Search results for: disintegration time
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18215

Search results for: disintegration time

17735 Synergism in the Inquiry Lab: An Analysis of Time Targets and Achievement

Authors: John M. Basey, Clinton D. Francis, Maxwell B. Joseph

Abstract:

After gathering data from experimental procedures, inquiry-oriented-science labs often allow students the freedom to stay and complete the write up in class or leave lab early and complete the write up later. Teachers must decide whether to allow students this freedom to self-regulate this time. Student interviews have indicated four time-target strategies that may influence how students utilize this time: grade-target-A, grade-target-C, time-limited, and proficiency. The hypothesis tested was that variability in class composition relative to the four grade-target strategies has an impact on when students leave class, which in turn may influence their overall learning as exemplified by grades. Students were divided into the four indicated groups with a survey. Class composition and the GTA teaching the class had significant impacts on how long students stayed in class with class composition having the greatest impact. A factor analysis identified two factors. Factor 1 included classes with percentages of grade-target students opposite time-limited/proficiency students and explained 43% of the variance. Factor 2 included classes with percentages of grade-target-A/proficiency students opposite grade-target-C students and explained 33% of the variance. Students who stayed longer received significantly higher grades (P = 0.008) with no significant relationships between grade and Factor 1 or Factor 2 (P > 0.05). The time students stayed in class was significantly positively related to Factor 1 (P = 0.006) and significantly negatively related to Factor 2 (P = 0.008). These results support the hypothesis and indicate that teachers may want to know the composition of student-target strategies before deciding on how to have students allocate study time at the end of inquiry-oriented labs. According to these results, ideal classes for self-regulation have a high proportion of proficiency and time-limited students and a low proportion of grade-target students, or a high proportion of grade-target-A and proficiency students and a low proportion of grade-target-C students. Non-ideal classes for self-regulation were comprised of the inverse proportions.

Keywords: grades, inquiry lab design, synergism in student motivation, class composition

Procedia PDF Downloads 129
17734 Self-Carried Theranostic Nanoparticles for in vitro and in vivo Cancer Therapy with Real-Time Monitoring of Drug Release

Authors: Jinfeng Zhang, Chun-Sing Lee

Abstract:

The use of different nanocarriers for delivering hydrophobic pharmaceutical agents to tumor sites has garnered major attention. Despite the merits of these nanocarriers, further studies are needed for improving their drug loading capacities (typically less than 10%) and reducing their potential systemic toxicity. So development of alternative self-carried nanodrug delivery strategies without using any inert carriers is highly desirable. In this study, we developed a self-carried theranostic curcumin (Cur) nanodrug for highly effective cancer therapy in vitro and in vivo with real-time monitoring of drug release. With a biocompatible C18PMH-PEG functionalization, the Cur nanoparticles (NPs) showed excellent dispersibility and outstanding stability in physiological environment, with drug loading capacity higher than 78 wt.%. Both confocal microscopy and flow cytometry confirmed the cellular fluorescent “OFF-ON” activation and real-time monitoring of Cur molecule release, showing its potential for cancer diagnosis. In vitro and in vivo experiments clearly show that therapeutic efficacy of the PEGylated Cur NPs is much better than that of free Cur. This self-carried theranostic strategy with real-time monitoring of drug release may open a new way for simultaneous cancer therapy and diagnosis.

Keywords: drug delivery, in vitro and in vivo cancer therapy, real-time monitoring, self-carried

Procedia PDF Downloads 399
17733 Detection of Arterial Stiffness in Diabetes Using Photoplethysmograph

Authors: Neelamshobha Nirala, R. Periyasamy, Awanish Kumar

Abstract:

Diabetes is a metabolic disorder and with the increase of global prevalence of diabetes, cardiovascular diseases and mortality related to diabetes has also increased. Diabetes causes the increase of arterial stiffness by elusive hormonal and metabolic abnormalities. We used photoplethysmograph (PPG), a simple non-invasive method to study the change in arterial stiffness due to diabetes. Toe PPG signals were taken from 29 diabetic subjects with mean age of (65±8.4) years and 21 non-diabetic subjects of mean age of (49±14) years. Mean duration of diabetes is 12±8 years for diabetic group. Rise-time (RT) and area under rise time (AUR) were calculated from the PPG signal of each subject and Welch’s t-test is used to find the significant difference between two groups. We obtained a significant difference of (p-value) 0.0005 and 0.03 for RT and AUR respectively between diabetic and non-diabetic subjects. Average value of RT and AUR is 0.298±0.003 msec and 14.4±4.2 arbitrary units respectively for diabetic subject compared to 0.277±0.0005 msec and 13.66±2.3 a.u respectively for non-diabetic subjects. In conclusion, this study support that arterial stiffness is increased in diabetes and can be detected early using PPG.

Keywords: area under rise-time, AUR, arterial stiffness, diabetes, photoplethysmograph, PPG, rise-time (RT)

Procedia PDF Downloads 259
17732 Beyond Objectification: Moderation Analysis of Trauma and Overexcitability Dynamics in Women

Authors: Ritika Chaturvedi

Abstract:

Introduction: Sexual objectification, characterized by the reduction of an individual to a mere object of sexual desire, remains a pervasive societal issue with profound repercussions on individual well-being. Such experiences, often rooted in systemic and cultural norms, have long-lasting implications for mental and emotional health. This study aims to explore the intricate relationship between experiences of sexual objectification and insidious trauma, further investigating the potential moderating effects of overexcitabilities as proposed by Dabrowski's theory of positive disintegration. Methodology: The research involved a comprehensive cohort of 204 women, spanning ages from 18 to 65 years. Participants were tasked with completing self-administered questionnaires designed to capture their experiences with sexual objectification. Additionally, the questionnaire assessed symptoms indicative of insidious trauma and explored overexcitabilities across five distinct domains: emotional, intellectual, psychomotor, sensory, and imaginational. Employing advanced statistical techniques, including multiple regression and moderation analysis, the study sought to decipher the intricate interplay among these variables. Findings: The study's results revealed a compelling positive correlation between experiences of sexual objectification and the onset of symptoms indicative of insidious trauma. This correlation underscores the profound and detrimental effects of sexual objectification on an individual's psychological well-being. Interestingly, the moderation analyses introduced a nuanced understanding, highlighting the differential roles of various overexcitabilities. Specifically, emotional, intellectual, and sensual overexcitabilities were found to exacerbate trauma symptomatology. In contrast, psychomotor overexcitability emerged as a protective factor, demonstrating a mitigating influence on the relationship between sexual objectification and trauma. Implications: The study's findings hold significant implications for a diverse array of stakeholders, encompassing mental health practitioners, educators, policymakers, and advocacy groups. The identified moderating effects of overexcitabilities emphasize the need for tailored interventions that consider individual differences in coping and resilience mechanisms. By recognizing the pivotal role of overexcitabilities in modulating the traumatic consequences of sexual objectification, this research advocates for the development of more nuanced and targeted support frameworks. Moreover, the study underscores the importance of continued research endeavors to unravel the intricate mechanisms and dynamics underpinning these relationships. Such endeavors are crucial for fostering the evolution of informed, evidence-based interventions and strategies aimed at mitigating the adverse effects of sexual objectification and promoting holistic well-being.

Keywords: sexual objectification, insidious trauma, emotional overexcitability, intellectual overexcitability, sensual overexcitability, psychomotor overexcitability, imaginational overexcitability

Procedia PDF Downloads 46
17731 Consultation Time and Its Impact on Length of Stay in the Emergency Department

Authors: Esam Roshdy, Saleh AlRashdi, Turki Alharbi, Rawan Eskandarani, Zurina Cabilo

Abstract:

Introduction/ background: Consultation in the Emergency Department constitute a major part of the work flow every day. Any delay in the consultation process have a major impact on the length of stay and patient disposition and thus affect the total waiting time of patients in the ED. King Fahad medical City in Riyadh City, Saudi Arabia is considered a major Tertiary hospital where there is high flow of patients of different categories visiting the ED. The importance of decreasing consultation time and decision for final disposition of patients was recognized and interpreted in this project to find ways to improve the patient flow in the department and thus the total patient disposition and outcome. Aim / Objectives: 1. To monitor the time of consultation for patients in the Emergency department and its impact on the length of stay of patients in the ED. 2. To detect and assess the problems that lead to long consultation times in the ED, and reach a targeted time of 2 hours for final disposition of patients, according to recognized international and our institutional consultation policy, to reach the final goal of decreasing total length of stay and thus improve the patient flow in the ED. Methods: Data was collected retrospectively for a 92 charts of consultations done in the ED over 2 month’s period. The data was analyzed to get the median of Total Consultation Time. A survey was conducted among all ED staff to determine the level of knowledge about the total consultation time and the compliance to the institutional policy target of 2 hours. A second Data sample of 168 chart was collected after awareness campaign and education of all ED staff about the importance of reaching the target consultation time and compliance to the institutional policy. Results: We have found that there is room for improvement in our overall consultation time. This was found to be more frequent with certain specialties. Our surveys have showed that many ED staff are not familiar or not compliant with our consultation policy which was not clear for everyone. Post-intervention data have showed that awareness of the importance to decrease the total consultation time and compliance alone to the targeted goal have had a huge impact on overall improvement and decreasing the time of final decision and disposition of the patient and the overall patient length of stay in the ED. Conclusion: Working on improving Consultation time in the Emergency Department is a major factor in improving overall length of stay and patient flow. This improvement helps in the overall patient disposition and satisfaction. Plan: As a continuation of our project we are planning to focus on the conflict of admission cases where more than one specialty is involved in the care of patients. We are planning to collect data on the time it takes to resolve and reach final disposition of those patients, and its impact on the length of stay and our department flow and the overall patient outcome and satisfaction.

Keywords: consultation time, impact, length of stay, in the ED

Procedia PDF Downloads 289
17730 Implementation in Python of a Method to Transform One-Dimensional Signals in Graphs

Authors: Luis Andrey Fajardo Fajardo

Abstract:

We are immersed in complex systems. The human brain, the galaxies, the snowflakes are examples of complex systems. An area of interest in Complex systems is the chaos theory. This revolutionary field of science presents different ways of study than determinism and reductionism. Here is where in junction with the Nonlinear DSP, chaos theory offer valuable techniques that establish a link between time series and complex theory in terms of complex networks, so that, the study of signals can be explored from the graph theory. Recently, some people had purposed a method to transform time series in graphs, but no one had developed a suitable implementation in Python with signals extracted from Chaotic Systems or Complex systems. That’s why the implementation in Python of an existing method to transform one dimensional chaotic signals from time domain to graph domain and some measures that may reveal information not extracted in the time domain is proposed.

Keywords: Python, complex systems, graph theory, dynamical systems

Procedia PDF Downloads 509
17729 Numerical Analysis of a Reaction Diffusion System of Lambda-Omega Type

Authors: Hassan J. Al Salman, Ahmed A. Al Ghafli

Abstract:

In this study, we consider a nonlinear in time finite element approximation of a reaction diffusion system of lambda-omega type. We use a fixed-point theorem to prove existence of the approximations at each time level. Then, we derive some essential stability estimates and discuss the uniqueness of the approximations. In addition, we employ Nochetto mathematical framework to prove an optimal error bound in time for d= 1, 2 and 3 space dimensions. Finally, we present some numerical experiments to verify the obtained theoretical results.

Keywords: reaction diffusion system, finite element approximation, stability estimates, error bound

Procedia PDF Downloads 430
17728 User Experience Measurement of User Interfaces

Authors: Mohammad Hashemi, John Herbert

Abstract:

Quantifying and measuring Quality of Experience (QoE) are important and difficult concerns in Human Computer Interaction (HCI). Quality of Service (QoS) and the actual User Interface (UI) of the application are both important contributors to the QoE of a user. This paper describes a framework that measures accurately the way a user uses the UI in order to model users' behaviours and profiles. It monitors the use of the mouse and use of UI elements with accurate time measurement. It does this in real-time and does so unobtrusively and efficiently allowing the user to work as normal with the application. This real-time accurate measurement of the user's interaction provides valuable data and insight into the use of the UI, and is also the basis for analysis of the user's QoE.

Keywords: user modelling, user interface experience, quality of experience, user experience, human and computer interaction

Procedia PDF Downloads 503
17727 A Situational Awareness Map for Allocating Relief Resources after Earthquake Occurrence

Authors: Hamid Reza Ranjbar, Ali Reza Azmoude Ardalan, Hamid Dehghani, Mohammad Reza Sarajian

Abstract:

Natural disasters are unexpected events which predicting them is difficult. Earthquake is one of the most devastating disasters among natural hazards with high rate of mortality and wide extent of damages. After the earthquake occurrence, managing the critical condition and allocating limited relief sources requiring a complete awareness of damaged area. The information for allocating relief teams should be precise and reliable as much as possible, and be presented in the appropriate time after the earthquake occurrence. This type of information was previously presented in the form of a damage map; conducting relief teams by using damage map mostly lead to waste of time for finding alive occupants under the rubble. In this research, a proposed standard for prioritizing damaged buildings in terms of requiring rescue and relief was presented. This standard prioritizes damaged buildings into four levels of priority including very high, high, moderate and low by considering key parameters such as type of land use, activity time, and inactivity time of each land use, time of earthquake occurrence and distinct index. The priority map by using the proposed standard could be a basis for guiding relief teams towards the areas with high relief priority.

Keywords: Damage map, GIS, priority map, USAR

Procedia PDF Downloads 404
17726 Development of a Serial Signal Monitoring Program for Educational Purposes

Authors: Jungho Moon, Lae-Jeong Park

Abstract:

This paper introduces a signal monitoring program developed with a view to helping electrical engineering students get familiar with sensors with digital output. Because the output of digital sensors cannot be simply monitored by a measuring instrument such as an oscilloscope, students tend to have a hard time dealing with digital sensors. The monitoring program runs on a PC and communicates with an MCU that reads the output of digital sensors via an asynchronous communication interface. Receiving the sensor data from the MCU, the monitoring program shows time and/or frequency domain plots of the data in real time. In addition, the monitoring program provides a serial terminal that enables the user to exchange text information with the MCU while the received data is plotted. The user can easily observe the output of digital sensors and configure the digital sensors in real time, which helps students who do not have enough experiences with digital sensors. Though the monitoring program was programmed in the Matlab programming language, it runs without the Matlab since it was compiled as a standalone executable.

Keywords: digital sensor, MATLAB, MCU, signal monitoring program

Procedia PDF Downloads 496
17725 Study of Aqueous Solutions: A Dielectric Spectroscopy Approach

Authors: Kumbharkhane Ashok

Abstract:

The time domain dielectric relaxation spectroscopy (TDRS) probes the interaction of a macroscopic sample with a time-dependent electrical field. The resulting complex permittivity spectrum, characterizes amplitude (voltage) and time scale of the charge-density fluctuations within the sample. These fluctuations may arise from the reorientation of the permanent dipole moments of individual molecules or from the rotation of dipolar moieties in flexible molecules, like polymers. The time scale of these fluctuations depends on the sample and its relative relaxation mechanism. Relaxation times range from some picoseconds in low viscosity liquids to hours in glasses, Therefore the DRS technique covers an extensive dynamical process, its corresponding frequency range from 10-4 Hz to 1012 Hz. This inherent ability to monitor the cooperative motion of molecular ensemble distinguishes dielectric relaxation from methods like NMR or Raman spectroscopy which yield information on the motions of individual molecules. An experimental set up for Time Domain Reflectometry (TDR) technique from 10 MHz to 30 GHz has been developed for the aqueous solutions. This technique has been very simple and covers a wide band of frequencies in the single measurement. Dielectric Relaxation Spectroscopy is especially sensitive to intermolecular interactions. The complex permittivity spectra of aqueous solutions have been fitted using Cole-Davidson (CD) model to determine static dielectric constants and relaxation times for entire concentrations. The heterogeneous molecular interactions in aqueous solutions have been discussed through Kirkwood correlation factor and excess properties.

Keywords: liquid, aqueous solutions, time domain reflectometry

Procedia PDF Downloads 444
17724 Development of Internet of Things (IoT) with Mobile Voice Picking and Cargo Tracing Systems in Warehouse Operations of Third-Party Logistics

Authors: Eugene Y. C. Wong

Abstract:

The increased market competition, customer expectation, and warehouse operating cost in third-party logistics have motivated the continuous exploration in improving operation efficiency in warehouse logistics. Cargo tracing in ordering picking process consumes excessive time for warehouse operators when handling enormous quantities of goods flowing through the warehouse each day. Internet of Things (IoT) with mobile cargo tracing apps and database management systems are developed this research to facilitate and reduce the cargo tracing time in order picking process of a third-party logistics firm. An operation review is carried out in the firm with opportunities for improvement being identified, including inaccurate inventory record in warehouse management system, excessive tracing time on stored products, and product misdelivery. The facility layout has been improved by modifying the designated locations of various types of products. The relationship among the pick and pack processing time, cargo tracing time, delivery accuracy, inventory turnover, and inventory count operation time in the warehouse are evaluated. The correlation of the factors affecting the overall cycle time is analysed. A mobile app is developed with the use of MIT App Inventor and the Access management database to facilitate cargo tracking anytime anywhere. The information flow framework from warehouse database system to cloud computing document-sharing, and further to the mobile app device is developed. The improved performance on cargo tracing in the order processing cycle time of warehouse operators have been collected and evaluated. The developed mobile voice picking and tracking systems brings significant benefit to the third-party logistics firm, including eliminating unnecessary cargo tracing time in order picking process and reducing warehouse operators overtime cost. The mobile tracking device is further planned to enhance the picking time and cycle count of warehouse operators with voice picking system in the developed mobile apps as future development.

Keywords: warehouse, order picking process, cargo tracing, mobile app, third-party logistics

Procedia PDF Downloads 374
17723 The Lubrication Regimes Recognition of a Pressure-Fed Journal Bearing by Time and Frequency Domain Analysis of Acoustic Emission Signals

Authors: S. Hosseini, M. Ahmadi Najafabadi, M. Akhlaghi

Abstract:

The health of the journal bearings is very important in preventing unforeseen breakdowns in rotary machines, and poor lubrication is one of the most important factors for producing the bearing failures. Hydrodynamic lubrication (HL), mixed lubrication (ML), and boundary lubrication (BL) are three regimes of a journal bearing lubrication. This paper uses acoustic emission (AE) measurement technique to correlate features of the AE signals to the three lubrication regimes. The transitions from HL to ML based on operating factors such as rotating speed, load, inlet oil pressure by time domain and time-frequency domain signal analysis techniques are detected, and then metal-to-metal contacts between sliding surfaces of the journal and bearing are identified. It is found that there is a significant difference between theoretical and experimental operating values that are obtained for defining the lubrication regions.

Keywords: acoustic emission technique, pressure fed journal bearing, time and frequency signal analysis, metal-to-metal contact

Procedia PDF Downloads 155
17722 An Economic Order Quantity Model for Deteriorating Items with Ramp Type Demand, Time Dependent Holding Cost and Price Discount Offered on Backorders

Authors: Arjun Paul, Adrijit Goswami

Abstract:

In our present work, an economic order quantity inventory model with shortages is developed where holding cost is expressed as linearly increasing function of time and demand rate is a ramp type function of time. The items considered in the model are deteriorating in nature so that a small fraction of the items is depleted with the passage of time. In order to consider a more realistic situation, the deterioration rate is assumed to follow a continuous uniform distribution with the parameters involved being triangular fuzzy numbers. The inventory manager offers his customer a discount in case he is willing to backorder his demand when there is a stock-out. The optimum ordering policy and the optimum discount offered for each backorder are determined by minimizing the total cost in a replenishment interval. For better illustration of our proposed model in both the crisp and fuzzy sense and for providing richer insights, a numerical example is cited to exemplify the policy and to analyze the sensitivity of the model parameters.

Keywords: fuzzy deterioration rate, price discount on backorder, ramp type demand, shortage, time varying holding cost

Procedia PDF Downloads 197
17721 The Connection between Required Safe Egress Time and Occupant Fire Safety Training

Authors: Christina Knorr

Abstract:

Analysis of the evacuation of occupants of a building plays a significant role in Fire Safety Engineering. One of the tools used for the analysis is the concept of the Required Safe Egress Time (RSET). It is generally accepted that RSET is measured from the time the fire ignites until the time that all occupants have evacuated to a safe location. Instructions on how RSET is determined can be found in both the International Fire Engineering Guidelines and, more recently, in the Australian Fire Engineering Guidelines. The guidelines also specify measures that could be applied to reduce the RSET and hence improve the performance of fire-safety measures of a building. Further, it is suggested that the delay period can be reduced through “training programs.” This study examined the overall level of fire-safety awareness among occupants of residential apartment buildings in Australia and investigated the possible effects of fire-safety training on the delay period and, hence, the RSET. A questionnaire, interviews, and an experiment were conducted to collect data about people’s fire-safety knowledge, people’s behaviour and nature, and the duration of activities people are likely to undertake in the event of a fire. The study led to an investigation into the delay and response time approximations and the development of a new equation to incorporate the impact of training into the RSET calculations for the general use of the fire engineering community. Regardless of the RSET, it can be concluded that fire-safety education and training for residents of apartment buildings have a direct impact on improving their behaviour and firefighting equipment usage in a fire incident.

Keywords: fire safety engineering, fire safety training, occupant evacuation behaviour, required safe egress time

Procedia PDF Downloads 38
17720 Analysis of Caffeic Acid from Myrica nagi Leaves by High Performance Liquid Chromatography

Authors: Preeti Panthari, Harsha Kharkwal

Abstract:

Myrica nagi belongs to Myricaceae family. It is known for its therapeutic use since ancient times. The leaves were extracted with methanol and further fractioned with different solvents with increasing polarity. The n-butanol fraction of methanol extract was passed through celite, on separation through silica gel column chromatography yielded ten fractions. For the first time we report isolation of Caffeic acid from n-butanol fraction of Myrica nagi leaves in Chloroform: methanol (70:30) fraction. The mobile phase used for analysis in HPLC was Methanol: water (60:40) at the flow rate of 1 ml/min at wavelength of 280 nm. The retention time was 2.66 mins.

Keywords: Myrica nagi, column chromatography, retention time, caffeic acid

Procedia PDF Downloads 553
17719 Removal of Nitrogen Compounds from Industrial Wastewater Using Sequencing Batch Reactor: The Effects of React Time

Authors: Ali W. Alattabi, Khalid S. Hashim, Hassnen M. Jafer, Ali Alzeyadi

Abstract:

This study was performed to optimise the react time (RT) and study its effects on the removal rates of nitrogen compounds in a sequencing batch reactor (SBR) treating synthetic industrial wastewater. The results showed that increasing the RT from 4 h to 10, 16 and 22 h significantly improved the nitrogen compounds’ removal efficiency, it was increased from 69.5% to 95%, 75.7 to 97% and from 54.2 to 80.1% for NH3-N, NO3-N and NO2-N respectively. The results obtained from this study showed that the RT of 22 h was the optimum for nitrogen compounds removal efficiency.

Keywords: ammonia-nitrogen, retention time, nitrate, nitrite, sequencing batch reactor, sludge characteristics

Procedia PDF Downloads 363
17718 Optimizing Electric Vehicle Charging with Charging Data Analytics

Authors: Tayyibah Khanam, Mohammad Saad Alam, Sanchari Deb, Yasser Rafat

Abstract:

Electric vehicles are considered as viable replacements to gasoline cars since they help in reducing harmful emissions and stimulate power generation through renewable energy sources, hence contributing to sustainability. However, one of the significant obstacles in the mass deployment of electric vehicles is the charging time anxiety among users and, thus, the subsequent large waiting times for available chargers at charging stations. Data analytics, on the other hand, has revolutionized the decision-making tasks of management and operating systems since its arrival. In this paper, we attempt to optimize the choice of EV charging stations for users in their vicinity by minimizing the time taken to reach the charging stations and the waiting times for available chargers. Time taken to travel to the charging station is calculated by the Google Maps API and the waiting times are predicted by polynomial regression of the historical data stored. The proposed framework utilizes real-time data and historical data from all operating charging stations in the city and assists the user in finding the best suitable charging station for their current situation and can be implemented in a mobile phone application. The algorithm successfully predicts the most optimal choice of a charging station and the minimum required time for various sample data sets.

Keywords: charging data, electric vehicles, machine learning, waiting times

Procedia PDF Downloads 195
17717 Modeling SET Effect on Charge Pump Phase Locked Loop

Authors: Varsha Prasad, S. Sandya

Abstract:

Cosmic Ray effects in microelectronics such as single event effect (SET) and total dose ionization (TID) have been of major concern in space electronics since 1970. Advanced CMOS technologies have demonstrated reduced sensitivity to TID effect. However, charge pump Phase Locked Loop is very much vulnerable to single event transient effect. This paper presents an SET analysis model, where the SET is modeled as a double exponential pulse. The time domain analysis reveals that the settling time of the voltage controlled oscillator (VCO) depends on the SET pulse strength, setting the time constant and the damping factor. The analysis of the proposed SET analysis model is confirmed by the simulation results.

Keywords: charge pump, phase locked loop, SET, VCO

Procedia PDF Downloads 433
17716 Optimized Microwave Pretreatment of Rice Straw for Conversion into Lignin Free and High Crystalline Cellulose

Authors: Mohd Ishfaq Bhat, Navin Chandra Shahi, Umesh Chandra Lohani

Abstract:

The present study aimed to evaluate the effect of microwave application in synergy with the conventional sodium chlorite delignification of rice straw biomass. For the study, Box-Behnken experimental design involving four independent parameters, each with three levels viz. microwave power (480-800 W), irradiation time (4-12 min), bleaching solution concentration (0.4-3.0%), and bleaching time (1-5h) was used. The response was taken in the form of delignification percentage. The optimization of process parameters was done through response surface methodology. The respective optimum parameters of microwave power, irradiation time, bleaching solution concentration, and bleaching time were obtained as 671 W, 8.66 min, 2.67%, and 1h. The delignification percentage achieved at optimum conditions was 93.51%. The spectral, morphological, and x-ray diffraction characteristics of the rice straw powder after delignification showed a complete absence of lignin peaks, deconstruction of lignocellulose complex, and an increase of crystallinity (from 39.8 to 61.6 %).

Keywords: lignocellulosic biomass, delignification, microwaves, rice straw, characterization

Procedia PDF Downloads 147
17715 Time Temperature Indicator for Monitoring Freshness of Packed Pasteurized Milk

Authors: Rajeshwar S. Matche, Subhash V. Pawde, Suraj P, Sachin R. Chaudhari

Abstract:

Time Temperature Indicator’s (TTI) are trending approach in a food packaging that will be insightful to have safe and hygienic food products. Currently, available TTI in the market are mostly a product specific and sometime even difficult to handle especially in supply chain as these are pre-activated and require specific storage conditions. In the present study, research focus is on the development of a cost-effective lactic acid based TTI that can work over a wide range of temperature and can be activated at time of packaging or on demand. The correlation between activation energies of colour change of the developed indicator and packed pasteurized milk spoilage with respect to time and temperature was established. Developed lactic acid based TTI strips have range of activation energy from 10.13 to 24.20 KJ/mol. We found that the developed TTI strip’s with activation energy 12.42, and 14.41KJ/mol can be correlated with spoilage activation energy of packed pasteurized milk which was 25.71 KJ/mol with factor of 2 at storage temperature 4°C. The implementation of these TTI on packed pasteurized milk allow us see visual colour change during the storage and can be fruitful to monitoring quality of the milk and understand its freshness especially in a cold supply chain, viz distributor and road vendor etc.

Keywords: pasteurised packed milk, time temperature indicator, spoilage, freshness

Procedia PDF Downloads 110
17714 Modeling of Bed Level Changes in Larak Island

Authors: Saeed Zeinali, Nasser Talebbeydokhti, Mehdi Saeidian, Shahrad Vosough

Abstract:

In this article, bathymetry changes have been studied as a case study for Larak Island, located in The South of Iran. The advanced 2D model of Mike21 has been used for this purpose. A simple procedure has been utilized in this model. First, the hydrodynamic (HD) module of Mike21 has been used to obtain the required output for sediment transport model (ST module). The ST module modeled the area for tidal currents only. Bed level changes are resulted by series of modeling for both HD and ST module in 3 months time step. The final bathymetry in each time step is used as the primary bathymetry for next time step. This consecutive procedure been continued until bathymetry for the year 2020 is obtained.

Keywords: bed level changes, Larak Island, hydrodynamic, sediment transport

Procedia PDF Downloads 267
17713 A Value-Oriented Metamodel for Small and Medium Enterprises’ Decision Making

Authors: Romain Ben Taleb, Aurélie Montarnal, Matthieu Lauras, Mathieu Dahan, Romain Miclo

Abstract:

To be competitive and sustainable, any company has to maximize its value. However, unlike listed companies that can assess their values based on market shares, most Small and Medium Enterprises (SMEs) which are non-listed cannot have direct and live access to this critical information. Traditional accounting reports only give limited insights to SME decision-makers about the real impact of their day-to-day decisions on the company’s performance and value. Most of the time, an SME’s financial valuation is made one time a year as the associated process is time and resource-consuming, requiring several months and external expertise to be completed. To solve this issue, we propose in this paper a value-oriented metamodel that enables real-time and dynamic assessment of the SME’s value based on the large definition of their assets. These assets cover a wider scope of resources of the company and better account for immaterial assets. The proposal, which is illustrated in a case study, discusses the benefits of incorporating assets in the SME valuation.

Keywords: SME, metamodel, decision support system, financial valuation, assets

Procedia PDF Downloads 92
17712 Comparison of Different Machine Learning Models for Time-Series Based Load Forecasting of Electric Vehicle Charging Stations

Authors: H. J. Joshi, Satyajeet Patil, Parth Dandavate, Mihir Kulkarni, Harshita Agrawal

Abstract:

As the world looks towards a sustainable future, electric vehicles have become increasingly popular. Millions worldwide are looking to switch to Electric cars over the previously favored combustion engine-powered cars. This demand has seen an increase in Electric Vehicle Charging Stations. The big challenge is that the randomness of electrical energy makes it tough for these charging stations to provide an adequate amount of energy over a specific amount of time. Thus, it has become increasingly crucial to model these patterns and forecast the energy needs of power stations. This paper aims to analyze how different machine learning models perform on Electric Vehicle charging time-series data. The data set consists of authentic Electric Vehicle Data from the Netherlands. It has an overview of ten thousand transactions from public stations operated by EVnetNL.

Keywords: forecasting, smart grid, electric vehicle load forecasting, machine learning, time series forecasting

Procedia PDF Downloads 106
17711 CPU Architecture Based on Static Hardware Scheduler Engine and Multiple Pipeline Registers

Authors: Ionel Zagan, Vasile Gheorghita Gaitan

Abstract:

The development of CPUs and of real-time systems based on them made it possible to use time at increasingly low resolutions. Together with the scheduling methods and algorithms, time organizing has been improved so as to respond positively to the need for optimization and to the way in which the CPU is used. This presentation contains both a detailed theoretical description and the results obtained from research on improving the performances of the nMPRA (Multi Pipeline Register Architecture) processor by implementing specific functions in hardware. The proposed CPU architecture has been developed, simulated and validated by using the FPGA Virtex-7 circuit, via a SoC project. Although the nMPRA processor hardware structure with five pipeline stages is very complex, the present paper presents and analyzes the tests dedicated to the implementation of the CPU and of the memory on-chip for instructions and data. In order to practically implement and test the entire SoC project, various tests have been performed. These tests have been performed in order to verify the drivers for peripherals and the boot module named Bootloader.

Keywords: hardware scheduler, nMPRA processor, real-time systems, scheduling methods

Procedia PDF Downloads 267
17710 Speeding up Nonlinear Time History Analysis of Base-Isolated Structures Using a Nonlinear Exponential Model

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

The nonlinear time history analysis of seismically base-isolated structures can require a significant computational effort when the behavior of each seismic isolator is predicted by adopting the widely used differential equation Bouc-Wen model. In this paper, a nonlinear exponential model, able to simulate the response of seismic isolation bearings within a relatively large displacements range, is described and adopted in order to reduce the numerical computations and speed up the nonlinear dynamic analysis. Compared to the Bouc-Wen model, the proposed one does not require the numerical solution of a nonlinear differential equation for each time step of the analysis. The seismic response of a 3d base-isolated structure with a lead rubber bearing system subjected to harmonic earthquake excitation is simulated by modeling each isolator using the proposed analytical model. The comparison of the numerical results and computational time with those obtained by modeling the lead rubber bearings using the Bouc-Wen model demonstrates the good accuracy of the proposed model and its capability to reduce significantly the computational effort of the analysis.

Keywords: base isolation, computational efficiency, nonlinear exponential model, nonlinear time history analysis

Procedia PDF Downloads 384
17709 Enhancement Dynamic Cars Detection Based on Optimized HOG Descriptor

Authors: Mansouri Nabila, Ben Jemaa Yousra, Motamed Cina, Watelain Eric

Abstract:

Research and development efforts in intelligent Advanced Driver Assistance Systems (ADAS) seek to save lives and reduce the number of on-road fatalities. For traffic and emergency monitoring, the essential but challenging task is vehicle detection and tracking in reasonably short time. This purpose needs first of all a powerful dynamic car detector model. In fact, this paper presents an optimized HOG process based on shape and motion parameters fusion. Our proposed approach mains to compute HOG by bloc feature from foreground blobs using configurable research window and pathway in order to overcome the shortcoming in term of computing time of HOG descriptor and improve their dynamic application performance. Indeed we prove in this paper that HOG by bloc descriptor combined with motion parameters is a very suitable car detector which reaches in record time a satisfactory recognition rate in dynamic outside area and bypasses several popular works without using sophisticated and expensive architectures such as GPU and FPGA.

Keywords: car-detector, HOG, motion, computing time

Procedia PDF Downloads 323
17708 Time Effective Structural Frequency Response Testing with Oblique Impact

Authors: Khoo Shin Yee, Lian Yee Cheng, Ong Zhi Chao, Zubaidah Ismail, Siamak Noroozi

Abstract:

Structural frequency response testing is accurate in identifying the dynamic characteristic of a machinery structure. In practical perspective, conventional structural frequency response testing such as experimental modal analysis with impulse technique (also known as “impulse testing”) has limitation especially on its long acquisition time. The high acquisition time is mainly due to the redundancy procedure where the engineer has to repeatedly perform the test in 3 directions, namely the axial-, horizontal- and vertical-axis, in order to comprehensively define the dynamic behavior of a 3D structure. This is unfavorable to numerous industries where the downtime cost is high. This study proposes to reduce the testing time by using oblique impact. Theoretically, a single oblique impact can induce significant vibration responses and vibration modes in all the 3 directions. Hence, the acquisition time with the implementation of the oblique impulse technique can be reduced by a factor of three (i.e. for a 3D dynamic system). This study initiates an experimental investigation of impulse testing with oblique excitation. A motor-driven test rig has been used for the testing purpose. Its dynamic characteristic has been identified using the impulse testing with the conventional normal impact and the proposed oblique impact respectively. The results show that the proposed oblique impulse testing is able to obtain all the desired natural frequencies in all 3 directions and thus providing a feasible solution for a fast and time effective way of conducting the impulse testing.

Keywords: frequency response function, impact testing, modal analysis, oblique angle, oblique impact

Procedia PDF Downloads 501
17707 Quantum Dynamics for General Time-Dependent Three Coupled Oscillators

Authors: Salah Menouar, Sara Hassoul

Abstract:

The dynamic of time-dependent three coupled oscillators is studied through an approach based on decoupling of them using the unitary transformation method. From a first unitary transformation, the Hamiltonian of the complicated original system is transformed to an equal but a simple one associated with the three coupled oscillators of which masses are unity. Finally, we diagonalize the matrix representation of the transformed hamiltonian by using a unitary matrix. The diagonalized Hamiltonian is just the same as the Hamiltonian of three simple oscillators. Through these procedures, the coupled oscillatory subsystems are completely decoupled. From this uncouplement, we can develop complete dynamics of the whole system in an easy way by just examining each oscillator independently. Such a development of the mechanical theory can be done regardless of the complication of the parameters' variations.

Keywords: schrödinger equation, hamiltonian, time-dependent three coupled oscillators, unitary transformation

Procedia PDF Downloads 98
17706 Design and Development of a Platform for Analyzing Spatio-Temporal Data from Wireless Sensor Networks

Authors: Walid Fantazi

Abstract:

The development of sensor technology (such as microelectromechanical systems (MEMS), wireless communications, embedded systems, distributed processing and wireless sensor applications) has contributed to a broad range of WSN applications which are capable of collecting a large amount of spatiotemporal data in real time. These systems require real-time data processing to manage storage in real time and query the data they process. In order to cover these needs, we propose in this paper a Snapshot spatiotemporal data model based on object-oriented concepts. This model allows saving storing and reducing data redundancy which makes it easier to execute spatiotemporal queries and save analyzes time. Further, to ensure the robustness of the system as well as the elimination of congestion from the main access memory we propose a spatiotemporal indexing technique in RAM called Captree *. As a result, we offer an RIA (Rich Internet Application) -based SOA application architecture which allows the remote monitoring and control.

Keywords: WSN, indexing data, SOA, RIA, geographic information system

Procedia PDF Downloads 254