Search results for: forecast combination
3029 A Study on the Effect of Design Factors of Slim Keyboard’s Tactile Feedback
Authors: Kai-Chieh Lin, Chih-Fu Wu, Hsiang Ling Hsu, Yung-Hsiang Tu, Chia-Chen Wu
Abstract:
With the rapid development of computer technology, the design of computers and keyboards moves towards a trend of slimness. The change of mobile input devices directly influences users’ behavior. Although multi-touch applications allow entering texts through a virtual keyboard, the performance, feedback, and comfortableness of the technology is inferior to traditional keyboard, and while manufacturers launch mobile touch keyboards and projection keyboards, the performance has not been satisfying. Therefore, this study discussed the design factors of slim pressure-sensitive keyboards. The factors were evaluated with an objective (accuracy and speed) and a subjective evaluation (operability, recognition, feedback, and difficulty) depending on the shape (circle, rectangle, and L-shaped), thickness (flat, 3mm, and 6mm), and force (35±10g, 60±10g, and 85±10g) of the keyboard. Moreover, MANOVA and Taguchi methods (regarding signal-to-noise ratios) were conducted to find the optimal level of each design factor. The research participants, by their typing speed (30 words/ minute), were divided in two groups. Considering the multitude of variables and levels, the experiments were implemented using the fractional factorial design. A representative model of the research samples were established for input task testing. The findings of this study showed that participants with low typing speed primarily relied on vision to recognize the keys, and those with high typing speed relied on tactile feedback that was affected by the thickness and force of the keys. In the objective and subjective evaluation, a combination of keyboard design factors that might result in higher performance and satisfaction was identified (L-shaped, 3mm, and 60±10g) as the optimal combination. The learning curve was analyzed to make a comparison with a traditional standard keyboard to investigate the influence of user experience on keyboard operation. The research results indicated the optimal combination provided input performance to inferior to a standard keyboard. The results could serve as a reference for the development of related products in industry and for applying comprehensively to touch devices and input interfaces which are interacted with people.Keywords: input performance, mobile device, slim keyboard, tactile feedback
Procedia PDF Downloads 2993028 Evaluation of Chemical Compositions and Biological Activities of Five Essential Oils
Authors: G. Ozturk, B. Demirci
Abstract:
It is well known that essential oils used for therapeutic purposes for many years. In this study, five different Pharmacopoeia grade essential oils (Achillea millefolium L., Pimpinella anisum L., Matricaria recutita L., Eucalyptus globulus L., Salvia officinalis L.) which obtained from commercial sources were evaluated for chemical compositions, synergistic antimicrobial activities, and lipoxygenase enzyme inhibitions. Volatile components were determined by gas chromatography/flame ionization detector and gas chromatography/mass spectrometer, simultaneously. The potential antimicrobial activity of essential oils was tested against oral pathogenic standard strains such as Streptococcus mutans, Streptococcus sanguinis, Staphylococcus aureus, Corynebacterium striatum, Candida albicans and Candida krusei by broth microdilution methods. Ciprofloxacin and ketoconazole were used positive controls. It has been observed that the essential oils tested have average inhibitory antimicrobial activity against oral pathogens with a Minimum Inhibition Concentration of 20-0.625 mg/mL. The active essential oils have been combined with antibiotics and synergistic effects have been evaluated by Checkerboard method. ƩFIC values were determined. In combination with antibiotics M. recutita essential oil has been shown to have a synergistic effect against S. aureus in combination with tetracycline (ƩFIC 0.46). In addition, 5-LOX inhibitory activity was measured by modifying the spectrophotometric method developed by Baylac and Racine. As a result, 5-LOX % inhibition of S. officinalis, E. globulus and M. recutita were calculated as 34.0 ± 6.66, 72.7 ± 2.78 and 27.7 ± 0.60, respectively.Keywords: antimicrobial activity, essential oils, synergistic activity, 5-lipoxygenase inhibition
Procedia PDF Downloads 1053027 The Cost of Solar-Centric Renewable Portfolio
Authors: Timothy J. Considine, Edward J. M. Manderson
Abstract:
This paper develops an econometric forecasting system of energy demand coupled with engineering-economic models of energy supply. The framework is used to quantify the impact of state-level renewable portfolio standards (RPSs) achieved predominately with solar generation on electricity rates, electricity consumption, and environmental quality. We perform the analysis using Arizona’s RPS as a case study. We forecast energy demand in Arizona out to 2035, and find by this time the state will require an additional 35 million MWh of electricity generation. If Arizona implements its RPS when supplying this electricity demand, we find there will be a substantial increase in electricity rates (relative to a business-as-usual scenario of reliance on gas-fired generation). Extending the current regime of tax credits can greatly reduce this increase, at the taxpayers’ expense. We find that by 2025 Arizona’s RPS will implicitly abate carbon dioxide emissions at a cost between $101 and $135 per metric ton, and by 2035 abatement costs are between $64 and $112 per metric ton (depending on the future evolution of nature gas prices).Keywords: electricity demand, renewable portfolio standard, solar, carbon dioxide
Procedia PDF Downloads 4853026 General Architecture for Automation of Machine Learning Practices
Authors: U. Borasi, Amit Kr. Jain, Rakesh, Piyush Jain
Abstract:
Data collection, data preparation, model training, model evaluation, and deployment are all processes in a typical machine learning workflow. Training data needs to be gathered and organised. This often entails collecting a sizable dataset and cleaning it to remove or correct any inaccurate or missing information. Preparing the data for use in the machine learning model requires pre-processing it after it has been acquired. This often entails actions like scaling or normalising the data, handling outliers, selecting appropriate features, reducing dimensionality, etc. This pre-processed data is then used to train a model on some machine learning algorithm. After the model has been trained, it needs to be assessed by determining metrics like accuracy, precision, and recall, utilising a test dataset. Every time a new model is built, both data pre-processing and model training—two crucial processes in the Machine learning (ML) workflow—must be carried out. Thus, there are various Machine Learning algorithms that can be employed for every single approach to data pre-processing, generating a large set of combinations to choose from. Example: for every method to handle missing values (dropping records, replacing with mean, etc.), for every scaling technique, and for every combination of features selected, a different algorithm can be used. As a result, in order to get the optimum outcomes, these tasks are frequently repeated in different combinations. This paper suggests a simple architecture for organizing this largely produced “combination set of pre-processing steps and algorithms” into an automated workflow which simplifies the task of carrying out all possibilities.Keywords: machine learning, automation, AUTOML, architecture, operator pool, configuration, scheduler
Procedia PDF Downloads 583025 Predictors of Response to Interferone Therapy in Chronic Hepatitis C Virus Infection
Authors: Ali Kassem, Ehab Fawzy, Mahmoud Sef el-eslam, Fatma Salah- Eldeen, El zahraa Mohamed
Abstract:
Introduction: The combination of interferon (INF) and ribavirin is the preferred treatment for chronic hepatitis C viral (HCV) infection. However, nonresponse to this therapy remains common and is associated with several factors such as HCV genotype and HCV viral load in addition to host factors such as sex, HLA type and cytokine polymorphisms. Aim of the work: The aim of this study was to determine predictors of response to (INF) therapy in chronic HCV infected patients treated with INF alpha and ribavirin combination therapy. Patients and Methods: The present study included 110 patients (62 males, 48 females) with chronic HCV infection. Their ages ranged from 20-59 years. Inclusion criteria were organized according to the protocol of the Egyptian National Committee for control of viral hepatitis. Patients included in this study were recruited to receive INF ribavirin combination therapy; 54 patients received pegylated NF α-2a (180 μg) and weight based ribavirin therapy (1000 mg if < 75 kg, 1200 mg if > 75 kg) for 48 weeks and 53 patients received pegylated INF α-2b (1.5 ug/kg/week) and weight based ribavirin therapy (800 mg if < 65 kg, 1000 mg if 65-75 kg and 1200 mg if > 75kg). One hundred and seven liver biopsies were included in the study and submitted to histopathological examination. Hematoxylin and eosin (H&E) stained sections were done to assess both the grade and the stage of chronic viral hepatitis, in addition to the degree of steatosis. Modified hepatic activity index (HAI) grading, modified Ishak staging and Metavir grading and staging systems were used. Laboratory follow up including: HCV PCR at the 12th week to assess the early virologic response (EVR) and at the 24th week were done. At the end of the course: HCV PCR was done at the end of the course and tested 6 months later to document end virologic response (ETR) and sustained virologic response (SVR) respectively. Results One hundred seven patients; 62 males (57.9 %) and 45 females (42.1%) completed the course and included in this study. The age of patients ranged from 20-59 years with a mean of 40.39±10.03 years. Six months after the end of treatment patients were categorized into two groups: Group (1): patients who achieved sustained virological response (SVR). Group (2): patients who didn't achieve sustained virological response (non SVR) including non-responders, breakthrough and relapsers. In our study, 58 (54.2%) patients showed SVR, 18 (16.8%) patients were non-responders, 15 (14%) patients showed break-through and 16 (15 %) patients were relapsers. Univariate binary regression analysis of the possible risk factors of non SVR showed that the significant factors were higher age, higher fasting insulin level, higher Metavir stage and higher grade of hepatic steatosis. Multivariate binary regression analysis showed that the only independent risk factor for non SVR was high fasting insulin level. Conclusion: Younger age, lower Metavir stage, lower steatosis grade and lower fasting insulin level are good predictors of SVR and could be used in predicting the treatment response of pegylated interferon/ribavirin therapy.Keywords: chronic HCV infection, interferon ribavirin combination therapy, predictors to antiviral therapy, treatment response
Procedia PDF Downloads 3963024 Degradation of Amitriptyline Hydrochloride, Methyl Salicylate and 2-Phenoxyethanol in Water Systems by the Combination UV/Cl2
Authors: F. Javier Benitez, Francisco J. Real, Juan Luis Acero, Francisco Casas
Abstract:
Three emerging contaminants (amitriptyline hydrochloride, methyl salicylate and 2-phenoxyethanol) frequently found in waste-waters were selected to be individually degraded in ultra-pure water by the combined advanced oxidation process constituted by UV radiation and chlorine. The influence of pH, initial chlorine concentration and nature of the contaminants was firstly explored. The trend for the reactivity of the selected compounds was deduced: amitriptyline hydrochloride > methyl salicylate > 2-phenoxyethanol. A later kinetic study was carried out and focused on the specific evaluation of the first-order rate constants and the determination of the partial contribution to the global reaction of the direct photochemical pathway and the radical pathway. A comparison between the rate constant values among photochemical experiments without and with the presence of Cl2 reveals a clear increase in the oxidation efficiency of the combined process with respect to the photochemical reaction alone. In a second stage, the simultaneous oxidation of mixtures of the selected contaminants in several types of water (ultrapure water, surface water from a reservoir, and two secondary effluents) was also performed by the same combination UV/Cl2 under more realistic operating conditions. The efficiency of this combined system UV/Cl2 was compared to other oxidants such as the UV/S2O82- and UV/H2O2 AOPs. Results confirmed that the UV/Cl2 system provides higher elimination efficiencies among the AOPs tested.Keywords: emerging contaminants, UV/chlorine advanced oxidation process, amitriptyline, methyl salicylate, 2-phenoxyethanol, chlorination, photolysis
Procedia PDF Downloads 3333023 A Randomised Controlled Study to Compare Efficacy and Safety of Bupivacaine plus Dexamethasone Versus Bupivacaine plus Fentanyl for Caudal Block in Children
Authors: Ashwini Patil
Abstract:
Caudal block is one of the most commonly used regional anesthetic techniques in children. Currently, fentanyl is used as an adjuvant to bupivacaine to prolong analgesia but fentanyl is a narcotic. Dexamethasone, a glucocorticoid with strong anti-inflammatory effects provides improvement in post-operative analgesia and post-operative side effects. However, its analgesic efficacy and safety in comparison with fentanyl has not been extensively studied. So the objective of this randomized controlled study is to compare dexamethasone with fentanyl as an adjuvant to bupivacaine for caudal block in children in relation to the duration of caudal analgesia, post-operative analgesic requirement and incidence of post-operative nausea and vomiting. This study included 100 children, aged 1–6 years, undergoing lower abdominal surgeries. Patients were randomized into two groups, 50 each to receive a combination of dexamethasone 0.2 mg/kg along with 1 ml/kg bupivacaine 0.25% (group A) or combination of fentanyl (1 ug/kg) along with 1ml/kg bupivacaine 0.25% (group B). In the post-operative period, pain was assessed using a Modified Objective Pain Scale (MOPS) until 12 hr after surgery and rescue analgesia is administered when MOPS score 4 or more is recorded. Residual motor block, number of analgesic doses required within 24 hr after surgery, sedation scores, intra-operative and post-operative hemodynamic variables, post-operative nausea and vomiting (PONV), and other adverse effects were recorded. Data is analysed using unpaired t test and Significance level of P< 0.05 is considered statistically significant. Group A showed a significantly longer time to first analgesic requirement than group B (p<0.05). The number of rescue analgesic doses required in the first 24 h was significantly less in group A (p<0.05). Group A showed significantly lower MOPS scores than group B(p<0.05). Intra-operative and post-operative hemodynamic variables, Modified Bromage Scale scores, and sedation scores were comparable in both the groups. Group A showed significantly fewer incidences of PONV compared with group B(p<0.05). This study reveals that adding dexamethasone to bupivacaine prolongs the duration of postoperative analgesia and decreases the incidence of PONV as compared to combination of fentanyl to bupivacaine after a caudal block in pediatric patients.Keywords: bupivacaine, caudal analgesia, dexamethasone, pediatric
Procedia PDF Downloads 2083022 Hybrid Wavelet-Adaptive Neuro-Fuzzy Inference System Model for a Greenhouse Energy Demand Prediction
Authors: Azzedine Hamza, Chouaib Chakour, Messaoud Ramdani
Abstract:
Energy demand prediction plays a crucial role in achieving next-generation power systems for agricultural greenhouses. As a result, high prediction quality is required for efficient smart grid management and therefore low-cost energy consumption. The aim of this paper is to investigate the effectiveness of a hybrid data-driven model in day-ahead energy demand prediction. The proposed model consists of Discrete Wavelet Transform (DWT), and Adaptive Neuro-Fuzzy Inference System (ANFIS). The DWT is employed to decompose the original signal in a set of subseries and then an ANFIS is used to generate the forecast for each subseries. The proposed hybrid method (DWT-ANFIS) was evaluated using a greenhouse energy demand data for a week and compared with ANFIS. The performances of the different models were evaluated by comparing the corresponding values of Mean Absolute Percentage Error (MAPE). It was demonstrated that discret wavelet transform can improve agricultural greenhouse energy demand modeling.Keywords: wavelet transform, ANFIS, energy consumption prediction, greenhouse
Procedia PDF Downloads 883021 The Impact of Corporate Social Responsibility Information Disclosure on the Accuracy of Analysts' Earnings Forecasts
Authors: Xin-Hua Zhao
Abstract:
In recent years, the growth rate of social responsibility reports disclosed by Chinese corporations has grown rapidly. The economic effects of the growing corporate social responsibility reports have become a hot topic. The article takes the chemical listed engineering corporations that disclose social responsibility reports in China as a sample, and based on the information asymmetry theory, examines the economic effect generated by corporate social responsibility disclosure with the method of ordinary least squares. The research is conducted from the perspective of analysts’ earnings forecasts and studies the impact of corporate social responsibility information disclosure on improving the accuracy of analysts' earnings forecasts. The results show that there is a statistically significant negative correlation between corporate social responsibility disclosure index and analysts’ earnings forecast error. The conclusions confirm that enterprises can reduce the asymmetry of social and environmental information by disclosing social responsibility reports, and thus improve the accuracy of analysts’ earnings forecasts. It can promote the effective allocation of resources in the market.Keywords: analysts' earnings forecasts, corporate social responsibility disclosure, economic effect, information asymmetry
Procedia PDF Downloads 1563020 Evaluation of Correct Usage, Comfort and Fit of Personal Protective Equipment in Construction Work
Authors: Anna-Lisa Osvalder, Jonas Borell
Abstract:
There are several reasons behind the use, non-use, or inadequate use of personal protective equipment (PPE) in the construction industry. Comfort and accurate size support proper use, while discomfort, misfit, and difficulties to understand how the PPEs should be handled inhibit correct usage. The need for several protective equipments simultaneously might also create problems. The purpose of this study was to analyse the correct usage, comfort, and fit of different types of PPEs used for construction work. Correct usage was analysed as guessability, i.e., human perceptions of how to don, adjust, use, and doff the equipment, and if used as intended. The PPEs tested individually or in combinations were a helmet, ear protectors, goggles, respiratory masks, gloves, protective cloths, and safety harnesses. First, an analytical evaluation was performed with ECW (enhanced cognitive walkthrough) and PUEA (predictive use error analysis) to search for usability problems and use errors during handling and use. Then usability tests were conducted to evaluate guessability, comfort, and fit with 10 test subjects of different heights and body constitutions. The tests included observations during donning, five different outdoor work tasks, and doffing. The think-aloud method, short interviews, and subjective estimations were performed. The analytical evaluation showed that some usability problems and use errors arise during donning and doffing, but with minor severity, mostly causing discomfort. A few use errors and usability problems arose for the safety harness, especially for novices, where some could lead to a high risk of severe incidents. The usability tests showed that discomfort arose for all test subjects when using a combination of PPEs, increasing over time. For instance, goggles, together with the face mask, caused pressure, chafing at the nose, and heat rash on the face. This combination also limited sight of vision. The helmet, in combination with the goggles and ear protectors, did not fit well and caused uncomfortable pressure at the temples. No major problems were found with the individual fit of the PPEs. The ear protectors, goggles, and face masks could be adjusted for different head sizes. The guessability for how to don and wear the combination of PPE was moderate, but it took some time to adjust them for a good fit. The guessability was poor for the safety harness; few clues in the design showed how it should be donned, adjusted, or worn on the skeletal bones. Discomfort occurred when the straps were tightened too much. All straps could not be adjusted for somebody's constitutions leading to non-optimal safety. To conclude, if several types of PPEs are used together, discomfort leading to pain is likely to occur over time, which can lead to misuse, non-use, or reduced performance. If people who are not regular users should wear a safety harness correctly, the design needs to be improved for easier interpretation, correct position of the straps, and increased possibilities for individual adjustments. The results from this study can be a base for re-design ideas for PPE, especially when they should be used in combinations.Keywords: construction work, PPE, personal protective equipment, misuse, guessability, usability
Procedia PDF Downloads 873019 Short Term Distribution Load Forecasting Using Wavelet Transform and Artificial Neural Networks
Authors: S. Neelima, P. S. Subramanyam
Abstract:
The major tool for distribution planning is load forecasting, which is the anticipation of the load in advance. Artificial neural networks have found wide applications in load forecasting to obtain an efficient strategy for planning and management. In this paper, the application of neural networks to study the design of short term load forecasting (STLF) Systems was explored. Our work presents a pragmatic methodology for short term load forecasting (STLF) using proposed two-stage model of wavelet transform (WT) and artificial neural network (ANN). It is a two-stage prediction system which involves wavelet decomposition of input data at the first stage and the decomposed data with another input is trained using a separate neural network to forecast the load. The forecasted load is obtained by reconstruction of the decomposed data. The hybrid model has been trained and validated using load data from Telangana State Electricity Board.Keywords: electrical distribution systems, wavelet transform (WT), short term load forecasting (STLF), artificial neural network (ANN)
Procedia PDF Downloads 4363018 An Evaluation of Renewable Energy Sources in Green Building Systems for the Residential Sector in the Metropolis, Kolkata, India
Authors: Tirthankar Chakraborty, Indranil Mukherjee
Abstract:
The environmental aspect had a major effect on industrial decisions after the deteriorating condition of our surroundings dsince the industrial activities became apparent. Green buildings have been seen as a possible solution to reduce the carbon emissions from construction projects and the housing industry in general. Though this has been established in several areas, with many commercial buildings being designed green, the scope for expansion is still significant and further information on the importance and advantages of green buildings is necessary. Several commercial green building projects have come up and the green buildings are mainly implemented in the residential sector when the residential projects are constructed to furnish amenities to a large population. But, residential buildings, even those of medium sizes, can be designed to incorporate elements of sustainable design. In this context, this paper attempts to give a theoretical appraisal of the use of renewable energy systems in residential buildings of different sizes considering the weather conditions (solar insolation and wind speed) of the metropolis, Kolkata, India. Three cases are taken; one with solar power, one with wind power and one with a combination of the two. All the cases are considered in conjunction with conventional energy, and the efficiency of each in fulfilling the total energy demand is verified. The optimum combination for reducing the carbon footprint of the residential building is thus established. In addition, an assessment of the amount of money saved due to green buildings in metered water supply and price of coal is also mentioned.Keywords: renewable energy, green buildings, solar power, wind power, energy hybridization, residential sector
Procedia PDF Downloads 3903017 Voice Liveness Detection Using Kolmogorov Arnold Networks
Authors: Arth J. Shah, Madhu R. Kamble
Abstract:
Voice biometric liveness detection is customized to certify an authentication process of the voice data presented is genuine and not a recording or synthetic voice. With the rise of deepfakes and other equivalently sophisticated spoofing generation techniques, it’s becoming challenging to ensure that the person on the other end is a live speaker or not. Voice Liveness Detection (VLD) system is a group of security measures which detect and prevent voice spoofing attacks. Motivated by the recent development of the Kolmogorov-Arnold Network (KAN) based on the Kolmogorov-Arnold theorem, we proposed KAN for the VLD task. To date, multilayer perceptron (MLP) based classifiers have been used for the classification tasks. We aim to capture not only the compositional structure of the model but also to optimize the values of univariate functions. This study explains the mathematical as well as experimental analysis of KAN for VLD tasks, thereby opening a new perspective for scientists to work on speech and signal processing-based tasks. This study emerges as a combination of traditional signal processing tasks and new deep learning models, which further proved to be a better combination for VLD tasks. The experiments are performed on the POCO and ASVSpoof 2017 V2 database. We used Constant Q-transform, Mel, and short-time Fourier transform (STFT) based front-end features and used CNN, BiLSTM, and KAN as back-end classifiers. The best accuracy is 91.26 % on the POCO database using STFT features with the KAN classifier. In the ASVSpoof 2017 V2 database, the lowest EER we obtained was 26.42 %, using CQT features and KAN as a classifier.Keywords: Kolmogorov Arnold networks, multilayer perceptron, pop noise, voice liveness detection
Procedia PDF Downloads 393016 Effect of Extraction Methods on the Fatty Acids and Physicochemical Properties of Serendipity Berry Seed Oil
Authors: Olufunmilola A. Abiodun, Adegbola O. Dauda, Ayobami Ojo, Samson A. Oyeyinka
Abstract:
Serendipity berry (Dioscoreophyllum cumminsii diel) is a tropical dioecious rainforest vine and native to tropical Africa. The vine grows during the raining season and is used mainly as sweetener. The sweetener in the berry is known as monellin which is sweeter than sucrose. The sweetener is extracted from the fruits and the seed is discarded. The discarded seeds contain bitter principles but had high yield of oil. Serendipity oil was extracted using three methods (N-hexane, expression and expression/n-hexane). Fatty acids and physicochemical properties of the oil obtained were determined. The oil obtained was clear, liquid and have odour similar to hydrocarbon. The percentage oil yield was 38.59, 12.34 and 49.57% for hexane, expression and expression-hexane method respectively. The seed contained high percentage of oil especially using combination of expression and hexane. Low percentage of oil was obtained using expression method. The refractive index values obtained were 1.443, 1.442 and 1.478 for hexane, expression and expression-hexane methods respectively. Peroxide value obtained for expression-hexane was higher than those for hexane and expression. The viscosities of the oil were 125.8, 128.76 and 126.87 cm³/s for hexane, expression and expression-hexane methods respectively which showed that the oil from expression method was more viscous than the other oils. The major fatty acids in serendipity seed oil were oleic acid (62.81%), linoleic acid (22.65%), linolenic (6.11%), palmitic acid (5.67%), stearic acid (2.21%) in decreasing order. Oleic acid which is monounsaturated fatty acid had the highest value. Total unsaturated fatty acids were 91.574, 92.256 and 90.426% for hexane, expression, and expression-hexane respectively. Combination of expression and hexane for extraction of serendipity oil produced high yield of oil. The oil could be refined for food and non-food application.Keywords: serendipity seed oil, expression method, fatty acid, hexane
Procedia PDF Downloads 2733015 Analytical Development of a Failure Limit and Iso-Uplift Curves for Eccentrically Loaded Shallow Foundations
Authors: N. Abbas, S. Lagomarsino, S. Cattari
Abstract:
Examining existing experimental results for shallow rigid foundations subjected to vertical centric load (N), accompanied or not with a bending moment (M), two main non-linear mechanisms governing the cyclic response of the soil-foundation system can be distinguished: foundation uplift and soil yielding. A soil-foundation failure limit, is defined as a domain of resistance in the two dimensional (2D) load space (N, M) inside of which lie all the admissible combinations of loads; these latter correspond to a pure elastic, non-linear elastic or plastic behavior of the soil-foundation system, while the points lying on the failure limit correspond to a combination of loads leading to a failure of the soil-foundation system. In this study, the proposed resistance domain is constructed analytically based on mechanics. Original elastic limit, uplift initiation limit and iso-uplift limits are constructed inside this domain. These limits give a prediction of the mechanisms activated for each combination of loads applied to the foundation. A comparison of the proposed failure limit with experimental tests existing in the literature shows interesting results. Also, the developed uplift initiation limit and iso-uplift curves are confronted with others already proposed in the literature and widely used due to the absence of other alternatives, and remarkable differences are noted, showing evident errors in the past proposals and relevant accuracy for those given in the present work.Keywords: foundation uplift, iso-uplift curves, resistance domain, soil yield
Procedia PDF Downloads 3833014 Forecast Based on an Empirical Probability Function with an Adjusted Error Using Propagation of Error
Authors: Oscar Javier Herrera, Manuel Angel Camacho
Abstract:
This paper addresses a cutting edge method of business demand forecasting, based on an empirical probability function when the historical behavior of the data is random. Additionally, it presents error determination based on the numerical method technique ‘propagation of errors’. The methodology was conducted characterization and process diagnostics demand planning as part of the production management, then new ways to predict its value through techniques of probability and to calculate their mistake investigated, it was tools used numerical methods. All this based on the behavior of the data. This analysis was determined considering the specific business circumstances of a company in the sector of communications, located in the city of Bogota, Colombia. In conclusion, using this application it was possible to obtain the adequate stock of the products required by the company to provide its services, helping the company reduce its service time, increase the client satisfaction rate, reduce stock which has not been in rotation for a long time, code its inventory, and plan reorder points for the replenishment of stock.Keywords: demand forecasting, empirical distribution, propagation of error, Bogota
Procedia PDF Downloads 6303013 A Mobile Application for Analyzing and Forecasting Crime Using Autoregressive Integrated Moving Average with Artificial Neural Network
Authors: Gajaanuja Megalathan, Banuka Athuraliya
Abstract:
Crime is one of our society's most intimidating and threatening challenges. With the majority of the population residing in cities, many experts and data provided by local authorities suggest a rapid increase in the number of crimes committed in these cities in recent years. There has been an increasing graph in the crime rates. People living in Sri Lanka have the right to know the exact crime rates and the crime rates in the future of the place they are living in. Due to the current economic crisis, crime rates have spiked. There have been so many thefts and murders recorded within the last 6-10 months. Although there are many sources to find out, there is no solid way of searching and finding out the safety of the place. Due to all these reasons, there is a need for the public to feel safe when they are introduced to new places. Through this research, the author aims to develop a mobile application that will be a solution to this problem. It is mainly targeted at tourists, and people who recently relocated will gain advantage of this application. Moreover, the Arima Model combined with ANN is to be used to predict crime rates. From the past researchers' works, it is evidently clear that they haven’t used the Arima model combined with Artificial Neural Networks to forecast crimes.Keywords: arima model, ANN, crime prediction, data analysis
Procedia PDF Downloads 1313012 Predictive Maintenance of Electrical Induction Motors Using Machine Learning
Authors: Muhammad Bilal, Adil Ahmed
Abstract:
This study proposes an approach for electrical induction motor predictive maintenance utilizing machine learning algorithms. On the basis of a study of temperature data obtained from sensors put on the motor, the goal is to predict motor failures. The proposed models are trained to identify whether a motor is defective or not by utilizing machine learning algorithms like Support Vector Machines (SVM) and K-Nearest Neighbors (KNN). According to a thorough study of the literature, earlier research has used motor current signature analysis (MCSA) and vibration data to forecast motor failures. The temperature signal methodology, which has clear advantages over the conventional MCSA and vibration analysis methods in terms of cost-effectiveness, is the main subject of this research. The acquired results emphasize the applicability and effectiveness of the temperature-based predictive maintenance strategy by demonstrating the successful categorization of defective motors using the suggested machine learning models.Keywords: predictive maintenance, electrical induction motors, machine learning, temperature signal methodology, motor failures
Procedia PDF Downloads 1173011 Prediction for DC-AC PWM Inverters DC Pulsed Current Sharing from Passive Parallel Battery-Supercapacitor Energy Storage Systems
Authors: Andreas Helwig, John Bell, Wangmo
Abstract:
Hybrid energy storage systems (HESS) are gaining popularity for grid energy storage (ESS) driven by the increasingly dynamic nature of energy demands, requiring both high energy and high power density. Particularly the ability of energy storage systems via inverters to respond to increasing fluctuation in energy demands, the combination of lithium Iron Phosphate (LFP) battery and supercapacitor (SC) is a particular example of complex electro-chemical devices that may provide benefit to each other for pulse width modulated DC to AC inverter application. This is due to SC’s ability to respond to instantaneous, high-current demands and batteries' long-term energy delivery. However, there is a knowledge gap on the current sharing mechanism within a HESS supplying a load powered by high-frequency pulse-width modulation (PWM) switching to understand the mechanism of aging in such HESS. This paper investigates the prediction of current utilizing various equivalent circuits for SC to investigate sharing between battery and SC in MATLAB/Simulink simulation environment. The findings predict a significant reduction of battery current when the battery is used in a hybrid combination with a supercapacitor as compared to a battery-only model. The impact of PWM inverter carrier switching frequency on current requirements was analyzed between 500Hz and 31kHz. While no clear trend emerged, models predicted optimal frequencies for minimized current needs.Keywords: hybrid energy storage, carrier frequency, PWM switching, equivalent circuit models
Procedia PDF Downloads 263010 Critical Appraisal of Different Drought Indices of Drought Predection and Their Application in KBK Districts of Odisha
Authors: Bibhuti Bhusan Sahoo, Ramakar Jha
Abstract:
Mapping of the extreme events (droughts) is one of the adaptation strategies to consequences of increasing climatic inconsistency and climate alterations. There is no operational practice to forecast the drought. One of the suggestions is to update mapping of drought prone areas for developmental planning. Drought indices play a significant role in drought mitigation. Many scientists have worked on different statistical analysis in drought and other climatological hazards. Many researchers have studied droughts individually for different sub-divisions or for India. Very few workers have studied district wise probabilities over large scale. In the present study, district wise drought probabilities over KBK (Kalahandi-Balangir-Koraput) districts of Odisha, India, Which are seriously prone to droughts, has been established using Hydrological drought index and Meteorological drought index along with the remote sensing drought indices to develop a multidirectional approach in the field of drought mitigation. Mapping for moderate and severe drought probabilities for KBK districts has been done and regions belonging different class intervals of probabilities of drought have been demarcated. Such type of information would be a good tool for planning purposes, for input in modelling and better promising results can be achieved.Keywords: drought indices, KBK districts, proposed drought severity index, SPI
Procedia PDF Downloads 4513009 Exceptionally Glauconite-Rich Strata from the Miocene Bejaoua Facies of Northern Tunisia: Origin, Composition, and Depositional Conditions
Authors: Abdelbasset Tounekti, Kamel Boukhalfa, Tathagata Roy Choudhury, Mohamed Soussi, Santanu Banerjee
Abstract:
The exceptionally glauconite-rich Miocene strata are superbly exposed throughout the front of the nappes zone of northern Tunisia. Each of the glauconitic fine-grained intervals coincide with the peak rise of third order sea-level cycles during the Burdigalian-Langhiantime. These deposits show coarsening- and thickening-upward glauconitic shale and sandstone, recording a shallowing upward progression across offshore-shoreface settings. Petrographic investigation reveals that the glauconite was originated from the alteration of fecal pellets, and lithoclast including feldspar, volcanic particle, and quartz and infillings with intraparticle pores. Mineralogical analysis of both randomly oriented and air-dried, ethylene-glycolate, and heated glauconite pellets show the low intensity of (002) reflection peaks, indicating high iron substitution for aluminum in octahedral sites. Geochemical characterization of the Miocene glauconite reveals a high K2O and variable Fe2O3 (total) content. A combination of layer lattice and divertissement theories explains the origin of glauconite. The formation of glauconite was facilitated by the abundant supply of Fe through contemporaneous volcanism in Algeria and surrounding areas, which accompanied the African-European plate convergence. Therefore, the occurrence of glauconite in the Miocene succession of Tunisia is influenced by the combination of eustacy and volcanism.Keywords: glauconite, autogenic, volcanism, geochemistry, chamosite, northern Tunisia, miocene
Procedia PDF Downloads 2913008 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier
Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh
Abstract:
This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems
Procedia PDF Downloads 443007 Multi Response Optimization in Drilling Al6063/SiC/15% Metal Matrix Composite
Authors: Hari Singh, Abhishek Kamboj, Sudhir Kumar
Abstract:
This investigation proposes a grey-based Taguchi method to solve the multi-response problems. The grey-based Taguchi method is based on the Taguchi’s design of experimental method, and adopts Grey Relational Analysis (GRA) to transfer multi-response problems into single-response problems. In this investigation, an attempt has been made to optimize the drilling process parameters considering weighted output response characteristics using grey relational analysis. The output response characteristics considered are surface roughness, burr height and hole diameter error under the experimental conditions of cutting speed, feed rate, step angle, and cutting environment. The drilling experiments were conducted using L27 orthogonal array. A combination of orthogonal array, design of experiments and grey relational analysis was used to ascertain best possible drilling process parameters that give minimum surface roughness, burr height and hole diameter error. The results reveal that combination of Taguchi design of experiment and grey relational analysis improves surface quality of drilled hole.Keywords: metal matrix composite, drilling, optimization, step drill, surface roughness, burr height, hole diameter error
Procedia PDF Downloads 3193006 Design of a Virtual Reality System for Children with Developmental Coordination Disorder
Authors: Ya-Ju Ju, Li-Chen Yang, Yi-Chun Du, Rong-Ju Cherng
Abstract:
Introduction: It is estimated that 5-6% of school-aged children may be diagnosed to have developmental coordination disorder (DCD). Children with DCD are characterized with motor skill difficulty which cannot be explained by any medical or intellectual reasons. Such motor difficulties limit children’s participation to sports activity, further affect their physical fitness, cardiopulmonary function and balance, and may lead to obesity. The purpose of the project was to develop an exergaming system for children with DCD aiming to improve their physical fitness, cardiopulmonary function and balance ability. Methods: This study took five steps to build up the system: system planning, tasks selection, tasks programming, system integration and usability test. The system basically adopted virtual reality technique to integrate self-developed training programs. The training programs were developed to brainstorm among team members and after literature review. The selected tasks for training in the system were a combination of fundamental movement tor skill. Results and Discussion: Based on the theory of motor development, we design the training task from easy ones to hard ones, from single tasks to dual tasks. The tasks included walking, sit to stand, jumping, kicking, weight shifting, side jumping and their combination. Preliminary study showed that the tasks presented an order of development. Further study is needed to examine its effect on motor skill and cardiovascular fitness in children with DCD.Keywords: virtual reality, virtual reality system, developmental coordination disorder, children
Procedia PDF Downloads 1133005 Effect of Farsi gum (Amygdalus Scoparia Spach) in Combination with Sodium Caseinate on Textural, Stability, Sensory Characteristics and Rheological Properties of Whipped Cream
Authors: Samaneh Mashayekhi
Abstract:
Cream (whipped cream) is one of the dairy products that can be used in desserts, pastries, cakes, and ice creams. In this product, some parameters such as taste and flavor, quality stability, whipping ability, and stability of foam after whipping are very important. The objective of this study is applicable of Farsi gum and sodium caseinate in 3 biopolymer ratios (1:1, 1:2, and 2:1) and 0.15, 0.30, and 0.45 %wt. concentrations in whipped cream formulation. Sample without hydrocolloids was considered as a control. Before whipping, viscosity of all creams was increased continuously with increasing shear rate. In addition, the viscosity was increased with the increasing hydrocolloids addition (in constant shear rate). Microscopic observations showed that polydispersity of systems before whipping. Overrun of F, FC11, and FC21 samples were increased (with increasing total hydrocollid concentration 0.15 to 0.30 % wt.); then decreased this parameter with increasing to 0.45 % wt. concentration. However, mean comparison of FC12 samples overrun showed that this value was increased with increasing total hydrocolloids concentration. 0.45FC21 sample had significantly (P<0.05) highest overrun (118.44±9.11). Synersis of whipped cream samples are reduced with hydrocolloid addition. B sample had significantly (P<0.05) highest serum separation (16.66±0.80%), and 0.45FC12 had a low one (5.94±0.19%) in compered with others synersis. Mean comparison of hardness and adhesiveness of whipped cream revealed that Farsi gum addition alone and in combination with sodium caseinate increased the previous textural characteristics. Results exhibited that 0.4FG12 had significantly (P<0.05) highest hardness (267.00±18.38 g).Mean comparison of droplet size of cream sample before whipping displaced that hydrocolloid addition had no significant effect (P>0.05), and mean droplet size of the samples ranged between 1.93-2.16 µm. Generally, the mean droplet size of whipped cream increased after whipping with increasing hydrocolloid concentration (0.15-0.45 % wt.). Color parameter analysis showed that Farsi gum addition alone and in combination with sodium caseinate had no significant effect (P>0.05) on these parameters (Lightness, Redness, and Yellowness). Based on sensory evaluation results, appearance, color, flavor, and taste of whipped creams not influenced by hydrocolloids addition; but 0.45FC12 sample had higher value. Based on the above results, Farsi gum had suggested to potential application in a whipped cream formulation; however, further research need to foundingof their functionality.Keywords: whipped cream, farsi gum, sodium caseinate, overrun, droplet size, texture analysis, sensory evaluation
Procedia PDF Downloads 983004 Implementation of Complete Management Practices in Managing the Cocoa Pod Borer
Authors: B. Saripah, A. Alias
Abstract:
Cocoa Theobroma cacao (Linnaeus) (Malvales: Sterculiaceae) is subjected to be infested by various numbers of insect pests, and Conopomorpha cramerella Snellen (Lepidoptera: Gracillariidae) is the most serious pest of cocoa in Malaysia. The pest was indigenous to the South East Asia. Several control measures have been implemented and the chemicals have been a major approach if not unilateral, in the management of CPB. Despite extensive use of insecticides, CPB continues to cause an unacceptable level of damage; thus, the combination of several control approaches should be sought. The study was commenced for 12 months at three blocks; Block 18C with complete management practices which include insecticide application, pruning, fertilization and frequent harvesting, Block 17C was treated with frequent harvesting at intervals of 7-8 days, and Block 19C was served as control block. The results showed that the mean numbers of CPB eggs were recorded higher in Block 17C compared with Block 18C in all sampling occasions. Block 18C shows the lowest mean number of CPB eggs in both sampling plots, outside and core plots and it was found significantly different (p ≤ 0. 05) compared to the other blocks. The mean number of CPB eggs was fluctuated throughout sampling occasions, the lowest mean number of eggs was recorded in January (17C) and November (18C), while the highest was recorded in April (17C) and December 2012 (18C). Frequent spraying with insecticides at the adjacent block (18C) helps in reducing CPB eggs in the control block (Block 19C), although there was no spraying was implemented Block 19C. In summary, the combination of complete management practices at Block 18C seems to have some effect on the CPB population at Blocks 17 and 19C because all blocks are adjacent to each other.Keywords: cocoa, theobroma cacao, cocoa pod borer, conopomorpha cramerella
Procedia PDF Downloads 4453003 Predictor Factors for Treatment Failure among Patients on Second Line Antiretroviral Therapy
Authors: Mohd. A. M. Rahim, Yahaya Hassan, Mathumalar L. Fahrni
Abstract:
Second line antiretroviral therapy (ART) regimen is used when patients fail their first line regimen. There are many factors such as non-adherence, drug resistance as well as virological and immunological failure that lead to second line highly active antiretroviral therapy (HAART) regimen treatment failure. This study was aimed at determining predictor factors to treatment failure with second line HAART and analyzing median survival time. An observational, retrospective study was conducted in Sungai Buloh Hospital (HSB) to assess current status of HIV patients treated with second line HAART regimen. Convenience sampling was used and 104 patients were included based on the study’s inclusion and exclusion criteria. Data was collected for six months i.e. from July until December 2013. Data was then analysed using SPSS version 18. Kaplan-Meier and Cox regression analyses were used to measure median survival times and predictor factors for treatment failure. The study population consisted mainly of male subjects, aged 30-45 years, who were heterosexual, and had HIV infection for less than 6 years. The most common second line HAART regimen given was lopinavir/ritonavir (LPV/r)-based combination. Kaplan-Meier analysis showed that patients on LPV/r demonstrated longer median survival times than patients on indinavir/ritonavir (IDV/r) based combination (p<0.001). The commonest reason for a treatment to fail with second line HAART was non-adherence. Based on Cox regression analysis, other predictor factors for treatment failure with second line HAART regimen were age and mode of HIV transmission.Keywords: adherence, antiretroviral therapy, second line, treatment failure
Procedia PDF Downloads 2643002 Paradigm Shift in Classical Drug Research: Challenges to Mordern Pharmaceutical Sciences
Authors: Riddhi Shukla, Rajeshri Patel, Prakruti Buch, Tejas Sharma, Mihir Raval, Navin Sheth
Abstract:
Many classical drugs are claimed to have blood sugar lowering properties that make them valuable for people with or at high risk of type 2 diabetes. Vijaysar (Pterocarpus marsupium) and Gaumutra (Indian cow urine) both have been shown antidiabetic property since primordial time and both shows synergistic effect in combination for hypoglycaemic activity. The study was undertaken to investigate the hypoglycaemic and anti-diabetic effects of the combination of Vijaysar and Gaumutra which is a classical preparation mentioned in Ayurveda named as Pramehari ark. Rats with Type 2 diabetes which is induced by streptozotocin (STZ, 35mg/kg) given a high-fat diet for one month and compared with normal rats. Diabetic rats showed raised level of body weight, triglyceride (TG), total cholesterol, HDL, LDL, and D-glucose concentration and other serum, cardiac and hypertrophic parameters in comparison of normal rats. After treatment of different doses of drug the level of parameters like TG, total cholesterol, HDL, LDL, and D-glucose concentration found to be decreased in standard as well as in treatment groups. In addition treatment groups also found to be decreased in the level of serum markers, cardiac markers, and hypertrophic parameters. The findings demonstrated that Pramehari ark prevented the pathological progression of type 2 diabetes in rats.Keywords: cow urine, hypoglycemic effect, synergic effect, type 2 diabetes, vijaysar
Procedia PDF Downloads 2793001 Internal Combustion Engine Fuel Composition Detection by Analysing Vibration Signals Using ANFIS Network
Authors: M. N. Khajavi, S. Nasiri, E. Farokhi, M. R. Bavir
Abstract:
Alcohol fuels are renewable, have low pollution and have high octane number; therefore, they are important as fuel in internal combustion engines. Percentage detection of these alcoholic fuels with gasoline is a complicated, time consuming, and expensive process. Nowadays, these processes are done in equipped laboratories, based on international standards. The aim of this research is to determine percentage detection of different fuels based on vibration analysis of engine block signals. By doing, so considerable saving in time and cost can be achieved. Five different fuels consisted of pure gasoline (G) as base fuel and combination of this fuel with different percent of ethanol and methanol are prepared. For example, volumetric combination of pure gasoline with 10 percent ethanol is called E10. By this convention, we made M10 (10% methanol plus 90% pure gasoline), E30 (30% ethanol plus 70% pure gasoline), and M30 (30% Methanol plus 70% pure gasoline) were prepared. To simulate real working condition for this experiment, the vehicle was mounted on a chassis dynamometer and run under 1900 rpm and 30 KW load. To measure the engine block vibration, a three axis accelerometer was mounted between cylinder 2 and 3. After acquisition of vibration signal, eight time feature of these signals were used as inputs to an Adaptive Neuro Fuzzy Inference System (ANFIS). The designed ANFIS was trained for classifying these five different fuels. The results show suitable classification ability of the designed ANFIS network with 96.3 percent of correct classification.Keywords: internal combustion engine, vibration signal, fuel composition, classification, ANFIS
Procedia PDF Downloads 4013000 Reservoir Fluids: Occurrence, Classification, and Modeling
Authors: Ahmed El-Banbi
Abstract:
Several PVT models exist to represent how PVT properties are handled in sub-surface and surface engineering calculations for oil and gas production. The most commonly used models include black oil, modified black oil (MBO), and compositional models. These models are used in calculations that allow engineers to optimize and forecast well and reservoir performance (e.g., reservoir simulation calculations, material balance, nodal analysis, surface facilities, etc.). The choice of which model is dependent on fluid type and the production process (e.g., depletion, water injection, gas injection, etc.). Based on close to 2,000 reservoir fluid samples collected from different basins and locations, this paper presents some conclusions on the occurrence of reservoir fluids. It also reviews the common methods used to classify reservoir fluid types. Based on new criteria related to the production behavior of different fluids and economic considerations, an updated classification of reservoir fluid types is presented in the paper. Recommendations on the use of different PVT models to simulate the behavior of different reservoir fluid types are discussed. Each PVT model requirement is highlighted. Available methods for the calculation of PVT properties from each model are also discussed. Practical recommendations and tips on how to control the calculations to achieve the most accurate results are given.Keywords: PVT models, fluid types, PVT properties, fluids classification
Procedia PDF Downloads 72