates of minimum wages and its links with its coverage agriculture and nonagricultural sectors (including mines) over the period time. It also takes into consideration of central sphere and in states sphere minimum wage which are linked with Consumer Price Index to bring into account the living standard of workers and to examine the cause and effect between minimum wage and output in both agriculture and non agricultural sector with regression analysis. Increase in minimum wage has actually strengthened the sustainable output.

Keywords: codes of wages, indian constitution, minimum wage, labour laws, labour reforms

Procedia PDF Downloads 199
1573 Experimental Study of Boost Converter Based PV Energy System

Authors: T. Abdelkrim, K. Ben Seddik, B. Bezza, K. Benamrane, Aeh. Benkhelifa

Abstract:

This paper proposes an implementation of boost converter for a resistive load using photovoltaic energy as a source. The model of photovoltaic cell and operating principle of boost converter are presented. A PIC micro controller is used in the close loop control to generate pulses for controlling the converter circuit. To performance evaluation of boost converter, a variation of output voltage of PV panel is done by shading one and two cells.

Keywords: boost converter, microcontroller, photovoltaic power generation, shading cells

Procedia PDF Downloads 882
1572 Using Machine Learning to Extract Patient Data from Non-standardized Sports Medicine Physician Notes

Authors: Thomas Q. Pan, Anika Basu, Chamith S. Rajapakse

Abstract:

Machine learning requires data that is categorized into features that models train on. This topic is important to the field of sports medicine due to the many tools it provides to physicians such as diagnosis support and risk assessment. Physician note that healthcare professionals take are usually unclean and not suitable for model training. The objective of this study was to develop and evaluate an advanced approach for extracting key features from sports medicine data without the need for extensive model training or data labeling. An LLM (Large Language Model) was given a narrative (Physician’s Notes) and prompted to extract four features (details about the patient). The narrative was found in a datasheet that contained six columns: Case Number, Validation Age, Validation Gender, Validation Diagnosis, Validation Body Part, and Narrative. The validation columns represent the accurate responses that the LLM attempts to output. With the given narrative, the LLM would output its response and extract the age, gender, diagnosis, and injured body part with each category taking up one line. The output would then be cleaned, matched, and added to new columns containing the extracted responses. Five ways of checking the accuracy were used: unclear count, substring comparison, LLM comparison, LLM re-check, and hand-evaluation. The unclear count essentially represented the extractions the LLM missed. This can be also understood as the recall score ([total - false negatives] over total). The rest of these correspond to the precision score ([total - false positives] over total). Substring comparison evaluated the validation (X) and extracted (Y) columns’ likeness by checking if X’s results were a substring of Y's findings and vice versa. LLM comparison directly asked an LLM if the X and Y’s results were similar. LLM Re-check prompted the LLM to see if the extracted results can be found in the narrative. Lastly, A selection of 1,000 random narratives was also selected and hand-evaluated to give an estimate of how well the LLM-based feature extraction model performed. With a selection of 10,000 narratives, the LLM-based approach had a recall score of roughly 98%. However, the precision scores of the substring comparison and LLM comparison models were around 72% and 76% respectively. The reason for these low figures is due to the minute differences between answers. For example, the ‘chest’ is a part of the ‘upper trunk’ however, these models cannot detect that. On the other hand, the LLM re-check and subset of hand-tested narratives showed a precision score of 96% and 95%. If this subset is used to extrapolate the possible outcome of the whole 10,000 narratives, the LLM-based approach would be strong in both precision and recall. These results indicated that an LLM-based feature extraction model could be a useful way for medical data in sports to be collected and analyzed by machine learning models. Wide use of this method could potentially increase the availability of data thus improving machine learning algorithms and supporting doctors with more enhanced tools.

Keywords: AI, LLM, ML, sports

Procedia PDF Downloads 18
1571 The Relationship Between Car Drivers' Background Information and Risky Events In I- Dreams Project

Authors: Dagim Dessalegn Haile

Abstract:

This study investigated the interaction between the drivers' socio-demographic background information (age, gender, and driving experience) and the risky events score in the i-DREAMS platform. Further, the relationship between the participants' background driving behavior and the i-DREAMS platform behavioral output scores of risky events was also investigated. The i-DREAMS acronym stands for Smart Driver and Road Environment Assessment and Monitoring System. It is a European Union Horizon 2020 funded project consisting of 13 partners, researchers, and industry partners from 8 countries. A total of 25 Belgian car drivers (16 male and nine female) were considered for analysis. Drivers' ages were categorized into ages 18-25, 26-45, 46-65, and 65 and older. Drivers' driving experience was also categorized into four groups: 1-15, 16-30, 31-45, and 46-60 years. Drivers are classified into two clusters based on the recorded score for risky events during phase 1 (baseline) using risky events; acceleration, deceleration, speeding, tailgating, overtaking, and lane discipline. Agglomerative hierarchical clustering using SPSS shows Cluster 1 drivers are safer drivers, and Cluster 2 drivers are identified as risky drivers. The analysis result indicated no significant relationship between age groups, gender, and experience groups except for risky events like acceleration, tailgating, and overtaking in a few phases. This is mainly because the fewer participants create less variability of socio-demographic background groups. Repeated measure ANOVA shows that cluster 2 drivers improved more than cluster 1 drivers for tailgating, lane discipline, and speeding events. A positive relationship between background drivers' behavior and i-DREAMS platform behavioral output scores is observed. It implies that car drivers who in the questionnaire data indicate committing more risky driving behavior demonstrate more risky driver behavior in the i-DREAMS observed driving data.

Keywords: i-dreams, car drivers, socio-demographic background, risky events

Procedia PDF Downloads 73
1570 Hydrogen Storage Systems for Enhanced Grid Balancing Services in Wind Energy Conversion Systems

Authors: Nezmin Kayedpour, Arash E. Samani, Siavash Asiaban, Jeroen M. De Kooning, Lieven Vandevelde, Guillaume Crevecoeur

Abstract:

The growing adoption of renewable energy sources, such as wind power, in electricity generation is a significant step towards a sustainable and decarbonized future. However, the inherent intermittency and uncertainty of wind resources pose challenges to the reliable and stable operation of power grids. To address this, hydrogen storage systems have emerged as a promising and versatile technology to support grid balancing services in wind energy conversion systems. In this study, we propose a supplementary control design that enhances the performance of the hydrogen storage system by integrating wind turbine (WT) pitch and torque control systems. These control strategies aim to optimize the hydrogen production process, ensuring efficient utilization of wind energy while complying with grid requirements. The wind turbine pitch control system plays a crucial role in managing the turbine's aerodynamic performance. By adjusting the blade pitch angle, the turbine's rotational speed and power output can be regulated. Our proposed control design dynamically coordinates the pitch angle to match the wind turbine's power output with the optimal hydrogen production rate. This ensures that the electrolyzer receives a steady and optimal power supply, avoiding unnecessary strain on the system during high wind speeds and maximizing hydrogen production during low wind speeds. Moreover, the wind turbine torque control system is incorporated to facilitate efficient operation at varying wind speeds. The torque control system optimizes the energy capture from the wind while limiting mechanical stress on the turbine components. By harmonizing the torque control with hydrogen production requirements, the system maintains stable wind turbine operation, thereby enhancing the overall energy-to-hydrogen conversion efficiency. To enable grid-friendly operation, we introduce a cascaded controller that regulates the electrolyzer's electrical power-current in accordance with grid requirements. This controller ensures that the hydrogen production rate can be dynamically adjusted based on real-time grid demands, supporting grid balancing services effectively. By maintaining a close relationship between the wind turbine's power output and the electrolyzer's current, the hydrogen storage system can respond rapidly to grid fluctuations and contribute to enhanced grid stability. In this paper, we present a comprehensive analysis of the proposed supplementary control design's impact on the overall performance of the hydrogen storage system in wind energy conversion systems. Through detailed simulations and case studies, we assess the system's ability to provide grid balancing services, maximize wind energy utilization, and reduce greenhouse gas emissions.

Keywords: active power control, electrolyzer, grid balancing services, wind energy conversion systems

Procedia PDF Downloads 89
1569 Generation of Ultra-Broadband Supercontinuum Ultrashort Laser Pulses with High Energy

Authors: Walid Tawfik

Abstract:

The interaction of intense short nano- and picosecond laser pulses with plasma leads to reach variety of important applications, including time-resolved laser induced breakdown spectroscopy (LIBS), soft x-ray lasers, and laser-driven accelerators. The progress in generating of femtosecond down to sub-10 fs optical pulses has opened a door for scientists with an essential tool in many ultrafast phenomena, such as femto-chemistry, high field physics, and high harmonic generation (HHG). The advent of high-energy laser pulses with durations of few optical cycles provided scientists with very high electric fields, and produce coherent intense UV to NIR radiation with high energy which allows for the investigation of ultrafast molecular dynamics with femtosecond resolution. In this work, we could experimentally achieve the generation of a two-octave-wide supercontinuum ultrafast pulses extending from ultraviolet at 3.5 eV to the near-infrared at 1.3 eV in neon-filled capillary fiber. These pulses are created due to nonlinear self-phase modulation (SPM) in neon as a nonlinear medium. The measurements of the generated pulses were performed using spectral phase interferometry for direct electric-field reconstruction. A full characterization of the output pulses was studied. The output pulse characterization includes the pulse width, the beam profile, and the spectral bandwidth. Under optimization conditions, the reconstructed pulse intensity autocorrelation function was exposed for the shorts possible pulse duration to achieve transform-limited pulses with energies up to 600µJ. Furthermore, the effect of variation of neon pressure on the pulse-width was studied. The nonlinear SPM found to be increased with the neon pressure. The obtained results may give an opportunity to monitor and control ultrafast transit interaction in femtosecond chemistry.

Keywords: femtosecond laser, ultrafast, supercontinuum, ultra-broadband

Procedia PDF Downloads 209
1568 Grid and Market Integration of Large Scale Wind Farms using Advanced Predictive Data Mining Techniques

Authors: Umit Cali

Abstract:

The integration of intermittent energy sources like wind farms into the electricity grid has become an important challenge for the utilization and control of electric power systems, because of the fluctuating behaviour of wind power generation. Wind power predictions improve the economic and technical integration of large amounts of wind energy into the existing electricity grid. Trading, balancing, grid operation, controllability and safety issues increase the importance of predicting power output from wind power operators. Therefore, wind power forecasting systems have to be integrated into the monitoring and control systems of the transmission system operator (TSO) and wind farm operators/traders. The wind forecasts are relatively precise for the time period of only a few hours, and, therefore, relevant with regard to Spot and Intraday markets. In this work predictive data mining techniques are applied to identify a statistical and neural network model or set of models that can be used to predict wind power output of large onshore and offshore wind farms. These advanced data analytic methods helps us to amalgamate the information in very large meteorological, oceanographic and SCADA data sets into useful information and manageable systems. Accurate wind power forecasts are beneficial for wind plant operators, utility operators, and utility customers. An accurate forecast allows grid operators to schedule economically efficient generation to meet the demand of electrical customers. This study is also dedicated to an in-depth consideration of issues such as the comparison of day ahead and the short-term wind power forecasting results, determination of the accuracy of the wind power prediction and the evaluation of the energy economic and technical benefits of wind power forecasting.

Keywords: renewable energy sources, wind power, forecasting, data mining, big data, artificial intelligence, energy economics, power trading, power grids

Procedia PDF Downloads 521
1567 Isolation Enhancement of Compact Dual-Band Printed Multiple Input Multiple Output Antenna for WLAN Applications

Authors: Adham M. Salah, Tariq A. Nagem, Raed A. Abd-Alhameed, James M. Noras

Abstract:

Recently, the demand for wireless communications systems to cover more than one frequency band (multi-band) with high data rate has been increased for both fixed and mobile services. Multiple Input Multiple Output (MIMO) technology is one of the significant solutions for attaining these requirements and to achieve the maximum channel capacity of the wireless communications systems. The main issue associated with MIMO antennas especially in portable devices is the compact space between the radiating elements which leads to limit the physical separation between them. This issue exacerbates the performance of the MIMO antennas by increasing the mutual coupling between the radiating elements. In other words, the mutual coupling will be stronger if the radiating elements of the MIMO antenna are closer. This paper presents a low–profile dual-band (2×1) MIMO antenna that works at 2.4GHz, 5.3GHz and 5.8GHz for wireless local area networks (WLAN) applications. A neutralization line (NL) technique for enhancing the isolation has been used by introducing a strip line with a length of λg/4 at the isolation frequency (2.4GHz) between the radiating elements. The overall dimensions of the antenna are 33.5 x 36 x 1.6 mm³. The fabricated prototype shows a good agreement between the simulated and measured results. The antenna impedance bandwidths are 2.38–2.75 GHz and 4.4–6 GHz for the lower and upper band respectively; the reflection coefficient and mutual coupling are better than -25 dB in both lower and higher bands. The MIMO antenna performance characteristics are reported in terms of the scattering parameters, envelope correlation coefficient (ECC), total active reflection coefficient, capacity loss, antenna gain, and radiation patterns. Analysis of these characteristics indicates that the design is appropriate for the WLAN terminal applications.

Keywords: ECC, neutralization line, MIMO antenna, multi-band, mutual coupling, WLAN

Procedia PDF Downloads 138
1566 Frequency Selective Filters for Estimating the Equivalent Circuit Parameters of Li-Ion Battery

Authors: Arpita Mondal, Aurobinda Routray, Sreeraj Puravankara, Rajashree Biswas

Abstract:

The most difficult part of designing a battery management system (BMS) is battery modeling. A good battery model can capture the dynamics which helps in energy management, by accurate model-based state estimation algorithms. So far the most suitable and fruitful model is the equivalent circuit model (ECM). However, in real-time applications, the model parameters are time-varying, changes with current, temperature, state of charge (SOC), and aging of the battery and this make a great impact on the performance of the model. Therefore, to increase the equivalent circuit model performance, the parameter estimation has been carried out in the frequency domain. The battery is a very complex system, which is associated with various chemical reactions and heat generation. Therefore, it’s very difficult to select the optimal model structure. As we know, if the model order is increased, the model accuracy will be improved automatically. However, the higher order model will face the tendency of over-parameterization and unfavorable prediction capability, while the model complexity will increase enormously. In the time domain, it becomes difficult to solve higher order differential equations as the model order increases. This problem can be resolved by frequency domain analysis, where the overall computational problems due to ill-conditioning reduce. In the frequency domain, several dominating frequencies can be found in the input as well as output data. The selective frequency domain estimation has been carried out, first by estimating the frequencies of the input and output by subspace decomposition, then by choosing the specific bands from the most dominating to the least, while carrying out the least-square, recursive least square and Kalman Filter based parameter estimation. In this paper, a second order battery model consisting of three resistors, two capacitors, and one SOC controlled voltage source has been chosen. For model identification and validation hybrid pulse power characterization (HPPC) tests have been carried out on a 2.6 Ah LiFePO₄ battery.

Keywords: equivalent circuit model, frequency estimation, parameter estimation, subspace decomposition

Procedia PDF Downloads 155
1565 High Input Driven Factors in Idea Campaigns in Large Organizations: A Case Depicting Best Practices

Authors: Babar Rasheed, Saad Ghafoor

Abstract:

Introduction: Idea campaigns are commonly held across organizations for generating employee engagement. The contribution is specifically designed to identify and solve prevalent issues. It is argued that numerous organizations fail to achieve their desired goals despite arranging for such campaigns and investing heavily in them. There are however practices that organizations use to achieve higher degree of effectiveness, and these practices may be up for exploration by research to make them usable for the other organizations. Purpose: The aim of this research is to surface the idea management practices of a leading electric company with global operations. The study involves a large sized, multi site organization that is attributed to have added challenges in terms of managing ideas from employees, in comparison to smaller organizations. The study aims to highlight the factors that are looked at as the idea management team strategies for the campaign, sets terms and rewards for it, makes follow up with the employees and lastly, evaluate and award ideas. Methodology: The study is conducted in a leading electric appliance corporation that has a large number of employees and is based in numerous regions of the world. A total of 7 interviews are carried out involving the chief innovation officer, innovation manager and members of idea management and evaluation teams. The interviews are carried out either on Skype or in-person based on the availability of the interviewee. Findings: While this being a working paper and while the study is under way, it is anticipated that valuable information is being achieved about specific details on how idea management systems are governed and how idea campaigns are carried out. The findings may be particularly useful for innovation consultants as resources they can use to promote idea campaigning. The usefulness of the best practices highlighted as a result is, in any case, the most valuable output of this study.

Keywords: employee engagement, motivation, idea campaigns, large organizations, best practices, employees input, organizational output

Procedia PDF Downloads 176
1564 Marginal Productivity of Small Scale Yam and Cassava Farmers in Kogi State, Nigeria: Data Envelopment Analysis as a Complement

Authors: M. A. Ojo, O. A. Ojo, A. I. Odine, A. Ogaji

Abstract:

The study examined marginal productivity analysis of small scale yam and cassava farmers in Kogi State, Nigeria. Data used for the study were obtained from primary source using a multi-stage sampling technique with structured questionnaires administered to 150 randomly selected yam and cassava farmers from three Local Government Areas of the State. Description statistics, data envelopment analysis and Cobb-Douglas production function were used to analyze the data. The DEA result on the overall technical efficiency of the farmers showed that 40% of the sampled yam and cassava farmers in the study area were operating at frontier and optimum level of production with mean technical efficiency of 1.00. This implies that 60% of the yam and cassava farmers in the study area can still improve their level of efficiency through better utilization of available resources, given the current state of technology. The results of the Cobb-Douglas analysis of factors affecting the output of yam and cassava farmers showed that labour, planting materials, fertilizer and capital inputs positively and significantly affected the output of the yam and cassava farmers in the study area. The study further revealed that yam and cassava farms in the study area operated under increasing returns to scale. This result of marginal productivity analysis further showed that relatively efficient farms were more marginally productive in resource utilization This study also shows that estimating production functions without separating the farms to efficient and inefficient farms bias the parameter values obtained from such production function. It is therefore recommended that yam and cassava farmers in the study area should form cooperative societies so as to enable them have access to productive inputs that will enable them expand. Also, since using a single equation model for production function produces a bias parameter estimates as confirmed above, farms should, therefore, be decomposed into efficient and inefficient ones before production function estimation is done.

Keywords: marginal productivity, DEA, production function, Kogi state

Procedia PDF Downloads 486
1563 Impacts of Extension Services on Stingless Bee Production and its Profitability and Sustainability in Malaysia

Authors: Ibrahim Aliyu Isah, Mohd Mansor Ismail, Salim Hassan, Norsida Bint Man

Abstract:

Global and National contributions of Extension Agents in income derive through stingless beekeeping production as acknowledged globally as a new source of wealth creation, which contributes significantly to the positive, sustainable economic growth of Malaysia. A common specie, Trigona itama, production through effective utilization of highly competent agents of extension services led to high increase of output that guaranteed high income and sustainability to farmers throughout the study areas. A study on impacts of extension services on stingless bee production and its profitability and sustainability in both Peninsular Malaysia and East (Sarawak) Malaysia was conducted with the following objectives: (i) to examined various impacts of extension services on sustainability as variables in enhancing stingless beekeeping production for positive profitability. (ii) to determine the profitability and sustainability of stingless beekeeping production in the study area through transfer of technology and human resources development. The study covers a sample of beekeepers in ten states of Peninsular Malaysia and Sarawak. The sample size of 87 respondents were selected out of the population and 54 of filled questionnaires were retrieved. Capital budgeting analysis was carried out and economic performance was evaluated. Data collected was analysed using SPSS version 23.0. Correlation and Regression analyses were used. The capital budgeting analysis and government incentive schemes was incorporated in the applied projection of stingless bee farms. The result of Net Present Value (NPV) is determined as an accepted projection to the financial appraisal. The NPV in the study indicated positive outcome of production that can generate positive income and indicated efficient yield of investment and Profitability index (PI). In summary, it is possible for the extension services to increase output and hence increase profit which is sustainable for growth and development of agricultural sector in Malaysia.

Keywords: extension services, impacts, profitability and sustainability, Sarawak and peninsular Malaysia, trigona itama production

Procedia PDF Downloads 95
1562 Techno Economic Analysis of CAES Systems Integrated into Gas-Steam Combined Plants

Authors: Coriolano Salvini

Abstract:

The increasing utilization of renewable energy sources for electric power production calls for the introduction of energy storage systems to match the electric demand along the time. Although many countries are pursuing as a final goal a “decarbonized” electrical system, in the next decades the traditional fossil fuel fed power plant still will play a relevant role in fulfilling the electric demand. Presently, such plants provide grid ancillary services (frequency control, grid balance, reserve, etc.) by adapting the output power to the grid requirements. An interesting option is represented by the possibility to use traditional plants to improve the grid storage capabilities. The present paper is addressed to small-medium size systems suited for distributed energy storage. The proposed Energy Storage System (ESS) is based on a Compressed Air Energy Storage (CAES) integrated into a Gas-Steam Combined Cycle (GSCC) or a Gas Turbine based CHP plants. The systems can be incorporated in an ex novo built plant or added to an already existing one. To avoid any geological restriction related to the availability of natural compressed air reservoirs, artificial storage is addressed. During the charging phase, electric power is absorbed from the grid by an electric driven intercooled/aftercooled compressor. In the course of the discharge phase, the compressed stored air is sent to a heat transfer device fed by hot gas taken upstream the Heat Recovery Steam Generator (HRSG) and subsequently expanded for power production. To maximize the output power, a staged reheated expansion process is adopted. The specific power production related to the kilogram per second of exhaust gas used to heat the stored air is two/three times larger than that achieved if the gas were used to produce steam in the HRSG. As a result, a relevant power augmentation is attained with respect to normal GSCC plant operations without additional use of fuel. Therefore, the excess of output power can be considered “fuel free” and the storage system can be compared to “pure” ESSs such as electrochemical, pumped hydro or adiabatic CAES. Representative cases featured by different power absorption, production capability, and storage capacity have been taken into consideration. For each case, a technical optimization aimed at maximizing the storage efficiency has been carried out. On the basis of the resulting storage pressure and volume, number of compression and expansion stages, air heater arrangement and process quantities found for each case, a cost estimation of the storage systems has been performed. Storage efficiencies from 0.6 to 0.7 have been assessed. Capital costs in the range of 400-800 €/kW and 500-1000 €/kWh have been estimated. Such figures are similar or lower to those featuring alternative storage technologies.

Keywords: artificial air storage reservoir, compressed air energy storage (CAES), gas steam combined cycle (GSCC), techno-economic analysis

Procedia PDF Downloads 215
1561 Energy Intensity: A Case of Indian Manufacturing Industries

Authors: Archana Soni, Arvind Mittal, Manmohan Kapshe

Abstract:

Energy has been recognized as one of the key inputs for the economic growth and social development of a country. High economic growth naturally means a high level of energy consumption. However, in the present energy scenario where there is a wide gap between the energy generation and energy consumption, it is extremely difficult to match the demand with the supply. India being one of the largest and rapidly growing developing countries, there is an impending energy crisis which requires immediate measures to be adopted. In this situation, the concept of Energy Intensity comes under special focus to ensure energy security in an environmentally sustainable way. Energy Intensity is defined as the energy consumed per unit output in the context of industrial energy practices. It is a key determinant of the projections of future energy demands which assists in policy making. Energy Intensity is inversely related to energy efficiency; lesser the energy required to produce a unit of output or service, the greater is the energy efficiency. Energy Intensity of Indian manufacturing industries is among the highest in the world and stands for enormous energy consumption. Hence, reducing the Energy Intensity of Indian manufacturing industries is one of the best strategies to achieve a low level of energy consumption and conserve energy. This study attempts to analyse the factors which influence the Energy Intensity of Indian manufacturing firms and how they can be used to reduce the Energy Intensity. The paper considers six of the largest energy consuming manufacturing industries in India viz. Aluminium, Cement, Iron & Steel Industries, Textile Industries, Fertilizer and Paper industries and conducts a detailed Energy Intensity analysis using the data from PROWESS database of the Centre for Monitoring Indian Economy (CMIE). A total of twelve independent explanatory variables based on various factors such as raw material, labour, machinery, repair and maintenance, production technology, outsourcing, research and development, number of employees, wages paid, profit margin and capital invested have been taken into consideration for the analysis.

Keywords: energy intensity, explanatory variables, manufacturing industries, PROWESS database

Procedia PDF Downloads 333
1560 Farmers’ Perception and Response to Climate Change Across Agro-ecological Zones in Conflict-Ridden Communities in Cameroon

Authors: Lotsmart Fonjong

Abstract:

The livelihood of rural communities in the West African state of Cameroon, which is largely dictated by natural forces (rainfall, temperatures, and soil), is today threatened by climate change and armed conflict. This paper investigates the extent to which rural communities are aware of climate change, how their perceptions of changes across different agro-ecological zones have impacted farming practices, output, and lifestyles, on the one hand, and the extent to which local armed conflicts are confounding their efforts and adaptation abilities. The paper is based on a survey conducted among small farmers in selected localities within the forest and savanna ecological zones of the conflict-ridden Northwest and Southwest Cameroon. Attention is paid to farmers’ gender, scale, and type of farming. Farmers’ perception of/and response to climate change are analysed alongside local rainfall and temperature data and mobilization for climate justice. Findings highlight the fact that farmers’ perception generally corroborates local climatic data. Climatic instability has negatively affected farmers’ output, food prices, standards of living, and food security. However, the vulnerability of the population varies across ecological zones, gender, and crop types. While these factors also account for differences in local response and adaptation to climate change, ongoing armed conflicts in these regions have further complicated opportunities for climate-driven agricultural innovations, inputs, and exchange of information among farmers. This situation underlines how poor communities, as victims, are forced into many complex problems outsider their making. It is therefore important to mainstream farmers’ perceptions and differences into policy strategies that consider both climate change and Anglophone conflict as national security concerns foe sustainable development in Cameroon.

Keywords: adaptation policies, climate change, conflict, small farmers, cameroon

Procedia PDF Downloads 163