Search results for: blast energy absorber
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8660

Search results for: blast energy absorber

8180 Rebuilding Christchurch's Infrastructure: An Analysis of Political Mismanagement

Authors: Hugh Byrd, Steve Matthewnan

Abstract:

The devastation of the city centre of Christchurch, New Zealand, after the 2010 and 2011 earthquakes presented an opportunity to rebuild infrastructure in a coordinated and efficient manner to allow for a city that was energy efficient, low carbon, resilient and provided both energy security and justice. The research described in this paper records the processes taken to attempt to rebuild the energy infrastructure. The story is one of political decisions overriding appropriate technology and ultimately is a lesson in how not to handle the implementation of post-disaster energy infrastructure. Lack of clarity in decision making by central government and then not pursuing consultant’s recommendations led to a scheme that was effectively abandoned in 2016 and described as ‘a total failure’. The paper records the critical events that occurred and explains why the proposed energy infrastructure was both politically and technologically inappropriate.

Keywords: energy infrastructure, policy and governance, post-disaster rebuilding

Procedia PDF Downloads 172
8179 Harvesting Energy from Lightning Strikes

Authors: Vaishakh Medikeri

Abstract:

Lightning, the marvelous, spectacular and the awesome truth of nature is one of the greatest energy sources left unharnessed since ages. A single lightning bolt of lightning contains energy of about 15 billion joules. This huge amount of energy cannot be harnessed completely but partially. This paper proposes to harness the energy from lightning strikes. Throughout the globe the frequency of lightning is 40-50 flashes per second, totally 1.4 billion flashes per year; all of these flashes carrying an average energy of about 15 billion joules each. When a lightning bolt strikes the ground, tremendous amounts of energy is transferred to earth which propagates in the form of concentric circular energy waves. These waves have a frequency of about 7.83Hz. Harvesting the lightning bolt directly seems impossible, but harvesting the energy waves produced by the lightning is pretty easier. This can be done using a tricoil energy harnesser which is a new device which I have invented. We know that lightning bolt seeks the path which has minimum resistance down to the earth. For this we can make a lightning rod about 100 meters high. Now the lightning rod is attached to the tricoil energy harnesser. The tricoil energy harnesser contains three coils whose centers are collinear and all the coils are parallel to the ground. The first coil has one of its ends connected to the lightning rod and the other end grounded. There is a secondary coil wound on the first coil with one of its end grounded and the other end pointing to the ground and left unconnected and placed a little bit above the ground so that this end of the coil produces more intense currents, hence producing intense energy waves. The first coil produces very high magnetic fields and induces them in the second and third coils. Along with the magnetic fields induced by the first coil, the energy waves which are currents also flow through the second and the third coils. The second and the third coils are connected to a generator which in turn is connected to a capacitor which stores the electrical energy. The first coil is placed in the middle of the second and the third coil. The stored energy can be used for transmission of electricity. This new technique of harnessing the lightning strikes would be most efficient in places with more probability of the lightning strikes. Since we are using a lightning rod sufficiently long, the probability of cloud to ground strikes is increased. If the proposed apparatus is implemented, it would be a great source of pure and clean energy.

Keywords: generator, lightning rod, tricoil energy harnesser, harvesting energy

Procedia PDF Downloads 381
8178 An Experimental Investigation on Explosive Phase Change of Liquefied Propane During a Bleve Event

Authors: Frederic Heymes, Michael Albrecht Birk, Roland Eyssette

Abstract:

Boiling Liquid Expanding Vapor Explosion (BLEVE) has been a well know industrial accident for over 6 decades now, and yet it is still poorly predicted and avoided. BLEVE is created when a vessel containing a pressure liquefied gas (PLG) is engulfed in a fire until the tank rupture. At this time, the pressure drops suddenly, leading the liquid to be in a superheated state. The vapor expansion and the violent boiling of the liquid produce several shock waves. This works aimed at understanding the contribution of vapor ad liquid phases in the overpressure generation in the near field. An experimental work was undertaken at a small scale to reproduce realistic BLEVE explosions. Key parameters were controlled through the experiments, such as failure pressure, fluid mass in the vessel, and weakened length of the vessel. Thirty-four propane BLEVEs were then performed to collect data on scenarios similar to common industrial cases. The aerial overpressure was recorded all around the vessel, and also the internal pressure changed during the explosion and ground loading under the vessel. Several high-speed cameras were used to see the vessel explosion and the blast creation by shadowgraph. Results highlight how the pressure field is anisotropic around the cylindrical vessel and highlights a strong dependency between vapor content and maximum overpressure from the lead shock. The time chronology of events reveals that the vapor phase is the main contributor to the aerial overpressure peak. A prediction model is built upon this assumption. Secondary flow patterns are observed after the lead. A theory on how the second shock observed in experiments forms is exposed thanks to an analogy with numerical simulation. The phase change dynamics are also discussed thanks to a window in the vessel. Ground loading measurements are finally presented and discussed to give insight into the order of magnitude of the force.

Keywords: phase change, superheated state, explosion, vapor expansion, blast, shock wave, pressure liquefied gas

Procedia PDF Downloads 77
8177 Comparison the Energy Consumption with Sustainability in Campus: Case Study of Four American Universities

Authors: Bifeng Zhu, Zhekai Wang, Chaoyang Sun, Bart Dewancker

Abstract:

Under the tide of promoting sustainable development in the world, American universities that have been committed to sustainable practice and innovation, not only have its sustainable campus construction been in the forefront of the world, but also have developed STARS (The Sustainability Tracking, Assessment & Rating System), which is widely used in the world and highly recognized. At the same time, in the process of global sustainable campus construction, energy problem is often regarded as one of the most important sustainable aspects, even equivalent to the sustainability of campus. Therefore, the relationship between campus energy and sustainability is worth discussing. In this study, four American universities with the highest level evaluated by STARS are selected as examples to compare and analyze the campus energy consumption and the use of new energy, GHG emissions and the overall sustainability of the campus, in order to explore the relationship between campus energy and sustainable construction. It is found that the advantages of sustainable campus construction in the United States are mainly focused on the "software" of management, education, activities, etc. Although different energy-saving measures have been taken in campus energy, the construction results are quite different. Moreover, as an important aspect of sustainable campus, energy can not fully represent the sustainability of campus, but because of the various measures it takes, it can greatly promote the sustainable construction of the whole campus. These measures and construction experiences are worthy of summary and promotion, and have positive reference significance for other universities even communities around the world.

Keywords: sustainable campus, energy consumption, STARS assessment, GHG emissions

Procedia PDF Downloads 275
8176 Theoretical Performance of a Sustainable Clean Energy On-Site Generation Device to Convert Consumers into Producers and Its Possible Impact on Electrical National Grids

Authors: Eudes Vera

Abstract:

In this paper, a theoretical evaluation is carried out of the performance of a forthcoming fuel-less clean energy generation device, the Air Motor. The underlying physical principles that support this technology are succinctly described. Examples of the machine and theoretical values of input and output powers are also given. In addition, its main features like portability, on-site energy generation and delivery, miniaturization of generation plants, efficiency, and scaling down of the whole electric infrastructure are discussed. The main component of the Air Motor, the Thermal Air Turbine, generates useful power by converting in mechanical energy part of the thermal energy contained in a fan-produced airflow while leaving intact its kinetic energy. Due to this fact an air motor can contain a long succession of identical air turbines and the total power generated out of a single airflow can be very large, as well as its mechanical efficiency. It is found using the corresponding formulae that the mechanical efficiency of this device can be much greater than 100%, while its thermal efficiency is always less than 100%. On account of its multiple advantages, the Air Motor seems to be the perfect device to convert energy consumers into energy producers worldwide. If so, it would appear that current national electrical grids would no longer be necessary, because it does not seem practical or economical to bring the energy from far-away distances while it can be generated and consumed locally at the consumer’s premises using just the thermal energy contained in the ambient air.

Keywords: electrical grid, clean energy, renewable energy, in situ generation and delivery, generation efficiency

Procedia PDF Downloads 175
8175 Wind Power Assessment for Turkey and Evaluation by APLUS Code

Authors: Ibrahim H. Kilic, A. B. Tugrul

Abstract:

Energy is a fundamental component in economic development and energy consumption is an index of prosperity and the standard of living. The consumption of energy per capita has increased significantly over the last decades, as the standard of living has improved. Turkey’s geographical location has several advantages for extensive use of wind power. Among the renewable sources, Turkey has very high wind energy potential. Information such as installation capacity of wind power plants in installation, under construction and license stages in the country are reported in detail. Some suggestions are presented in order to increase the wind power installation capacity of Turkey. Turkey’s economic and social development has led to a massive increase in demand for electricity over the last decades. Since the Turkey has no major oil or gas reserves, it is highly dependent on energy imports and is exposed to energy insecurity in the future. But Turkey does have huge potential for renewable energy utilization. There has been a huge growth in the construction of wind power plants and small hydropower plants in recent years. To meet the growing energy demand, the Turkish Government has adopted incentives for investments in renewable energy production. Wind energy investments evaluated the impact of feed-in tariffs (FIT) based on three scenarios that are optimistic, realistic and pessimistic with APLUS software that is developed for rational evaluation for energy market. Results of the three scenarios are evaluated in the view of electricity market for Turkey.

Keywords: APLUS, energy policy, renewable energy, wind power, Turkey

Procedia PDF Downloads 303
8174 Development and Characterization of Acoustic Energy Harvesters for Low Power Wireless Sensor Network

Authors: Waheed Gul, Muhammad Zeeshan, Ahmad Raza Khan, Muhammad Khurram

Abstract:

Wireless Sensor Nodes (WSNs) have developed significantly over the years and have significant potential in diverse applications in the fields of science and technology. The inadequate energy accompanying WSNs is a key constraint of WSN skills. To overcome this main restraint, the development and expansion of effective and reliable energy harvesting systems for WSN atmospheres are being discovered. In this research, low-power acoustic energy harvesters are designed and developed by applying different techniques of energy transduction from the sound available in the surroundings. Three acoustic energy harvesters were developed based on the piezoelectric phenomenon, electromagnetic transduction, and hybrid, respectively. The CAD modelling, lumped modelling and Finite Element Analysis of the harvesters were carried out. The voltages were obtained using FEA for each Acoustic Harvester. Characterization of all three harvesters was carried out and the power generated by the piezoelectric harvester, electromagnetic harvester and Hybrid Acoustic Energy harvester are 2.25x10-9W, 0.0533W and 0.0232W, respectively.

Keywords: energy harvesting, WSNs, piezoelectric, electromagnetic, power

Procedia PDF Downloads 71
8173 Estimation of Eucalyptus Wood Calorific Potential for Energy Recovering

Authors: N. Ouslimani, N. Hakimi, H. Aksas

Abstract:

The reduction of oil reserves in the world makes that many countries are directed towards the study and the use of local and renewable energies. For this purpose, wood energy represents the material of choice. The energy production is primarily thermal and corresponds to a heating of comfort, auxiliary or principal. Wood is generally conditioned in the form of logs, of pellets, even of plates. In Algeria, this way of energy saving could contribute to the safeguarding of the environment, as to the recovery of under wood products (branches, barks and various wastes on the various transformation steps). This work is placed within the framework general of the search for new sources of energy starting from the recovery of the lignocellulosic matter. In this direction, we proposed various sources of products (biomass, under product and by-products) relating to the ‘Eucalyptus species’ being able to be developed, of which we carried out a preliminary physicochemical study, necessary to the development of the densified products with high calorific value.

Keywords: biomass, calorific value, combustion, energy recovery

Procedia PDF Downloads 290
8172 Production of Pre-Reduction of Iron Ore Nuggets with Lesser Sulphur Intake by Devolatisation of Boiler Grade Coal

Authors: Chanchal Biswas, Anrin Bhattacharyya, Gopes Chandra Das, Mahua Ghosh Chaudhuri, Rajib Dey

Abstract:

Boiler coals with low fixed carbon and higher ash content have always challenged the metallurgists to develop a suitable method for their utilization. In the present study, an attempt is made to establish an energy effective method for the reduction of iron ore fines in the form of nuggets by using ‘Syngas’. By devolatisation (expulsion of volatile matter by applying heat) of boiler coal, gaseous product (enriched with reducing agents like CO, CO2, H2, and CH4 gases) is generated. Iron ore nuggets are reduced by this syngas. For that reason, there is no direct contact between iron ore nuggets and coal ash. It helps to control the minimization of the sulphur intake of the reduced nuggets. A laboratory scale devolatisation furnace designed with reduction facility is evaluated after in-depth studies and exhaustive experimentations including thermo-gravimetric (TG-DTA) analysis to find out the volatile fraction present in boiler grade coal, gas chromatography (GC) to find out syngas composition in different temperature and furnace temperature gradient measurements to minimize the furnace cost by applying one heating coil. The nuggets are reduced in the devolatisation furnace at three different temperatures and three different times. The pre-reduced nuggets are subjected to analytical weight loss calculations to evaluate the extent of reduction. The phase and surface morphology analysis of pre-reduced samples are characterized using X-ray diffractometry (XRD), energy dispersive x-ray spectrometry (EDX), scanning electron microscopy (SEM), carbon sulphur analyzer and chemical analysis method. Degree of metallization of the reduced nuggets is 78.9% by using boiler grade coal. The pre-reduced nuggets with lesser sulphur content could be used in the blast furnace as raw materials or coolant which would reduce the high quality of coke rate of the furnace due to its pre-reduced character. These can be used in Basic Oxygen Furnace (BOF) as coolant also.

Keywords: alternative ironmaking, coal gasification, extent of reduction, nugget making, syngas based DRI, solid state reduction

Procedia PDF Downloads 260
8171 Surveying Energy Dissipation in Stepped Spillway Using Finite Element Modeling

Authors: Mehdi Fuladipanah

Abstract:

Stepped spillway includes several steps from the crest to the toe. The steps of stepped spillway could cause to decrease the energy with making energy distribution in the longitude mode and also to reduce the outcome speed. The aim of this study was to stimulate the stepped spillway combined with stilling basin-step using Fluent model and the turbulent superficial flow using RNG, K-ε. The free surface of the flow was monitored by VOF model. The velocity and the depth of the flow were measured by tail water depth by the numerical model and then the dissipated energy was calculated along the spillway. The results indicated that the stilling basin-step complex may cause energy dissipation increment in the stepped spillway. Also, the numerical model was suggested as an effective method to predict the circular and complicated flows in the stepped spillways.

Keywords: stepped spillway, fluent model, VOF model, K-ε model, energy distribution

Procedia PDF Downloads 372
8170 Optimal Energy Management and Environmental Index Optimization of a Microgrid Operating by Renewable and Sustainable Generation Systems

Authors: Nabil Mezhoud

Abstract:

The economic operation of electric energy generating systems is one of the predominant problems in energy systems. Due to the need for better reliability, high energy quality, lower losses, lower cost and a clean environment, the application of renewable and sustainable energy sources, such as wind energy, solar energy, etc., in recent years has become more widespread. In this work, one of a bio-inspired meta-heuristic algorithm inspired by the flashing behavior of fireflies at night called the Firefly Algorithm (FFA) is applied to solve the Optimal Energy Management (OEM) and the environmental index (EI) problems of a micro-grid (MG) operating by Renewable and Sustainable Generation Systems (RSGS). Our main goal is to minimize the nonlinear objective function of an electrical microgrid, taking into account equality and inequality constraints. The FFA approach was examined and tested on a standard MG system composed of different types of RSGS, such as wind turbines (WT), photovoltaic systems (PV), and non-renewable energy, such as fuel cells (FC), micro turbine (MT), diesel generator (DEG) and loads with energy storage systems (ESS). The results are promising and show the effectiveness and robustness of the proposed approach to solve the OEM and the EI problems. The results of the proposed method have been compared and validated with those known references published recently.

Keywords: renewable energy sources, energy management, distributed generator, micro-grids, firefly algorithm

Procedia PDF Downloads 76
8169 Optimization and Energy Management of Hybrid Standalone Energy System

Authors: T. M. Tawfik, M. A. Badr, E. Y. El-Kady, O. E. Abdellatif

Abstract:

Electric power shortage is a serious problem in remote rural communities in Egypt. Over the past few years, electrification of remote communities including efficient on-site energy resources utilization has achieved high progress. Remote communities usually fed from diesel generator (DG) networks because they need reliable energy and cheap fresh water. The main objective of this paper is to design an optimal economic power supply from hybrid standalone energy system (HSES) as alternative energy source. It covers energy requirements for reverse osmosis desalination unit (DU) located in National Research Centre farm in Noubarya, Egypt. The proposed system consists of PV panels, Wind Turbines (WT), Batteries, and DG as a backup for supplying DU load of 105.6 KWh/day rated power with 6.6 kW peak load operating 16 hours a day. Optimization of HSES objective is selecting the suitable size of each of the system components and control strategy that provide reliable, efficient, and cost-effective system using net present cost (NPC) as a criterion. The harmonization of different energy sources, energy storage, and load requirements are a difficult and challenging task. Thus, the performance of various available configurations is investigated economically and technically using iHOGA software that is based on genetic algorithm (GA). The achieved optimum configuration is further modified through optimizing the energy extracted from renewable sources. Effective minimization of energy charging the battery ensures that most of the generated energy directly supplies the demand, increasing the utilization of the generated energy.

Keywords: energy management, hybrid system, renewable energy, remote area, optimization

Procedia PDF Downloads 199
8168 A Comprehensive Review of Adaptive Building Energy Management Systems Based on Users’ Feedback

Authors: P. Nafisi Poor, P. Javid

Abstract:

Over the past few years, the idea of adaptive buildings and specifically, adaptive building energy management systems (ABEMS) has become popular. Well-performed management in terms of energy is to create a balance between energy consumption and user comfort; therefore, in new energy management models, efficient energy consumption is not the sole factor and the user's comfortability is also considered in the calculations. One of the main ways of measuring this factor is by analyzing user feedback on the conditions to understand whether they are satisfied with conditions or not. This paper provides a comprehensive review of recent approaches towards energy management systems based on users' feedbacks and subsequently performs a comparison between them premised upon their efficiency and accuracy to understand which approaches were more accurate and which ones resulted in a more efficient way of minimizing energy consumption while maintaining users' comfortability. It was concluded that the highest accuracy rate among the presented works was 95% accuracy in determining satisfaction and up to 51.08% energy savings can be achieved without disturbing user’s comfort. Considering the growing interest in designing and developing adaptive buildings, these studies can support diverse inquiries about this subject and can be used as a resource to support studies and researches towards efficient energy consumption while maintaining the comfortability of users.

Keywords: adaptive buildings, energy efficiency, intelligent buildings, user comfortability

Procedia PDF Downloads 133
8167 A Review of Technology Roadmaps for Commercialization of Solar Photovoltaic Energy Systems

Authors: Muhammad Usman Sardar, Muhammad Haroon Nadeem, Shahbaz Ahmad, Ashiq Hussain

Abstract:

The marketing of solar photovoltaic energy systems has one of the monetary settlements to address the higher rate to pay in advance with the purchase of two decades worth of electricity services. To deploy solar photovoltaic technologies and energy setups in areas, it’s important to create a system of credit that can ensure the availability of subsidized capital and commercial conditions for the society. Meanings of energy in developing countries like Pakistan were strongly prompted by marketable interests and industrialization trend influences within their culture. It’s going to be essential to prepare the concerned proceeding models of energy development strategies. This paper discuss the impact and share of environmental friendly solar photo-voltaic energy, researching to find the most appropriate alternate solutions for balance the energy demand and supply and current progressive position in different countries regarding to development and deployment. Based on the literature reviews, its presence found that most beneficial and concerning policies have implemented in several countries around the globe.

Keywords: photovoltaic marketing and pricing, renewable energy technology, solar photovoltaic, SPV

Procedia PDF Downloads 388
8166 Empirical Investigation of Barriers to Industrial Energy Conservation Measures in the Manufacturing Small and Medium Enterprises (SME's) of Pakistan

Authors: Muhammad Tahir Hassan, Stas Burek, Muhammad Asif, Mohamed Emad

Abstract:

Industrial sector in Pakistan accounts for 25% of total energy consumption in the country. The performance of this sector has been severely affected due to the adverse effect of current energy crises in the country. Energy conservation potentials of Pakistan’s industrial sectors through energy management can save wasted energy which would ultimately leads to economic and environmental benefits. However due to lack of financial incentives of energy efficiency and absence of energy benchmarking within same industrial sectors are some of the main challenges in the implementation of energy management. In Pakistan, this area has not been adequately explored, and there is a lack of focus on the need for industrial energy efficiency and proper management. The main objective of this research is to evaluate the current energy management performance of Pakistani industrial sector and empirical investigation of the existence of various barriers to industrial energy efficiency. Data was collected from the respondents of 192 small and medium-sized enterprises (SME’s) of Pakistan i.e. foundries, textile, plastic industries, light engineering, auto and spare parts and ceramic manufacturers and analysed using Statistical Package for the Social Sciences (SPSS) software. Current energy management performance of manufacturing SME’s in Pakistan has been evaluated by employing two significant indicators, ‘Energy Management Matrix’ and ‘pay-off criteria’, with modified approach. Using the energy management matrix, energy management profiles of overall industry and the individual sectors have been drawn to assess the energy management performance and identify the weak and strong areas as well. Results reveal that, energy management practices in overall surveyed industries are at very low level. Energy management profiles drawn against each sector suggest that performance of textile sector is better among all the surveyed manufacturing SME’s. The empirical barriers to industrial energy efficiency have also been ranked according to the overall responses. The results further reveal that there is a significant relationship exists among the industrial size, sector type and nature of barriers to industrial energy efficiency for the manufacturing SME’s in Pakistan. The findings of this study may help the industries and policy makers in Pakistan to formulate a sustainable energy policy to support industrial energy efficiency keeping in view the actual existing energy efficiency scenario in the industrial sector.

Keywords: barriers, energy conservation, energy management profile, environment, manufacturing SME's of Pakistan

Procedia PDF Downloads 290
8165 Data Analytics in Energy Management

Authors: Sanjivrao Katakam, Thanumoorthi I., Antony Gerald, Ratan Kulkarni, Shaju Nair

Abstract:

With increasing energy costs and its impact on the business, sustainability today has evolved from a social expectation to an economic imperative. Therefore, finding methods to reduce cost has become a critical directive for Industry leaders. Effective energy management is the only way to cut costs. However, Energy Management has been a challenge because it requires a change in old habits and legacy systems followed for decades. Today exorbitant levels of energy and operational data is being captured and stored by Industries, but they are unable to convert these structured and unstructured data sets into meaningful business intelligence. It must be noted that for quick decisions, organizations must learn to cope with large volumes of operational data in different formats. Energy analytics not only helps in extracting inferences from these data sets, but also is instrumental in transformation from old approaches of energy management to new. This in turn assists in effective decision making for implementation. It is the requirement of organizations to have an established corporate strategy for reducing operational costs through visibility and optimization of energy usage. Energy analytics play a key role in optimization of operations. The paper describes how today energy data analytics is extensively used in different scenarios like reducing operational costs, predicting energy demands, optimizing network efficiency, asset maintenance, improving customer insights and device data insights. The paper also highlights how analytics helps transform insights obtained from energy data into sustainable solutions. The paper utilizes data from an array of segments such as retail, transportation, and water sectors.

Keywords: energy analytics, energy management, operational data, business intelligence, optimization

Procedia PDF Downloads 364
8164 Comparing Energy Labelling of Buildings in Spain

Authors: Carolina Aparicio-Fernández, Alejandro Vilar Abad, Mar Cañada Soriano, Jose-Luis Vivancos

Abstract:

The building sector is responsible for 40% of the total energy consumption in the European Union (EU). Thus, implementation of strategies for quantifying and reducing buildings energy consumption is indispensable for reaching the EU’s carbon neutrality and energy efficiency goals. Each Member State has transposed the European Directives according to its own peculiarities: existing technical legislation, constructive solutions, climatic zones, etc. Therefore, in accordance with the Energy Performance of Buildings Directive, Member States have developed different Energy Performance Certificate schemes, using proposed energy simulation software-tool for each national or regional area. Energy Performance Certificates provide a powerful and comprehensive information to predict, analyze and improve the energy demand of new and existing buildings. Energy simulation software and databases allow a better understanding of the current constructive reality of the European building stock. However, Energy Performance Certificates still have to face several issues to consider them as a reliable and global source of information since different calculation tools are used that do not allow the connection between them. In this document, TRNSYS (TRaNsient System Simulation program) software is used to calculate the energy demand of a building, and it is compared with the energy labeling obtained with Spanish Official software-tools. We demonstrate the possibility of using not official software-tools to calculate the Energy Performance Certificate. Thus, this approach could be used throughout the EU and compare the results in all possible cases proposed by the EU Member States. To implement the simulations, an isolated single-family house with different construction solutions is considered. The results are obtained for every climatic zone of the Spanish Technical Building Code.

Keywords: energy demand, energy performance certificate EPBD, trnsys, buildings

Procedia PDF Downloads 127
8163 Demonstration of Powering up Low Power Wireless Sensor Network by RF Energy Harvesting System

Authors: Lim Teck Beng, Thiha Kyaw, Poh Boon Kiat, Lee Ngai Meng

Abstract:

This work presents discussion on the possibility of merging two emerging technologies in microwave; wireless power transfer (WPT) and RF energy harvesting. The current state of art of the two technologies is discussed and the strength and weakness of the two technologies is also presented. The equivalent circuit of wireless power transfer is modeled and explained as how the range and efficiency can be further increased by controlling certain parameters in the receiver. The different techniques of harvesting the RF energy from the ambient are also extensive study. Last but not least, we demonstrate that a low power wireless sensor network (WSN) can be power up by RF energy harvesting. The WSN is designed to transmit every 3 minutes of information containing the temperature of the environment and also the voltage of the node. One thing worth mention is both the sensors that are used for measurement are also powering up by the RF energy harvesting system.

Keywords: energy harvesting, wireless power transfer, wireless sensor network and magnetic coupled resonator

Procedia PDF Downloads 519
8162 Fire Resistance of High Alumina Cement and Slag Based Ultra High Performance Fibre-Reinforced Cementitious Composites

Authors: A. Q. Sobia, M. S. Hamidah, I. Azmi, S. F. A. Rafeeqi

Abstract:

Fibre-reinforced polymer (FRP) strengthened reinforced concrete (RC) structures are susceptible to intense deterioration when exposed to elevated temperatures, particularly in the incident of fire. FRP has the tendency to lose bond with the substrate due to the low glass transition temperature of epoxy; the key component of FRP matrix.  In the past few decades, various types of high performance cementitious composites (HPCC) were explored for the protection of RC structural members against elevated temperature. However, there is an inadequate information on the influence of elevated temperature on the ultra high performance fibre-reinforced cementitious composites (UHPFRCC) containing ground granulated blast furnace slag (GGBS) as a replacement of high alumina cement (HAC) in conjunction with hybrid fibres (basalt and polypropylene fibres), which could be a prospective fire resisting material for the structural components. The influence of elevated temperatures on the compressive as well as flexural strength of UHPFRCC, made of HAC-GGBS and hybrid fibres, were examined in this study. Besides control sample (without fibres), three other samples, containing 0.5%, 1% and 1.5% of basalt fibres by total weight of mix and 1 kg/m3 of polypropylene fibres, were prepared and tested. Another mix was also prepared with only 1 kg/m3 of polypropylene fibres. Each of the samples were retained at ambient temperature as well as exposed to 400, 700 and 1000 °C followed by testing after 28 and 56 days of conventional curing. Investigation of results disclosed that the use of hybrid fibres significantly helped to improve the ambient temperature compressive and flexural strength of UHPFRCC, which was found to be 80 and 14.3 MPa respectively. However, the optimum residual compressive strength was marked by UHPFRCC-CP (with polypropylene fibres only), equally after both curing days (28 and 56 days), i.e. 41%. In addition, the utmost residual flexural strength, after 28 and 56 days of curing, was marked by UHPFRCC– CP and UHPFRCC– CB2 (1 kg/m3 of PP fibres + 1% of basalt fibres) i.e. 39% and 48.5% respectively.

Keywords: fibre reinforced polymer materials (FRP), ground granulated blast furnace slag (GGBS), high-alumina cement, hybrid, fibres

Procedia PDF Downloads 287
8161 A Systematic Review on Energy Performance Gap in Buildings

Authors: Derya Yilmaz, Ali Murat Tanyer, Irem Dikmen Toker

Abstract:

There are many studies addressing the discrepancy between the planned and actual performance of buildings, which is defined as the energy performance gap. The difference between expected and actual project results usually depends on risky events and how these risks are managed throughout the project. This study presents a systematic review of the literature about the energy performance gap in buildings. First of all, a brief history and definitions of the energy performance gap are given. The initial search string is applied on Scopus and Web of Science databases. Research activities in years, main research interests, the co-occurrence of keywords based on average publication year are given. Scientometric analyses are conducted using Vosviewer. After the review, the papers are grouped to thematic relevance. This research will create a basis for analyzing the research focus, methods, limitations, and research gaps of key papers in the field.

Keywords: energy performance gap, discrepancy, energy efficient buildings, green buildings

Procedia PDF Downloads 148
8160 Conventional and Hybrid Network Energy Systems Optimization for Canadian Community

Authors: Mohamed Ghorab

Abstract:

Local generated and distributed system for thermal and electrical energy is sighted in the near future to reduce transmission losses instead of the centralized system. Distributed Energy Resources (DER) is designed at different sizes (small and medium) and it is incorporated in energy distribution between the hubs. The energy generated from each technology at each hub should meet the local energy demands. Economic and environmental enhancement can be achieved when there are interaction and energy exchange between the hubs. Network energy system and CO2 optimization between different six hubs presented Canadian community level are investigated in this study. Three different scenarios of technology systems are studied to meet both thermal and electrical demand loads for the six hubs. The conventional system is used as the first technology system and a reference case study. The conventional system includes boiler to provide the thermal energy, but the electrical energy is imported from the utility grid. The second technology system includes combined heat and power (CHP) system to meet the thermal demand loads and part of the electrical demand load. The third scenario has integration systems of CHP and Organic Rankine Cycle (ORC) where the thermal waste energy from the CHP system is used by ORC to generate electricity. General Algebraic Modeling System (GAMS) is used to model DER system optimization based on energy economics and CO2 emission analyses. The results are compared with the conventional energy system. The results show that scenarios 2 and 3 provide an annual total cost saving of 21.3% and 32.3 %, respectively compared to the conventional system (scenario 1). Additionally, Scenario 3 (CHP & ORC systems) provides 32.5% saving in CO2 emission compared to conventional system subsequent case 2 (CHP system) with a value of 9.3%.  

Keywords: distributed energy resources, network energy system, optimization, microgeneration system

Procedia PDF Downloads 190
8159 Evaluating the Impact of Replacement Policies on the Cache Performance and Energy Consumption in Different Multicore Embedded Systems

Authors: Sajjad Rostami-Sani, Mojtaba Valinataj, Amir-Hossein Khojir-Angasi

Abstract:

The cache has an important role in the reduction of access delay between a processor and memory in high-performance embedded systems. In these systems, the energy consumption is one of the most important concerns, and it will become more important with smaller processor feature sizes and higher frequencies. Meanwhile, the cache system dissipates a significant portion of energy compared to the other components of a processor. There are some elements that can affect the energy consumption of the cache such as replacement policy and degree of associativity. Due to these points, it can be inferred that selecting an appropriate configuration for the cache is a crucial part of designing a system. In this paper, we investigate the effect of different cache replacement policies on both cache’s performance and energy consumption. Furthermore, the impact of different Instruction Set Architectures (ISAs) on cache’s performance and energy consumption has been investigated.

Keywords: energy consumption, replacement policy, instruction set architecture, multicore processor

Procedia PDF Downloads 154
8158 Energy Consumption Models for Electric Vehicles: Survey and Proposal of a More Realistic Model

Authors: I. Sagaama, A. Kechiche, W. Trojet, F. Kamoun

Abstract:

Replacing combustion engine vehicles by electric vehicles (EVs) is a major step in recent years due to their potential benefits. Battery autonomy and charging processes are still a big issue for that kind of vehicles. Therefore, reducing the energy consumption of electric vehicles becomes a necessity. Many researches target introducing recent information and communication technologies in EVs in order to propose reducing energy consumption services. Evaluation of realistic scenarios is a big challenge nowadays. In this paper, we will elaborate a state of the art of different proposed energy consumption models in the literature, then we will present a comparative study of these models, finally, we will extend previous works in order to propose an accurate and realistic energy model for calculating instantaneous power consumption of electric vehicles.

Keywords: electric vehicle, vehicular networks, energy models, traffic simulation

Procedia PDF Downloads 370
8157 A Study on Energy Efficiency of Vertical Water Treatment System with DC Power Supply

Authors: Young-Kwan Choi, Gang-Wook Shin, Sung-Taek Hong

Abstract:

Water supply system consumes large amount of power load during water treatment and transportation of purified water. Many energy conserving high efficiency materials such as DC motor and LED light have recently been introduced to water supply system for energy conservation. This paper performed empirical analysis on BLDC, AC motors, and comparatively analyzed the change in power according to DC power supply ratio in order to conserve energy of a next-generation water treatment system called vertical water treatment system. In addition, a DC distribution system linked with photovoltaic generation was simulated to analyze the energy conserving effect of DC load.

Keywords: vertical water treatment system, DC power supply, energy efficiency, BLDC

Procedia PDF Downloads 503
8156 Critical Success Factors for Successful Energy Management Implementation towards Sustainability in Malaysian Universities

Authors: A. Abdullah Saleh, A. H. Mohammed, M. N. Abdullah

Abstract:

Universities are increasingly consuming energy to support various activities. A large population of staff and students in Malaysian universities has led to excessive energy consumption which directly gives an impact to the environment. The key question then ascended "How well is an energy management (EM) been practiced in universities without taking the Critical Success Factors (CSFs) into consideration to ensure the management of university achieves the goals in reducing energy consumption". Review of past literature is carried out to establish CSFs for EM best practices. Thus, this paper highlighted the CSFs which have to be focused on by management of university to successfully measure the EM implementation and its performance. At the end of this paper, a theoretical framework is developed for EM success factors towards a sustainable university.

Keywords: critical success factors, energy management, sustainability, Malaysian universities

Procedia PDF Downloads 476
8155 Application of Relative Regional Total Energy in Rotary Drums with Axial Segregation Characteristics

Authors: Qiuhua Miao, Peng Huang, Yifei Ding

Abstract:

Particles with different properties tend to be unevenly distributed along an axial direction of the rotating drum, which is usually ignored. Therefore, it is important to study the relationship between axial segregation characteristics and particle crushing efficiency in longer drums. In this paper, a relative area total energy (RRTE) index is proposed, which aims to evaluate the overall crushing energy distribution characteristics. Based on numerical simulation verification, the proposed RRTE index can reflect the overall grinding effect more comprehensively, clearly representing crushing energy distribution in different drum areas. Furthermore, the proposed method is applied to the relation between axial segregation and crushing energy in drums. Compared with the radial section, the collision loss energy of the axial section can better reflect the overall crushing effect in long drums. The axial segregation characteristics directly affect the total energy distribution between medium and abrasive, reducing overall crushing efficiency. Therefore, the axial segregation characteristics should be avoided as much as possible in the crushing of the long rotary drum.

Keywords: relative regional total energy, crushing energy, axial segregation characteristics, rotary drum

Procedia PDF Downloads 90
8154 A Particle Swarm Optimal Control Method for DC Motor by Considering Energy Consumption

Authors: Yingjie Zhang, Ming Li, Ying Zhang, Jing Zhang, Zuolei Hu

Abstract:

In the actual start-up process of DC motors, the DC drive system often faces a conflict between energy consumption and acceleration performance. To resolve the conflict, this paper proposes a comprehensive performance index that energy consumption index is added on the basis of classical control performance index in the DC motor starting process. Taking the comprehensive performance index as the cost function, particle swarm optimization algorithm is designed to optimize the comprehensive performance. Then it conducts simulations on the optimization of the comprehensive performance of the DC motor on condition that the weight coefficient of the energy consumption index should be properly designed. The simulation results show that as the weight of energy consumption increased, the energy efficiency was significantly improved at the expense of a slight sacrifice of fastness indicators with the comprehensive performance index method. The energy efficiency was increased from 63.18% to 68.48% and the response time reduced from 0.2875s to 0.1736s simultaneously compared with traditional proportion integrals differential controller in energy saving.

Keywords: comprehensive performance index, energy consumption, acceleration performance, particle swarm optimal control

Procedia PDF Downloads 163
8153 H∞ Fuzzy Integral Power Control for DFIG Wind Energy System

Authors: N. Chayaopas, W. Assawinchaichote

Abstract:

In order to maximize energy capturing from wind energy, controlling the doubly fed induction generator to have optimal power from the wind, generator speed and output electrical power control in wind energy system have a great importance due to the nonlinear behavior of wind velocities. In this paper purposes the design of a control scheme is developed for power control of wind energy system via H∞ fuzzy integral controller. Firstly, the nonlinear system is represented in term of a TS fuzzy control design via linear matrix inequality approach to find the optimal controller to have an H∞ performance are derived. The proposed control method extract the maximum energy from the wind and overcome the nonlinearity and disturbances problems of wind energy system which give good tracking performance and high efficiency power output of the DFIG.

Keywords: doubly fed induction generator, H-infinity fuzzy integral control, linear matrix inequality, wind energy system

Procedia PDF Downloads 347
8152 Conflicts and Similarities among Energy Law, Environmental Law and Economic Aspects

Authors: Bahareh Arghand, Seyed Abbas Poorhashemi, Ramin Roshandel

Abstract:

Nowadays, Economic growth and the increasing use of fossil fuel have caused major damages to environment. Therefore, international law has tried to codify the rules and regulations and identify legal principles to decrease conflict of interests between energy law and environmental law. The open relationship between energy consumption and the law of nature has been ignored for years, because the focus of energy law has been on an affordable price of a reliable supply of energy; while the focus of environmental law was on protection of the nature. In fact, the legal and overall policies of energy are based on Sic Omnes and inter part for governments whereas environmental law is based on common interests and Erga Omnes. The relationship between energy law, environmental law and economic aspects is multilateral, complex and important. Moreover, they influence each other. There are similarities in the triangle of energy, environment and economic aspects and in some cases there are conflict of interest but their conflicts are in goals not in practice and their legal jurisdiction is in international law. The development of national and international rules and regulations relevant to energy-environment has been done by separate sectors, whereas sustainable development principle, especially in the economic sector, requires environmental considerations. It is an important turning point to integrate and decrease conflict of interest among energy law, environmental law and economic aspects. The present study examines existing legal principles on energy and the environment and identifies the similarities and conflicts based on the descriptive-analytic study. The purpose of investigating these legal principles is to integrate and decrease conflict of interest between energy law and environmental law.

Keywords: energy law, environmental law, erga omnes, sustainable development

Procedia PDF Downloads 383
8151 Properties of Rhizophora Charcoal for Product Design

Authors: Tanutpong Phriwanrat

Abstract:

This research investigated the properties of Rhizophora charcoal for product design on 3 aspects: electrical conductor, impurity absorption, and fresh fruit shelf life. After the study, the properties of Rhizophora charcoal were applied to produce local product model at Ban Yisarn, Ampawa District, Samudsongkram Province which can add value to the Rhizophora charcoal as one of the OTOP (One-Tambon-One product). The results showed that the Rhizophora charcoal is not an electrical conductor but good liquid impurity absorber and it can extend fresh fruit shelf life.

Keywords: design, product design, properties of rhizophora, rhizophora charcoal

Procedia PDF Downloads 401