Search results for: high precision geometric positioning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21525

Search results for: high precision geometric positioning

21045 Kinematic Analysis of the Calf Raise Test Using a Mobile iOS Application: Validation of the Calf Raise Application

Authors: Ma. Roxanne Fernandez, Josie Athens, Balsalobre-Fernandez, Masayoshi Kubo, Kim Hébert-Losier

Abstract:

Objectives: The calf raise test (CRT) is used in rehabilitation and sports medicine to evaluate calf muscle function. For testing, individuals stand on one leg and go up on their toes and back down to volitional fatigue. The newly developed Calf Raise application (CRapp) for iOS uses computer-vision algorithms enabling objective measurement of CRT outcomes. We aimed to validate the CRapp by examining its concurrent validity and agreement levels against laboratory-based equipment and establishing its intra- and inter-rater reliability. Methods: CRT outcomes (i.e., repetitions, positive work, total height, peak height, fatigue index, and peak power) were assessed in thirteen healthy individuals (6 males, 7 females) on three occasions and both legs using the CRapp, 3D motion capture, and force plate technologies simultaneously. Data were extracted from two markers: one placed immediately below the lateral malleolus and another on the heel. Concurrent validity and agreement measures were determined using intraclass correlation coefficients (ICC₃,ₖ), typical errors expressed as coefficient of variations (CV), and Bland-Altman methods to assess biases and precision. Reliability was assessed using ICC3,1 and CV values. Results: Validity of CRapp outcomes was good to excellent across measures for both markers (mean ICC ≥0.878), with precision plots showing good agreement and precision. CV ranged from 0% (repetitions) to 33.3% (fatigue index) and were, on average better for the lateral malleolus marker. Additionally, inter- and intra-rater reliability were excellent (mean ICC ≥0.949, CV ≤5.6%). Conclusion: These results confirm the CRapp is valid and reliable within and between users for measuring CRT outcomes in healthy adults. The CRapp provides a tool to objectivise CRT outcomes in research and practice, aligning with recent advances in mobile technologies and their increased use in healthcare.

Keywords: calf raise test, mobile application, validity, reliability

Procedia PDF Downloads 169
21044 Awake Fiberoptic Intubation for Airway Management in a Patient with an Ulceroproliferative Mass of the Aryepiglottic Fold Obscuring Glottic Opening

Authors: Dielle Martins

Abstract:

A 45-year-old female, Manju Devi, presented with a 6-month history of progressively changing voice, difficulty breathing for the past month, and worsening dysphagia for the past two weeks, particularly with solids. Direct laryngoscopy revealed an ulceroproliferative mass arising from the left aryepiglottic fold, obscuring the glottic opening. Imaging with contrast-enhanced CT of the neck showed a lobulated, heterogeneous mass in the hypo-pharyngeal region, encroaching into the airway and involving the aryepiglottic fold and pyriform sinus, raising concerns for a malignant lesion. Small reactive lymph nodes were identified in the left submandibular region and along the carotid sheath. Due to the location of the mass near the glottis and the risk of complete airway obstruction, securing the airway was a critical concern. An awake fiberoptic bronchoscopy for endotracheal intubation was chosen as the safest approach. The patient was prepped with local anesthesia to the airway using nebulized 10% lignocaine and 4% lignocaine spray to the oral mucosa. After obtaining informed consent, the patient was positioned supine on the operating table. To facilitate the fiberoptic intubation, the patient’s neck was extended, and the head was laterally rotated 30 degrees to the left. This positioning helped optimize the visualization of the glottic opening, which was obscured by the mass. The fiberoptic scope was carefully passed through the oral cavity, past the uvula, and into the laryngeal area. As the scope advanced, the ulceroproliferative mass was observed covering most of the glottis, with only the anterior commissure visible. After further gentle manipulation, including the use of a shoulder roll for additional neck extension and rotation, a clearer view of the anterior two-thirds of the glottis was achieved. A 6.5mm internal diameter endotracheal tube was advanced over the fiberoptic scope and successfully positioned just above the carina. General anesthesia was then induced, and an excision biopsy of the growth was performed. This case underscores the importance of careful preoperative airway evaluation and the role of awake fiberoptic intubation in managing complex airway obstructions. Proper patient positioning, including neck extension and lateral rotation, proved crucial for successful intubation in the presence of a mass obstructing the glottic opening. This case emphasizes the techniques used in the fiberoptic intubation and the careful positioning of the patient, which were critical for the success of the procedure.

Keywords: awake fiberoptic bronchoscopy in laryngeal growth, Difficult intubation in glottic cancer, glottic cancer, difficult airway

Procedia PDF Downloads 9
21043 Architectural Design as Knowledge Production: A Comparative Science and Technology Study of Design Teaching and Research at Different Architecture Schools

Authors: Kim Norgaard Helmersen, Jan Silberberger

Abstract:

Questions of style and reproducibility in relation to architectural design are not only continuously debated; the very concepts can seem quite provocative to architects, who like to think of architectural design as depending on intuition, ideas, and individual personalities. This standpoint - dominant in architectural discourse - is challenged in the present paper presenting early findings from a comparative STS-inspired research study of architectural design teaching and research at different architecture schools in varying national contexts. In philosophy of science framework, the paper reflects empirical observations of design teaching at the Royal Academy of Fine Arts in Copenhagen and presents a tentative theoretical framework for the on-going research project. The framework suggests that architecture – as a field of knowledge production – is mainly dominated by three epistemological positions, which will be presented and discussed. Besides serving as a loosely structured framework for future data analysis, the proposed framework brings forth the argument that architecture can be roughly divided into different schools of thought, like the traditional science disciplines. Without reducing the complexity of the discipline, describing its main intellectual positions should prove fruitful for the future development of architecture as a theoretical discipline, moving an architectural critique beyond discussions of taste preferences. Unlike traditional science disciplines, there is a lack of a community-wide, shared pool of codified references in architecture, with architects instead referencing art projects, buildings, and famous architects, when positioning their standpoints. While these inscriptions work as an architectural reference system, to be compared to codified theories in academic writing of traditional research, they are not used systematically in the same way. As a result, architectural critique is often reduced to discussions of taste and subjectivity rather than epistemological positioning. Architects are often criticized as judges of taste and accused that their rationality is rooted in cultural-relative aesthetical concepts of taste closely linked to questions of style, but arguably their supposedly subjective reasoning, in fact, forms part of larger systems of thought. Putting architectural ‘styles’ under a loop, and tracing their philosophical roots, can potentially open up a black box in architectural theory. Besides ascertaining and recognizing the existence of specific ‘styles’ and thereby schools of thought in current architectural discourse, the study could potentially also point at some mutations of the conventional – something actually ‘new’ – of potentially high value for architectural design education.

Keywords: architectural theory, design research, science and technology studies (STS), sociology of architecture

Procedia PDF Downloads 134
21042 Bi-objective Network Optimization in Disaster Relief Logistics

Authors: Katharina Eberhardt, Florian Klaus Kaiser, Frank Schultmann

Abstract:

Last-mile distribution is one of the most critical parts of a disaster relief operation. Various uncertainties, such as infrastructure conditions, resource availability, and fluctuating beneficiary demand, render last-mile distribution challenging in disaster relief operations. The need to balance critical performance criteria like response time, meeting demand and cost-effectiveness further complicates the task. The occurrence of disasters cannot be controlled, and the magnitude is often challenging to assess. In summary, these uncertainties create a need for additional flexibility, agility, and preparedness in logistics operations. As a result, strategic planning and efficient network design are critical for an effective and efficient response. Furthermore, the increasing frequency of disasters and the rising cost of logistical operations amplify the need to provide robust and resilient solutions in this area. Therefore, we formulate a scenario-based bi-objective optimization model that integrates pre-positioning, allocation, and distribution of relief supplies extending the general form of a covering location problem. The proposed model aims to minimize underlying logistics costs while maximizing demand coverage. Using a set of disruption scenarios, the model allows decision-makers to identify optimal network solutions to address the risk of disruptions. We provide an empirical case study of the public authorities’ emergency food storage strategy in Germany to illustrate the potential applicability of the model and provide implications for decision-makers in a real-world setting. Also, we conduct a sensitivity analysis focusing on the impact of varying stockpile capacities, single-site outages, and limited transportation capacities on the objective value. The results show that the stockpiling strategy needs to be consistent with the optimal number of depots and inventory based on minimizing costs and maximizing demand satisfaction. The strategy has the potential for optimization, as network coverage is insufficient and relies on very high transportation and personnel capacity levels. As such, the model provides decision support for public authorities to determine an efficient stockpiling strategy and distribution network and provides recommendations for increased resilience. However, certain factors have yet to be considered in this study and should be addressed in future works, such as additional network constraints and heuristic algorithms.

Keywords: humanitarian logistics, bi-objective optimization, pre-positioning, last mile distribution, decision support, disaster relief networks

Procedia PDF Downloads 85
21041 Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases

Authors: Mohammad A. Bani-Khaled

Abstract:

In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry.

Keywords: coupled dynamics, geometric complexity, proper orthogonal decomposition (POD), thin walled beams

Procedia PDF Downloads 421
21040 An Alternative Framework of Multi-Resolution Nested Weighted Essentially Non-Oscillatory Schemes for Solving Euler Equations with Adaptive Order

Authors: Zhenming Wang, Jun Zhu, Yuchen Yang, Ning Zhao

Abstract:

In the present paper, an alternative framework is proposed to construct a class of finite difference multi-resolution nested weighted essentially non-oscillatory (WENO) schemes with an increasingly higher order of accuracy for solving inviscid Euler equations. These WENO schemes firstly obtain a set of reconstruction polynomials by a hierarchy of nested central spatial stencils, and then recursively achieve a higher order approximation through the lower-order precision WENO schemes. The linear weights of such WENO schemes can be set as any positive numbers with a requirement that their sum equals one and they will not pollute the optimal order of accuracy in smooth regions and could simultaneously suppress spurious oscillations near discontinuities. Numerical results obtained indicate that these alternative finite-difference multi-resolution nested WENO schemes with different accuracies are very robust with low dissipation and use as few reconstruction stencils as possible while maintaining the same efficiency, achieving the high-resolution property without any equivalent multi-resolution representation. Besides, its finite volume form is easier to implement in unstructured grids.

Keywords: finite-difference, WENO schemes, high order, inviscid Euler equations, multi-resolution

Procedia PDF Downloads 150
21039 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 172
21038 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 163
21037 An UHPLC (Ultra High Performance Liquid Chromatography) Method for the Simultaneous Determination of Norfloxacin, Metronidazole, and Tinidazole Using Monolithic Column-Stability Indicating Application

Authors: Asmaa Mandour, Ramzia El-Bagary, Asmaa El-Zaher, Ehab Elkady

Abstract:

Background: An UHPLC (ultra high performance liquid chromatography) method for the simultaneous determination of norfloxacin (NOR), metronidazole (MET) and tinidazole (TNZ) using monolithic column is presented. Purpose: The method is considered an environmentally friendly method with relatively low organic composition of the mobile phase. Methods: The chromatographic separation was performed using Phenomenex® Onyex Monolithic C18 (50mmx 20mm) column. An elution program of mobile phase consisted of 0.5% aqueous phosphoric acid : methanol (85:15, v/v). Where elution of all drugs was completed within 3.5 min with 1µL injection volume. The UHPLC method was applied for the stability indication of NOR in the presence of its acid degradation product ND. Results: Retention times were 0.69, 1.19 and 3.23 min for MET, TNZ and NOR, respectively. While ND retention time was 1.06 min. Linearity, accuracy, and precision were acceptable over the concentration range of 5-50µg mL-1for all drugs. Conclusions: The method is simple, sensitive and suitable for the routine quality control and dosage form assay of the three drugs and can also be used for the stability indication of NOR in the presence of its acid degradation product.

Keywords: antibacterial, monolithic cilumn, simultaneous determination, UHPLC

Procedia PDF Downloads 257
21036 Approximation of a Wanted Flow via Topological Sensitivity Analysis

Authors: Mohamed Abdelwahed

Abstract:

We propose an optimization algorithm for the geometric control of fluid flow. The used approach is based on the topological sensitivity analysis method. It consists in studying the variation of a cost function with respect to the insertion of a small obstacle in the domain. Some theoretical and numerical results are presented in 2D and 3D.

Keywords: sensitivity analysis, topological gradient, shape optimization, stokes equations

Procedia PDF Downloads 542
21035 A Validated UPLC-MS/MS Assay Using Negative Ionization Mode for High-Throughput Determination of Pomalidomide in Rat Plasma

Authors: Muzaffar Iqbal, Essam Ezzeldin, Khalid A. Al-Rashood

Abstract:

Pomalidomide is a second generation oral immunomodulatory agent, being used for the treatment of multiple myeloma in patients with disease refractory to lenalidomide and bortezomib. In this study, a sensitive UPLC-MS/MS assay was developed and validated for high-throughput determination of pomalidomide in rat plasma using celecoxib as an internal standard (IS). Liquid liquid extraction using dichloromethane as extracting agent was employed to extract pomalidomide and IS from 200 µL of plasma. Chromatographic separation was carried on Acquity BEHTM C18 column (50 × 2.1 mm, 1.7 µm) using an isocratic mobile phase of acetonitrile:10 mM ammonium acetate (80:20, v/v), at a flow rate of 0.250 mL/min. Both pomalidomide and IS were eluted at 0.66 ± 0.03 and 0.80 ± 0.03 min, respectively with a total run time of 1.5 min only. Detection was performed on a triple quadrupole tandem mass spectrometer using electrospray ionization in negative mode. The precursor to product ion transitions of m/z 272.01 → 160.89 for pomalidomide and m/z 380.08 → 316.01 for IS were used to quantify them respectively, using multiple reaction monitoring mode. The developed method was validated according to regulatory guideline for bioanalytical method validation. The linearity in plasma sample was achieved in the concentration range of 0.47–400 ng/mL (r2 ≥ 0.997). The intra and inter-day precision values were ≤ 11.1% (RSD, %) whereas accuracy values ranged from - 6.8 – 8.5% (RE, %). In addition, other validation results were within the acceptance criteria and the method was successfully applied in a pharmacokinetic study of pomalidomide in rats.

Keywords: pomalidomide, pharmacokinetics, LC-MS/MS, celecoxib

Procedia PDF Downloads 392
21034 Static vs. Stream Mining Trajectories Similarity Measures

Authors: Musaab Riyadh, Norwati Mustapha, Dina Riyadh

Abstract:

Trajectory similarity can be defined as the cost of transforming one trajectory into another based on certain similarity method. It is the core of numerous mining tasks such as clustering, classification, and indexing. Various approaches have been suggested to measure similarity based on the geometric and dynamic properties of trajectory, the overlapping between trajectory segments, and the confined area between entire trajectories. In this article, an evaluation of these approaches has been done based on computational cost, usage memory, accuracy, and the amount of data which is needed in advance to determine its suitability to stream mining applications. The evaluation results show that the stream mining applications support similarity methods which have low computational cost and memory, single scan on data, and free of mathematical complexity due to the high-speed generation of data.

Keywords: global distance measure, local distance measure, semantic trajectory, spatial dimension, stream data mining

Procedia PDF Downloads 397
21033 The High Precision of Magnetic Detection with Microwave Modulation in Solid Spin Assembly of NV Centres in Diamond

Authors: Zongmin Ma, Shaowen Zhang, Yueping Fu, Jun Tang, Yunbo Shi, Jun Liu

Abstract:

Solid-state quantum sensors are attracting wide interest because of their high sensitivity at room temperature. In particular, spin properties of nitrogen–vacancy (NV) color centres in diamond make them outstanding sensors of magnetic fields, electric fields and temperature under ambient conditions. Much of the work on NV magnetic sensing has been done so as to achieve the smallest volume, high sensitivity of NV ensemble-based magnetometry using micro-cavity, light-trapping diamond waveguide (LTDW), nano-cantilevers combined with MEMS (Micro-Electronic-Mechanical System) techniques. Recently, frequency-modulated microwaves with continuous optical excitation method have been proposed to achieve high sensitivity of 6 μT/√Hz using individual NV centres at nanoscale. In this research, we built-up an experiment to measure static magnetic field through continuous wave optical excitation with frequency-modulated microwaves method under continuous illumination with green pump light at 532 nm, and bulk diamond sample with a high density of NV centers (1 ppm). The output of the confocal microscopy was collected by an objective (NA = 0.7) and detected by a high sensitivity photodetector. We design uniform and efficient excitation of the micro strip antenna, which is coupled well with the spin ensembles at 2.87 GHz for zero-field splitting of the NV centers. Output of the PD signal was sent to an LIA (Lock-In Amplifier) modulated signal, generated by the microwave source by IQ mixer. The detected signal is received by the photodetector, and the reference signal enters the lock-in amplifier to realize the open-loop detection of the NV atomic magnetometer. We can plot ODMR spectra under continuous-wave (CW) microwave. Due to the high sensitivity of the lock-in amplifier, the minimum detectable value of the voltage can be measured, and the minimum detectable frequency can be made by the minimum and slope of the voltage. The magnetic field sensitivity can be derived from η = δB√T corresponds to a 10 nT minimum detectable shift in the magnetic field. Further, frequency analysis of the noise in the system indicates that at 10Hz the sensitivity less than 10 nT/√Hz.

Keywords: nitrogen-vacancy (NV) centers, frequency-modulated microwaves, magnetic field sensitivity, noise density

Procedia PDF Downloads 441
21032 Model Predictive Control (MPC) and Proportional-Integral-Derivative (PID) Control of Quadcopters: A Comparative Analysis

Authors: Anel Hasić, Naser Prljača

Abstract:

In the domain of autonomous or piloted flights, the accurate control of quadrotor trajectories is of paramount significance for large numbers of tasks. These adaptable aerial platforms find applications that span from high-precision aerial photography and surveillance to demanding search and rescue missions. Among the fundamental challenges confronting quadrotor operation is the demand for accurate following of desired flight paths. To address this control challenge, among others, two celebrated well-established control strategies have emerged as noteworthy contenders: Model Predictive Control (MPC) and Proportional-Integral-Derivative (PID) control. In this work, we focus on the extensive examination of MPC and PID control techniques by using comprehensive simulation studies in MATLAB/Simulink. Intensive simulation results demonstrate the performance of the studied control algorithms.

Keywords: MATLAB, MPC, PID, quadcopter, simulink

Procedia PDF Downloads 75
21031 Exploring the Relationship Between Past and Present Reviews: The Influence of User Generated Content on Future Hotel Guest Experience Perceptions

Authors: Sacha Joseph-Mathews, Leili Javadpour

Abstract:

In the tourism industry, hoteliers spend millions annually on marketing and positioning efforts for their respective hotels, all in an effort to create a specific image in the minds of the consumer. Yet despite extensive efforts to seduce potential hotel guests with sophisticated advertising messages generated by hotel entities, consumers continue to mistrust corporate branding, preferring instead to place their trust in the reviews of their consumer peers. In today’s complex and cluttered marketplace, online reviews can serve as a mediator for consumers who do not have actual knowledge and experiences with the brand, but are in the process of deciding whether or not to engage in a consumption exercise. Traditionally, consumers have used online reviews as a source of comfort and confirmation of a product/service’s positioning. But today, very few customers make any purchase decisions without first researching existing user reviews, making reviews more of a necessity, rather than a luxury in the purchase decision process. The influence of user generated content (UGC) is amplified in the tourism industry; as more than a third of potential hotel guests will not book a room without first reading a review. As corporate branding becomes less relevant and online reviews become more important, how much of the consumer’s stay expectations are being dictated by existing UGC? Moreover, as hotel guest experience a hotel through the lens of an existing review, how much of their stay and in turn their review, would have been influenced by those reviews that they read? Ultimately, there is the potential for UGC to dictate what potential guests will be most critical about, and or most focused on during their stay. If UGC is a stronger influencer in the purchase decision process than corporate branding, doesn’t it have the potential to dictate, the entire stay experience by influencing the expectations of the guest prior to them arriving on the property? For example, if a hotel is an eco-destination and they focus their branding on their website around sustainability and the retreat nature of the hotel. Yet, guest reviews constantly discuss how dissatisfactory the service and food was with no mention of nature or sustainability, will future reviews then focus primarily on the food? Using text analysis software to examine over 25,000 online reviews, we explore the extent to which new reviews are influenced by wording used in previous reviews for a hotel property, versus content generated by corporate positioning. Additionally, we investigate how distinct hotel related UGC is across different types of tourism destinations. Our findings suggest that UGC can have a greater impact on future reviews, than corporate branding and there is more cohesiveness across UGC of different types of hotel properties than anticipated. A model of User Generated Content Influence is presented and the managerial impact of the power of online reviews to trump corporate branding and shape future user experiences is discussed.

Keywords: user generated content, UGC, corporate branding, online reviews, hotels and tourism

Procedia PDF Downloads 98
21030 Structural Design of Sonochemical Reactor to Enhance Energy Transfer Efficiency and Anticorrosion Effect

Authors: Jin-Ho Han, Kyong-Ho Ri, Ju-Yong Hwang, Song-Guk Kim, Sang-Jin Kim

Abstract:

This study focuses on the design of a sonochemical reactor that has excellent anticorrosion effect and acoustic pressure distribution by optimization of the reaction vessel. Sonochemical reactors using the Barbell horn transducer have advantages, including high efficiency of energy conversion, large amplitude of the transducer and low damping. Meanwhile, we performed COMSOL optimization simulations to minimize the corrosion of the horn and the inner wall of the reaction vessel by cavitation bubbles during the sonochemical reaction. It was experimentally verified that the immersion depth of the horn obtained by simulation and the geometric parameters of the vessel are suitable for optimization purposes. In this way, a sonochemical reactor with good acoustic pressure distribution and suitable for obtaining a purer reaction product can be designed.

Keywords: sonochemical reactor, COMSOL optimization simulation, immersion type, barbell horn

Procedia PDF Downloads 12
21029 The Reason Why Al-Kashi’s Understanding of Islamic Arches Was Wrong

Authors: Amin Moradi, Maryam Moeini

Abstract:

It is a widely held view that Ghiyath al-Din Jamshid-e-Kashani, also known as al-Kashi (1380-1429 CE), was the first who played a significant role in the interaction between mathematicians and architects by introducing theoretical knowledge in Islamic architecture. In academic discourses, geometric rules extracted from his splendid volume titled as Key of Arithmetic has uncritically believed by historians of architecture to contemplate the whole process of arch design all throughout the Islamic buildings. His theories tried to solve the fundamental problem of structural design and to understand what makes an Islamic structure safe or unsafe. As a result, al-Kashi arrived at the conclusion that a safe state of equilibrium is achieved through a specific geometry as a rule. This paper reassesses the stability of al-Kashi's systematized principal forms to evaluate the logic of his hypothesis with a special focus on large spans. Besides the empirical experiences of the author in masonry constructions, the finite element approach was proposed considering the current standards in order to get a better understanding of the validity of geometric rules proposed by al-Kashi for the equilibrium conditions of Islamic masonry arches and vaults. The state of damage of his reference arches under loading condition confirms beyond any doubt that his conclusion of the geometrical configuration measured through his treaties present some serious operational limits and do not go further than some individualized mathematical hypothesis. Therefore, the nature of his mathematical studies regarding Islamic arches is in complete contradiction with the practical knowledge of construction methodology.

Keywords: Jamshid al-Kashani, Islamic architecture, Islamic geometry, construction equilibrium, collapse mechanism

Procedia PDF Downloads 138
21028 Determination of a Novel Artificial Sweetener Advantame in Food by Liquid Chromatography Tandem Mass Spectrometry

Authors: Fangyan Li, Lin Min Lee, Hui Zhu Peh, Shoet Harn Chan

Abstract:

Advantame, a derivative of aspartame, is the latest addition to a family of low caloric and high potent dipeptide sweeteners which include aspartame, neotame and alitame. The use of advantame as a high-intensity sweetener in food was first accepted by Food Standards Australia New Zealand in 2011 and subsequently by US and EU food authorities in 2014, with the results from toxicity and exposure studies showing advantame poses no safety concern to the public at regulated levels. To our knowledge, currently there is barely any detailed information on the analytical method of advantame in food matrix, except for one report published in Japanese, stating a high performance liquid chromatography (HPLC) and liquid chromatography/ mass spectrometry (LC-MS) method with a detection limit at ppm level. However, the use of acid in sample preparation and instrumental analysis in the report raised doubt over the reliability of the method, as there is indication that stability of advantame is compromised under acidic conditions. Besides, the method may not be suitable for analyzing food matrices containing advantame at low ppm or sub-ppm level. In this presentation, a simple, specific and sensitive method for the determination of advantame in food is described. The method involved extraction with water and clean-up via solid phase extraction (SPE) followed by detection using liquid chromatography tandem mass spectrometry (LC-MS/MS) in negative electrospray ionization mode. No acid was used in the entire procedure. Single laboratory validation of the method was performed in terms of linearity, precision and accuracy. A low detection limit at ppb level was achieved. Satisfactory recoveries were obtained using spiked samples at three different concentration levels. This validated method could be used in the routine inspection of the advantame level in food.

Keywords: advantame, food, LC-MS/MS, sweetener

Procedia PDF Downloads 479
21027 Automatic Detection of Traffic Stop Locations Using GPS Data

Authors: Areej Salaymeh, Loren Schwiebert, Stephen Remias, Jonathan Waddell

Abstract:

Extracting information from new data sources has emerged as a crucial task in many traffic planning processes, such as identifying traffic patterns, route planning, traffic forecasting, and locating infrastructure improvements. Given the advanced technologies used to collect Global Positioning System (GPS) data from dedicated GPS devices, GPS equipped phones, and navigation tools, intelligent data analysis methodologies are necessary to mine this raw data. In this research, an automatic detection framework is proposed to help identify and classify the locations of stopped GPS waypoints into two main categories: signalized intersections or highway congestion. The Delaunay triangulation is used to perform this assessment in the clustering phase. While most of the existing clustering algorithms need assumptions about the data distribution, the effectiveness of the Delaunay triangulation relies on triangulating geographical data points without such assumptions. Our proposed method starts by cleaning noise from the data and normalizing it. Next, the framework will identify stoppage points by calculating the traveled distance. The last step is to use clustering to form groups of waypoints for signalized traffic and highway congestion. Next, a binary classifier was applied to find distinguish highway congestion from signalized stop points. The binary classifier uses the length of the cluster to find congestion. The proposed framework shows high accuracy for identifying the stop positions and congestion points in around 99.2% of trials. We show that it is possible, using limited GPS data, to distinguish with high accuracy.

Keywords: Delaunay triangulation, clustering, intelligent transportation systems, GPS data

Procedia PDF Downloads 279
21026 Liquefaction Potential Prediction of Chi-Chi Earthquake Based on Standard Penetration Test Data Using Gradient Boosting Classifier

Authors: Pravallika Chithuloori, Jin-Man Kim

Abstract:

Soil liquefaction, triggered by increased porewater pressure, poses a significant threat to infrastructure stability in seismically active regions, and its forecasting remains challenging due to intricate nonlinear interactions. This study uses a dataset of 540 samples that includes seismic parameters and standard penetration test (SPT) results to evaluate liquefaction prediction. SPT N60 values, soil fine content (FC), ground water table (GWT), effective stress of overburden (ESO), peak ground acceleration (PGA), and earthquake magnitude (Mw) are key inputs. A gradient boost classifier (GBC) machine learning (ML) model was utilized to classify liquefaction events. The model’s performance was evaluated using metrics such as accuracy, precision, recall, F1-score, confusion matrix analysis, sensitivity analysis, feature importance ranking, and Shapley Additive Explanations (SHAP). According to these evaluations, the most significant variables in predicting liquefaction were PGA, SPT-N60, and GWT. The robustness of the GBC model was further validated through precision-recall curves and k-fold cross-validation, and it achieved an impressive 99.38% prediction accuracy. These results highlight the potential of the GBC technique to advance the reliability of liquefaction forecasting.

Keywords: liquefaction, standard penetration test, gradient boost, machine learning, SHAP

Procedia PDF Downloads 0
21025 Design Study on a Contactless Material Feeding Device for Electro Conductive Workpieces

Authors: Oliver Commichau, Richard Krimm, Bernd-Arno Behrens

Abstract:

A growing demand on the production rate of modern presses leads to higher stroke rates. Commonly used material feeding devices for presses like grippers and roll-feeding systems can only achieve high stroke rates along with high gripper forces, to avoid stick-slip. These forces are limited by the sensibility of the surfaces of the workpieces. Stick-slip leads to scratches on the surface and false positioning of the workpiece. In this paper, a new contactless feeding device is presented, which develops higher feeding force without damaging the surface of the workpiece through gripping forces. It is based on the principle of the linear induction motor. A primary part creates a magnetic field and induces eddy currents in the electrically conductive material. A Lorentz-Force applies to the workpiece in feeding direction as a mutual reaction between the eddy-currents and the magnetic induction. In this study, the FEA model of this approach is shown. The calculation of this model was used to identify the influence of various design parameters on the performance of the feeder and thus showing the promising capabilities and limits of this technology. In order to validate the study, a prototype of the feeding device has been built. An experimental setup was used to measure pulling forces and placement accuracy of the experimental feeder in order to give an outlook of a potential industrial application of this approach.

Keywords: conductive material, contactless feeding, linear induction, Lorentz-Force

Procedia PDF Downloads 183
21024 Theoretical and Experimental Electrostatic Potential around the M-Nitrophenol Compound

Authors: Drissi Mokhtaria, Chouaih Abdelkader, Fodil Hamzaoui

Abstract:

Our work is about a comparison of experimental and theoretical results of the electron charge density distribution and the electrostatic potential around the M-Nitrophenol Molecule (m-NPH) kwon for its interesting physical characteristics. The molecular experimental results have been obtained from a high-resolution X-ray diffraction study. Theoretical investigations were performed under the Gaussian program using the Density Functional Theory at B3LYP level of theory at 6-31G*. The multipolar model of Hansen and Coppens was used for the experimental electron charge density distribution around the molecule, while we used the DFT methods for the theoretical calculations. The electron charge density obtained in both methods allowed us to find out the different molecular properties such us the electrostatic potential and the dipole moment which were finally subject to a comparison leading to an outcome of a good matching results obtained in both methods.

Keywords: electron charge density, m-nitrophenol, nonlinear optical compound, electrostatic potential, optimized geometric

Procedia PDF Downloads 273
21023 Evaluating Models Through Feature Selection Methods Using Data Driven Approach

Authors: Shital Patil, Surendra Bhosale

Abstract:

Cardiac diseases are the leading causes of mortality and morbidity in the world, from recent few decades accounting for a large number of deaths have emerged as the most life-threatening disorder globally. Machine learning and Artificial intelligence have been playing key role in predicting the heart diseases. A relevant set of feature can be very helpful in predicting the disease accurately. In this study, we proposed a comparative analysis of 4 different features selection methods and evaluated their performance with both raw (Unbalanced dataset) and sampled (Balanced) dataset. The publicly available Z-Alizadeh Sani dataset have been used for this study. Four feature selection methods: Data Analysis, minimum Redundancy maximum Relevance (mRMR), Recursive Feature Elimination (RFE), Chi-squared are used in this study. These methods are tested with 8 different classification models to get the best accuracy possible. Using balanced and unbalanced dataset, the study shows promising results in terms of various performance metrics in accurately predicting heart disease. Experimental results obtained by the proposed method with the raw data obtains maximum AUC of 100%, maximum F1 score of 94%, maximum Recall of 98%, maximum Precision of 93%. While with the balanced dataset obtained results are, maximum AUC of 100%, F1-score 95%, maximum Recall of 95%, maximum Precision of 97%.

Keywords: cardio vascular diseases, machine learning, feature selection, SMOTE

Procedia PDF Downloads 123
21022 Characterizing and Developing the Clinical Grade Microbiome Assay with a Robust Bioinformatics Pipeline for Supporting Precision Medicine Driven Clinical Development

Authors: Danyi Wang, Andrew Schriefer, Dennis O'Rourke, Brajendra Kumar, Yang Liu, Fei Zhong, Juergen Scheuenpflug, Zheng Feng

Abstract:

Purpose: It has been recognized that the microbiome plays critical roles in disease pathogenesis, including cancer, autoimmune disease, and multiple sclerosis. To develop a clinical-grade assay for exploring microbiome-derived clinical biomarkers across disease areas, a two-phase approach is implemented. 1) Identification of the optimal sample preparation reagents using pre-mixed bacteria and healthy donor stool samples coupled with proprietary Sigma-Aldrich® bioinformatics solution. 2) Exploratory analysis of patient samples for enabling precision medicine. Study Procedure: In phase 1 study, we first compared the 16S sequencing results of two ATCC® microbiome standards (MSA 2002 and MSA 2003) across five different extraction kits (Kit A, B, C, D & E). Both microbiome standards samples were extracted in triplicate across all extraction kits. Following isolation, DNA quantity was determined by Qubit assay. DNA quality was assessed to determine purity and to confirm extracted DNA is of high molecular weight. Bacterial 16S ribosomal ribonucleic acid (rRNA) amplicons were generated via amplification of the V3/V4 hypervariable region of the 16S rRNA. Sequencing was performed using a 2x300 bp paired-end configuration on the Illumina MiSeq. Fastq files were analyzed using the Sigma-Aldrich® Microbiome Platform. The Microbiome Platform is a cloud-based service that offers best-in-class 16S-seq and WGS analysis pipelines and databases. The Platform and its methods have been extensively benchmarked using microbiome standards generated internally by MilliporeSigma and other external providers. Data Summary: The DNA yield using the extraction kit D and E is below the limit of detection (100 pg/µl) of Qubit assay as both extraction kits are intended for samples with low bacterial counts. The pre-mixed bacterial pellets at high concentrations with an input of 2 x106 cells for MSA-2002 and 1 x106 cells from MSA-2003 were not compatible with the kits. Among the remaining 3 extraction kits, kit A produced the greatest yield whereas kit B provided the least yield (Kit-A/MSA-2002: 174.25 ± 34.98; Kit-A/MSA-2003: 179.89 ± 30.18; Kit-B/MSA-2002: 27.86 ± 9.35; Kit-B/MSA-2003: 23.14 ± 6.39; Kit-C/MSA-2002: 55.19 ± 10.18; Kit-C/MSA-2003: 35.80 ± 11.41 (Mean ± SD)). Also, kit A produced the greatest yield, whereas kit B provided the least yield. The PCoA 3D visualization of the Weighted Unifrac beta diversity shows that kits A and C cluster closely together while kit B appears as an outlier. The kit A sequencing samples cluster more closely together than both the other kits. The taxonomic profiles of kit B have lower recall when compared to the known mixture profiles indicating that kit B was inefficient at detecting some of the bacteria. Conclusion: Our data demonstrated that the DNA extraction method impacts DNA concentration, purity, and microbial communities detected by next-generation sequencing analysis. Further microbiome analysis performance comparison of using healthy stool samples is underway; also, colorectal cancer patients' samples will be acquired for further explore the clinical utilities. Collectively, our comprehensive qualification approach, including the evaluation of optimal DNA extraction conditions, the inclusion of positive controls, and the implementation of a robust qualified bioinformatics pipeline, assures accurate characterization of the microbiota in a complex matrix for deciphering the deep biology and enabling precision medicine.

Keywords: 16S rRNA sequencing, analytical validation, bioinformatics pipeline, metagenomics

Procedia PDF Downloads 173
21021 Sixth-Order Two-Point Efficient Family of Super-Halley Type Methods

Authors: Ramandeep Behl, S. S. Motsa

Abstract:

The main focus of this manuscript is to provide a highly efficient two-point sixth-order family of super-Halley type methods that do not require any second-order derivative evaluation for obtaining simple roots of nonlinear equations, numerically. Each member of the proposed family requires two evaluations of the given function and two evaluations of the first-order derivative per iteration. By using Mathematica-9 with its high precision compatibility, a variety of concrete numerical experiments and relevant results are extensively treated to confirm t he t heoretical d evelopment. From their basins of attraction, it has been observed that the proposed methods have better stability and robustness as compared to the other sixth-order methods available in the literature.

Keywords: basins of attraction, nonlinear equations, simple roots, super-Halley

Procedia PDF Downloads 521
21020 The Effect of Artificial Intelligence on the Production of Agricultural Lands and Labor

Authors: Ibrahim Makram Ibrahim Salib

Abstract:

Agriculture plays an essential role in providing food for the world's population. It also offers numerous benefits to countries, including non-food products, transportation, and environmental balance. Precision agriculture, which employs advanced tools to monitor variability and manage inputs, can help achieve these benefits. The increasing demand for food security puts pressure on decision-makers to ensure sufficient food production worldwide. To support sustainable agriculture, unmanned aerial vehicles (UAVs) can be utilized to manage farms and increase yields. This paper aims to provide an understanding of UAV usage and its applications in agriculture. The objective is to review the various applications of UAVs in agriculture. Based on a comprehensive review of existing research, it was found that different sensors provide varying analyses for agriculture applications. Therefore, the purpose of the project must be determined before using UAV technology for better data quality and analysis. In conclusion, identifying a suitable sensor and UAV is crucial to gather accurate data and precise analysis when using UAVs in agriculture.

Keywords: agriculture land, agriculture land loss, Kabul city, urban land expansion, urbanization agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models drone, precision agriculture, farmer income

Procedia PDF Downloads 79
21019 A New Framework for ECG Signal Modeling and Compression Based on Compressed Sensing Theory

Authors: Siavash Eftekharifar, Tohid Yousefi Rezaii, Mahdi Shamsi

Abstract:

The purpose of this paper is to exploit compressed sensing (CS) method in order to model and compress the electrocardiogram (ECG) signals at a high compression ratio. In order to obtain a sparse representation of the ECG signals, first a suitable basis matrix with Gaussian kernels, which are shown to nicely fit the ECG signals, is constructed. Then the sparse model is extracted by applying some optimization technique. Finally, the CS theory is utilized to obtain a compressed version of the sparse signal. Reconstruction of the ECG signal from the compressed version is also done to prove the reliability of the algorithm. At this stage, a greedy optimization technique is used to reconstruct the ECG signal and the Mean Square Error (MSE) is calculated to evaluate the precision of the proposed compression method.

Keywords: compressed sensing, ECG compression, Gaussian kernel, sparse representation

Procedia PDF Downloads 466
21018 Experimental and CFD Simulation of the Jet Pump for Air Bubbles Formation

Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski

Abstract:

A jet pump is a type of pump that accelerates the flow of a secondary fluid (driven fluid) by introducing a motive fluid with high velocity into a converging-diverging nozzle. Jet pumps are also known as adductors or ejectors depending on the motivator phase. The ejector's motivator is of a gaseous nature, usually steam or air, while the educator's motivator is a liquid, usually water. Jet pumps are devices that use air bubbles and are widely used in wastewater treatment processes. In this work, we will discuss about the characteristics of the jet pump and the computational simulation of this device. To find the optimal angle and depth for the air pipe, so as to achieve the maximal air volumetric flow rate, an experimental apparatus was constructed to ascertain the best geometrical configuration for this new type of jet pump. By using 3D printing technology, a series of jet pumps was printed and tested whilst aspiring to maximize air flow rate dependent on angle and depth of the air pipe insertion. The experimental results show a major difference of up to 300% in performance between the different pumps (ratio of air flow rate to supplied power) where the optimal geometric model has an insertion angle of 600 and air pipe insertion depth ending at the center of the mixing chamber. The differences between the pumps were further explained by using CFD for better understanding the reasons that affect the airflow rate. The validity of the computational simulation and the corresponding assumptions have been proved experimentally. The present research showed high degree of congruence with the results of the laboratory tests. This study demonstrates the potential of using of the jet pump in many practical applications.

Keywords: air bubbles, CFD simulation, jet pump, applications

Procedia PDF Downloads 246
21017 Deep Learning-Based Liver 3D Slicer for Image-Guided Therapy: Segmentation and Needle Aspiration

Authors: Ahmedou Moulaye Idriss, Tfeil Yahya, Tamas Ungi, Gabor Fichtinger

Abstract:

Image-guided therapy (IGT) plays a crucial role in minimally invasive procedures for liver interventions. Accurate segmentation of the liver and precise needle placement is essential for successful interventions such as needle aspiration. In this study, we propose a deep learning-based liver 3D slicer designed to enhance segmentation accuracy and facilitate needle aspiration procedures. The developed 3D slicer leverages state-of-the-art convolutional neural networks (CNNs) for automatic liver segmentation in medical images. The CNN model is trained on a diverse dataset of liver images obtained from various imaging modalities, including computed tomography (CT) and magnetic resonance imaging (MRI). The trained model demonstrates robust performance in accurately delineating liver boundaries, even in cases with anatomical variations and pathological conditions. Furthermore, the 3D slicer integrates advanced image registration techniques to ensure accurate alignment of preoperative images with real-time interventional imaging. This alignment enhances the precision of needle placement during aspiration procedures, minimizing the risk of complications and improving overall intervention outcomes. To validate the efficacy of the proposed deep learning-based 3D slicer, a comprehensive evaluation is conducted using a dataset of clinical cases. Quantitative metrics, including the Dice similarity coefficient and Hausdorff distance, are employed to assess the accuracy of liver segmentation. Additionally, the performance of the 3D slicer in guiding needle aspiration procedures is evaluated through simulated and clinical interventions. Preliminary results demonstrate the effectiveness of the developed 3D slicer in achieving accurate liver segmentation and guiding needle aspiration procedures with high precision. The integration of deep learning techniques into the IGT workflow shows great promise for enhancing the efficiency and safety of liver interventions, ultimately contributing to improved patient outcomes.

Keywords: deep learning, liver segmentation, 3D slicer, image guided therapy, needle aspiration

Procedia PDF Downloads 55
21016 Flexural Behaviour of Normal Strength and High Strength Fibre Concrete Beams

Authors: Mostefa Hamrat, Bensaid Boulekbache, Mohamed Chemrouk, Sofiane Amziane

Abstract:

The paper presents the results of an experimental work on the flexural behaviour of two types of concrete in terms of the progressive cracking process until failure and the crack opening, and beam deflection, using Digital Image Correlation (DIC) technique. At serviceability limit states, comparisons of the building code equations and the equations developed by some researchers for the short-term deflections and crack widths have been made using the reinforced concrete test beams. The experimental results show that the addition of steel fibers increases the first cracking load and amplify the number of cracks that conducts to a remarkable decreasing in the crack width with an increasing in ductility. This study also shows that there is a good agreement between the deflection values for RC beams predicted by the major codes (Eurocode2, ACI 318, and the CAN/CSA-S806) and the experimental results for beams with steel fibers at service load. The most important added benefit of the DIC technique is that it allows detecting the first crack with a high precision easily measures the crack opening and follows the progressive cracking process until failure of reinforced concrete members.

Keywords: beams, digital image correlation (DIC), deflection, crack width, serviceability, codes provisions

Procedia PDF Downloads 338