Search results for: VSS (Vector Space Similarity)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5299

Search results for: VSS (Vector Space Similarity)

4819 Discretization of Cuckoo Optimization Algorithm for Solving Quadratic Assignment Problems

Authors: Elham Kazemi

Abstract:

Quadratic Assignment Problem (QAP) is one the combinatorial optimization problems about which research has been done in many companies for allocating some facilities to some locations. The issue of particular importance in this process is the costs of this allocation and the attempt in this problem is to minimize this group of costs. Since the QAP’s are from NP-hard problem, they cannot be solved by exact solution methods. Cuckoo Optimization Algorithm is a Meta-heuristicmethod which has higher capability to find the global optimal points. It is an algorithm which is basically raised to search a continuous space. The Quadratic Assignment Problem is the issue which can be solved in the discrete space, thus the standard arithmetic operators of Cuckoo Optimization Algorithm need to be redefined on the discrete space in order to apply the Cuckoo Optimization Algorithm on the discrete searching space. This paper represents the way of discretizing the Cuckoo optimization algorithm for solving the quadratic assignment problem.

Keywords: Quadratic Assignment Problem (QAP), Discrete Cuckoo Optimization Algorithm (DCOA), meta-heuristic algorithms, optimization algorithms

Procedia PDF Downloads 517
4818 Methods of Livable Goal-Oriented Master Urban Design: A Case Study on Zibo City

Authors: Xiaoping Zhang, Fengying Yan

Abstract:

The implementation of the 'Urban Design Management Measures' requires that the master urban design should aim at creating a livable urban space. However, to our best knowledge, the existing researches and practices of master urban design not only focus less on the livable space but also face a number of problems such as paying more attention to the image of the city, ignoring the people-oriented and lacking dynamic continuity. In order to make the master urban design can better guide the construction of city. Firstly, the paper proposes the livable city hierarchy system to meet the needs of different groups of people and then constructs the framework of livable goal-oriented master urban design based on the theory of livable content and the ideological origin of people-oriented. Secondly, the paper takes the master urban design practice of Zibo as a sample and puts forward the design strategy of strengthening the pattern, improve the quality of space, shape the feature, and establish a series of action plans based on the strategy of urban space development. Finally, the paper explores the method system of livable goal-oriented master urban design from the aspects of safety pattern, morphology pattern, neighborhood scale, open space, street space, public interface, style feature, public participation and action plans.

Keywords: livable, master urban design, public participation, zibo city

Procedia PDF Downloads 316
4817 Revisiting the Surgical Approaches to Decompression in Quadrangular Space Syndrome: A Cadaveric Study

Authors: Sundip Charmode, Simmi Mehra, Sudhir Kushwaha, Shalom Philip, Pratik Amrutiya, Ranjna Jangal

Abstract:

Introduction: Quadrangular space syndrome involves compression of the axillary nerve and posterior circumflex humeral artery and its management in few cases, requires surgical decompression. The current study reviews the surgical approaches used in the decompression of neurovascular structures and presents our reflections and recommendations. Methods: Four human cadavers, in the Department of Anatomy were used for dissection of the Axillae and the Scapular region by the senior residents of the Department of Anatomy and Department of Orthopedics, who dissected quadrangular space in the eight upper limbs, using anterior and posterior surgical approaches. Observations: Posterior approach to identify the quadrangular space and secure its contents was recognized as the easier and much quicker method by both the Anatomy and Orthopedic residents, but it may result in increased postoperative morbidity. Whereas the anterior (Delto-pectoral) approach involves more skill but reduces postoperative morbidity. Conclusions: Anterior (Delto-pectoral) approach with suggested modifications can prove as an effective method in surgical decompression of quadrangular space syndrome. The authors suggest more cadaveric studies to facilitate anatomists and surgeons with the opportunities to practice and evaluate older and newer surgical approaches.

Keywords: surgical approach, anatomical approach, decompression, axillary nerve, quadrangular space

Procedia PDF Downloads 173
4816 Exploring the Charm of Chongqing City based on the Regional Characteristics of Mountain Walking Space: A Case Study of Yuzhong Peninsula

Authors: Liu Danping

Abstract:

Walking space has very important historical and cultural value in ancient and even modern urban development. As far as the footpath itself is concerned, it reflects the spatial organization mode and traditional architectural construction characteristics of mountain cities. In terms of the spatial nature of streets, traditional streets contain the history of urban development and the most primitive urban life. The slow walking speed allows people to carefully perceive the space and scenery along the way. The real city life in the streets often makes people feel the cultural connotation and unique charm of the city. According to the regional characteristics of pedestrian traffic in the main urban area of Chongqing, the charm of chongqing is discussed. Based on the study of chongqing characteristic walking space elements, this paper summarizes the characteristics of Chongqing urban walking traffic, analyzes the existing problems of mountain city walking traffic, and takes Yuzhong Peninsula as an example to analyze the charm promotion strategy of urban walking traffic.

Keywords: mountain city, walking space, urban charm, urban renewal, regional culture

Procedia PDF Downloads 93
4815 Parking Space Detection and Trajectory Tracking Control for Vehicle Auto-Parking

Authors: Shiuh-Jer Huang, Yu-Sheng Hsu

Abstract:

On-board available parking space detecting system, parking trajectory planning and tracking control mechanism are the key components of vehicle backward auto-parking system. Firstly, pair of ultrasonic sensors is installed on each side of vehicle body surface to detect the relative distance between ego-car and surrounding obstacle. The dimension of a found empty space can be calculated based on vehicle speed and the time history of ultrasonic sensor detecting information. This result can be used for constructing the 2D vehicle environmental map and available parking type judgment. Finally, the auto-parking controller executes the on-line optimal parking trajectory planning based on this 2D environmental map, and monitors the real-time vehicle parking trajectory tracking control. This low cost auto-parking system was tested on a model car.

Keywords: vehicle auto-parking, parking space detection, parking path tracking control, intelligent fuzzy controller

Procedia PDF Downloads 244
4814 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection

Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa

Abstract:

Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.

Keywords: classification, airborne LiDAR, parameters selection, support vector machine

Procedia PDF Downloads 147
4813 Gender Diversity Practices in Talent Management: An Exploratory Study in the Space Industry in Luxembourg

Authors: K. Usanova

Abstract:

This study contributes to the conceptual and empirical understanding of how gender diversity management (GDM) is integrated into talent management (TM). Following the grounded theory, we interviewed 40 HR managers and talents from the space industry in Luxembourg. We provide a nuanced picture of what attitude on the GDM in TM organizations have, what strategies and practices they conduct, and how they differ from each other. Based on these differences, we developed three types of GDM integration to TM and explained the talents’ view on this issue. To the author's best knowledge, this study is the first empirical investigation of GDM in TM in the space industry that integrates both the TM executives' and TM receivers' views on gender equality in TM.

Keywords: gender diversity management, high-technology industry, human resource management, talent management

Procedia PDF Downloads 133
4812 Methanation Catalyst for Low CO Concentration

Authors: Hong-Fang Ma, Cong-yi He, Hai-Tao Zhang, Wei-Yong Ying, Ding-Ye Fang

Abstract:

A Ni-based catalyst supported by γ-Al2O3 was prepared by impregnation method, and the catalyst was used in a low CO and CO2 concentration methanation system. The effect of temperature, pressure and space velocity on the methanation reaction was investigated in an experimental fixed-bed reactor. The methanation reaction was operated at the conditions of 190-240°C, 3000-24000ml•g-1•h-1 and 1.5-3.5MPa. The results show that temperature and space velocity play important role on the reaction. With the increase of reaction temperature the CO and CO2 conversion increase and the selectivity of CH4 increase. And with the increase of the space velocity the conversion of CO and CO2 and the selectivity of CH4 decrease sharply.

Keywords: coke oven gas, methanntion, catalyst, fixed bed, performance

Procedia PDF Downloads 401
4811 Unsupervised Classification of DNA Barcodes Species Using Multi-Library Wavelet Networks

Authors: Abdesselem Dakhli, Wajdi Bellil, Chokri Ben Amar

Abstract:

DNA Barcode, a short mitochondrial DNA fragment, made up of three subunits; a phosphate group, sugar and nucleic bases (A, T, C, and G). They provide good sources of information needed to classify living species. Such intuition has been confirmed by many experimental results. Species classification with DNA Barcode sequences has been studied by several researchers. The classification problem assigns unknown species to known ones by analyzing their Barcode. This task has to be supported with reliable methods and algorithms. To analyze species regions or entire genomes, it becomes necessary to use similarity sequence methods. A large set of sequences can be simultaneously compared using Multiple Sequence Alignment which is known to be NP-complete. To make this type of analysis feasible, heuristics, like progressive alignment, have been developed. Another tool for similarity search against a database of sequences is BLAST, which outputs shorter regions of high similarity between a query sequence and matched sequences in the database. However, all these methods are still computationally very expensive and require significant computational infrastructure. Our goal is to build predictive models that are highly accurate and interpretable. This method permits to avoid the complex problem of form and structure in different classes of organisms. On empirical data and their classification performances are compared with other methods. Our system consists of three phases. The first is called transformation, which is composed of three steps; Electron-Ion Interaction Pseudopotential (EIIP) for the codification of DNA Barcodes, Fourier Transform and Power Spectrum Signal Processing. The second is called approximation, which is empowered by the use of Multi Llibrary Wavelet Neural Networks (MLWNN).The third is called the classification of DNA Barcodes, which is realized by applying the algorithm of hierarchical classification.

Keywords: DNA barcode, electron-ion interaction pseudopotential, Multi Library Wavelet Neural Networks (MLWNN)

Procedia PDF Downloads 317
4810 Direct Power Control Applied on 5-Level Diode Clamped Inverter Powered by a Renewable Energy Source

Authors: A. Elnady

Abstract:

This paper presents an improved Direct Power Control (DPC) scheme applied to the multilevel inverter that forms a Distributed Generation Unit (DGU). This paper demonstrates the performance of active and reactive power injected by the DGU to the smart grid. The DPC is traditionally operated by the hysteresis controller with the Space Vector Modulation (SVM) which is applied on the 2-level inverters or 3-level inverters. In this paper, the DPC is operated by the PI controller with the Phase-Disposition Pulse Width Modulation (PD-PWM) applied to the 5-level diode clamped inverter. The new combination of the DPC, PI controller, PD-PWM and multilevel inverter proves that its performance is much better than the conventional hysteresis-SVM based DPC. Simulations results have been presented to validate the performance of the suggested control scheme in the grid-connected mode.

Keywords: direct power control, PI controller, PD-PWM, and power control

Procedia PDF Downloads 240
4809 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine

Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li

Abstract:

Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.

Keywords: machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation

Procedia PDF Downloads 235
4808 Data Clustering Algorithm Based on Multi-Objective Periodic Bacterial Foraging Optimization with Two Learning Archives

Authors: Chen Guo, Heng Tang, Ben Niu

Abstract:

Clustering splits objects into different groups based on similarity, making the objects have higher similarity in the same group and lower similarity in different groups. Thus, clustering can be treated as an optimization problem to maximize the intra-cluster similarity or inter-cluster dissimilarity. In real-world applications, the datasets often have some complex characteristics: sparse, overlap, high dimensionality, etc. When facing these datasets, simultaneously optimizing two or more objectives can obtain better clustering results than optimizing one objective. However, except for the objectives weighting methods, traditional clustering approaches have difficulty in solving multi-objective data clustering problems. Due to this, evolutionary multi-objective optimization algorithms are investigated by researchers to optimize multiple clustering objectives. In this paper, the Data Clustering algorithm based on Multi-objective Periodic Bacterial Foraging Optimization with two Learning Archives (DC-MPBFOLA) is proposed. Specifically, first, to reduce the high computing complexity of the original BFO, periodic BFO is employed as the basic algorithmic framework. Then transfer the periodic BFO into a multi-objective type. Second, two learning strategies are proposed based on the two learning archives to guide the bacterial swarm to move in a better direction. On the one hand, the global best is selected from the global learning archive according to the convergence index and diversity index. On the other hand, the personal best is selected from the personal learning archive according to the sum of weighted objectives. According to the aforementioned learning strategies, a chemotaxis operation is designed. Third, an elite learning strategy is designed to provide fresh power to the objects in two learning archives. When the objects in these two archives do not change for two consecutive times, randomly initializing one dimension of objects can prevent the proposed algorithm from falling into local optima. Fourth, to validate the performance of the proposed algorithm, DC-MPBFOLA is compared with four state-of-art evolutionary multi-objective optimization algorithms and one classical clustering algorithm on evaluation indexes of datasets. To further verify the effectiveness and feasibility of designed strategies in DC-MPBFOLA, variants of DC-MPBFOLA are also proposed. Experimental results demonstrate that DC-MPBFOLA outperforms its competitors regarding all evaluation indexes and clustering partitions. These results also indicate that the designed strategies positively influence the performance improvement of the original BFO.

Keywords: data clustering, multi-objective optimization, bacterial foraging optimization, learning archives

Procedia PDF Downloads 139
4807 Comparative Analysis of Spectral Estimation Methods for Brain-Computer Interfaces

Authors: Rafik Djemili, Hocine Bourouba, M. C. Amara Korba

Abstract:

In this paper, we present a method in order to classify EEG signals for Brain-Computer Interfaces (BCI). EEG signals are first processed by means of spectral estimation methods to derive reliable features before classification step. Spectral estimation methods used are standard periodogram and the periodogram calculated by the Welch method; both methods are compared with Logarithm of Band Power (logBP) features. In the method proposed, we apply Linear Discriminant Analysis (LDA) followed by Support Vector Machine (SVM). Classification accuracy reached could be as high as 85%, which proves the effectiveness of classification of EEG signals based BCI using spectral methods.

Keywords: brain-computer interface, motor imagery, electroencephalogram, linear discriminant analysis, support vector machine

Procedia PDF Downloads 499
4806 Preliminary Prospecting on the Distribution of the Disease of Citrus Tristeza Orchards in the Province of Chlef

Authors: Ibrahim Djelloul Berkane

Abstract:

A survey was conducted to assess the presence of the virus in Citrus tristeza one of the main citrus regions of Algeria, namely the Chlef region, using the technique of Direct Tissue Print Immunoprinting Assay (DTBIA) and the Double Sandwich ELISA antibodies. A nursery citrus, lumber yards, and commercial orchards, which are the main varieties cultivated citrus were subjected to samples collected samples for laboratory analysis. 0.91% of the plants tested orchards were infected with CTV, while no positive case was detected at the nursery the yard, however, it is reported that an alarming rate of 10,5% of orchards tested at the common Chettia were infected with tristeza virus. The investigation was launched to identify the vector species tristeza revealed the presence of a vector is important Aphis gossypii.

Keywords: aphis, chlef, citrus, DAS-ELISA, DTBIA, tristeza

Procedia PDF Downloads 303
4805 Green Open Space in Sustainable Housing and Islamic Values Perspectives – Case Study Kampung Kauman Malang

Authors: Nunik Junara, Sugeng Triyadi

Abstract:

Sustainable Housing in Islamic perspective, can be defined as a multi-dimensional process that seeks to achieve a balance between economic and socio-cultural aspects on the side, and environmental aspect on the other. There are many quotes verses in the Quran and Hadith that leads to the belief that Islam as a Rahmatan lil Alamin, where men are encouraged to act wisely in treating nature and all living things in it. One aspect of the natural environment that closed to human is plants. In the settlement, the availability of plants or also called green open space is highly recommended. The availability of green open space in the neighborhood, both the public and private green open spaces is expected to reduce the effects of global warming that has engulfed various parts of the world. Green open space that can be viewed from the angle of eco-aestetic and eco-medical in sustainable architecture, is expected to increase the temperature and provide aesthetic impression to the surrounding environment. This paper attempts to discuss the principles of Islamic values related to the natural environment as a major resource for sustainability. This paper also aims to raise awareness of the importance of the theme of sustainability in settlements, especially in big cities. Analysis of the availability of green open space in kampung Kauman Malang is one example of the effort to apply the principles of sustainable housing.

Keywords: green open space, sustainable housing, Islamic values, Kampung Kauman Malang

Procedia PDF Downloads 411
4804 A Nonlinear Feature Selection Method for Hyperspectral Image Classification

Authors: Pei-Jyun Hsieh, Cheng-Hsuan Li, Bor-Chen Kuo

Abstract:

For hyperspectral image classification, feature reduction is an important pre-processing for avoiding the Hughes phenomena due to the difficulty for collecting training samples. Hence, lots of researches developed feature selection methods such as F-score, HSIC (Hilbert-Schmidt Independence Criterion), and etc., to improve hyperspectral image classification. However, most of them only consider the class separability in the original space, i.e., a linear class separability. In this study, we proposed a nonlinear class separability measure based on kernel trick for selecting an appropriate feature subset. The proposed nonlinear class separability was formed by a generalized RBF kernel with different bandwidths with respect to different features. Moreover, it considered the within-class separability and the between-class separability. A genetic algorithm was applied to tune these bandwidths such that the smallest with-class separability and the largest between-class separability simultaneously. This indicates the corresponding feature space is more suitable for classification. In addition, the corresponding nonlinear classification boundary can separate classes very well. These optimal bandwidths also show the importance of bands for hyperspectral image classification. The reciprocals of these bandwidths can be viewed as weights of bands. The smaller bandwidth, the larger weight of the band, and the more importance for classification. Hence, the descending order of the reciprocals of the bands gives an order for selecting the appropriate feature subsets. In the experiments, three hyperspectral image data sets, the Indian Pine Site data set, the PAVIA data set, and the Salinas A data set, were used to demonstrate the selected feature subsets by the proposed nonlinear feature selection method are more appropriate for hyperspectral image classification. Only ten percent of samples were randomly selected to form the training dataset. All non-background samples were used to form the testing dataset. The support vector machine was applied to classify these testing samples based on selected feature subsets. According to the experiments on the Indian Pine Site data set with 220 bands, the highest accuracies by applying the proposed method, F-score, and HSIC are 0.8795, 0.8795, and 0.87404, respectively. However, the proposed method selects 158 features. F-score and HSIC select 168 features and 217 features, respectively. Moreover, the classification accuracies increase dramatically only using first few features. The classification accuracies with respect to feature subsets of 10 features, 20 features, 50 features, and 110 features are 0.69587, 0.7348, 0.79217, and 0.84164, respectively. Furthermore, only using half selected features (110 features) of the proposed method, the corresponding classification accuracy (0.84168) is approximate to the highest classification accuracy, 0.8795. For other two hyperspectral image data sets, the PAVIA data set and Salinas A data set, we can obtain the similar results. These results illustrate our proposed method can efficiently find feature subsets to improve hyperspectral image classification. One can apply the proposed method to determine the suitable feature subset first according to specific purposes. Then researchers can only use the corresponding sensors to obtain the hyperspectral image and classify the samples. This can not only improve the classification performance but also reduce the cost for obtaining hyperspectral images.

Keywords: hyperspectral image classification, nonlinear feature selection, kernel trick, support vector machine

Procedia PDF Downloads 263
4803 Numerical Analysis of 3D Electromagnetic Fields in Annular Induction Plasma

Authors: Abderazak Guettaf

Abstract:

The mathematical models of the physical phenomena interacting in inductive plasma were described by the physics equations of the continuous mediums. A 3D model based on magnetic potential vector and electric scalar potential (A, V) formulation is used. The finished volume method is applied to electromagnetic equation, to obtain the field distribution inside the plasma. The numerical results of the method developed on a basic model designed starting from a real three-dimensional model were exposed. From the mathematical model 3D spreading assumptions and boundary conditions, we evaluated the electric field in the load and we have developed a numerical code made under the MATLAB environment, all verifying the effectiveness and validity of this code.

Keywords: electric field, 3D magnetic potential vector and electric scalar potential (A, V) formulation, finished volumes, annular plasma

Procedia PDF Downloads 491
4802 Robustness of the Fuzzy Adaptive Speed Control of a Multi-Phase Asynchronous Machine

Authors: Bessaad Taieb, Benbouali Abderrahmen

Abstract:

Fuzzy controllers are a powerful tool for controlling complex processes. However, its robustness capacity remains moderately limited because it loses its property for large ranges of parametric variations. In this paper, the proposed control method is designed, based on a fuzzy adaptive controller used as a remedy for this problem. For increase the robustness of the vector control and to maintain the performance of the five-phase asynchronous machine despite the presence of disturbances (variation of rotor resistance, rotor inertia variations, sudden variations in the load etc.), by applying the method of behaviour model control (BMC). The results of simulation show that the fuzzy adaptive control provides best performance and has a more robustness as the fuzzy (FLC) and as a conventional (PI) controller.

Keywords: fuzzy adaptive control, behaviour model control, vector control, five-phase asynchronous machine

Procedia PDF Downloads 95
4801 Zonal and Sequential Extraction Design for Large Flat Space to Achieve Perpetual Tenability

Authors: Mingjun Xu, Man Pun Wan

Abstract:

This study proposed an effective smoke control strategy for the large flat space with a low ceiling to achieve the requirement of perpetual tenability. For the large flat space with a low ceiling, the depth of the smoke reservoir is very shallow, and it is difficult to perpetually constrain the smoke within a limited space. A series of numerical tests were conducted to determine the smoke strategy. A zonal design i.e., the fire zone and two adjacent zones was proposed and validated to be effective in controlling smoke. Once a fire happens in a compartment space, the Engineered Smoke Control (ESC) system will be activated in three zones i.e., the fire zone, in which the fire happened, and two adjacent zones. The smoke can be perpetually constrained within the three smoke zones. To further improve the extraction efficiency, sequential activation of the ESC system within the 3 zones turned out to be more efficient than simultaneous activation. Additionally, the proposed zonal and sequential extraction design can reduce the mechanical extraction flow rate by up to 40.7 % as compared to the conventional method, which is much more economical than that of the conventional method.

Keywords: performance-based design, perpetual tenability, smoke control, fire plume

Procedia PDF Downloads 74
4800 Agegraphic Dark Energy with GUP

Authors: H. R. Fazlollahi

Abstract:

Dark Energy origin is unknown and so describing this mysterious component in large scale structure needs to manipulate our theories in general relativity. Although in most models, dark energy arises from extra terms through modifying Einstein-Hilbert action, maybe its origin traces back to fundamental aspects of ground energy of space-time given in quantum mechanics. Hence, diluting space-time in general relativity with quantum mechanics properties leads to the Karolyhazy relation corresponding energy density of quantum fluctuations of space-time. Through generalized uncertainty principle and an eye to Karolyhazy approach in this study we extend energy density of quantum fluctuations of space-time. Also, the application of this idea is considered in late time evolution and we have shown how extra term in generalized uncertainty principle plays as a plausible interaction term role in suggested model.

Keywords: generalized uncertainty principle, karolyhazy approach, agegraphic dark energy, cosmology

Procedia PDF Downloads 72
4799 Analyzing Extended Reality Technologies for Human Space Exploration

Authors: Morgan Kuligowski, Marientina Gotsis

Abstract:

Extended reality (XR) technologies share an intertwined history with spaceflight and innovation. New advancements in XR technologies offer expanding possibilities to advance the future of human space exploration with increased crew autonomy. This paper seeks to identify implementation gaps between existing and proposed XR space applications to inform future mission planning. A review of virtual reality, augmented reality, and mixed reality technologies implemented aboard the International Space Station revealed a total of 16 flown investigations. A secondary set of ground-tested XR human spaceflight applications were systematically retrieved from literature sources. The two sets of XR technologies, those flown and those existing in the literature were analyzed to characterize application domains and device types. Comparisons between these groups revealed untapped application areas for XR to support crew psychological health, in-flight training, and extravehicular operations on future flights. To fill these roles, integrating XR technologies with advancements in biometric sensors and machine learning tools is expected to transform crew capabilities.

Keywords: augmented reality, extended reality, international space station, mixed reality, virtual reality

Procedia PDF Downloads 216
4798 Detectability Analysis of Typical Aerial Targets from Space-Based Platforms

Authors: Yin Zhang, Kai Qiao, Xiyang Zhi, Jinnan Gong, Jianming Hu

Abstract:

In order to achieve effective detection of aerial targets over long distances from space-based platforms, the mechanism of interaction between the radiation characteristics of the aerial targets and the complex scene environment including the sunlight conditions, underlying surfaces and the atmosphere are analyzed. A large simulated database of space-based radiance images is constructed considering several typical aerial targets, target working modes (flight velocity and altitude), illumination and observation angles, background types (cloud, ocean, and urban areas) and sensor spectrums ranging from visible to thermal infrared. The target detectability is characterized by the signal-to-clutter ratio (SCR) extracted from the images. The influence laws of the target detectability are discussed under different detection bands and instantaneous fields of view (IFOV). Furthermore, the optimal center wavelengths and widths of the detection bands are suggested, and the minimum IFOV requirements are proposed. The research can provide theoretical support and scientific guidance for the design of space-based detection systems and on-board information processing algorithms.

Keywords: space-based detection, aerial targets, detectability analysis, scene environment

Procedia PDF Downloads 144
4797 Distribution of Spotted Fever Group in Ixodid Ticks, Domestic Cattle and Buffalos of Faisalabad District, Punjab, Pakistan

Authors: Muhammad Sohail Sajid, Qurat-ul-Ain, Zafar Iqbal, Muhammad Nisar Khan, Asma Kausar, Adil Ejaz

Abstract:

Rickettsiosis, caused by a Spotted Fever Group Rickettsiae (SFGR), is considered as an emerging infectious disease from public and veterinary perspective. The present study reports distribution of SFGR in the host (buffalo and cattle) and vector (ticks) population determined through gene specific amplification through PCR targeting outer membrane protein (ompA). Tick and blood samples were collected using standard protocols through convenient sampling from district Faisalabad. Ticks were dissected to extract salivary glands (SG). Blood and tick SG pools were subjected to DNA extraction and amplification of ompA using PCR. Overall prevalence of SFGR was reported as 21.5% and 33.6 % from blood and ticks, respectively. Hyalomma anatolicum was more prevalent tick associated with SFGR as compared to Rhipicephalus sp. Higher prevalence of SFGR was reported in cattle (25%) population as compared to that of buffalo (17.07%). On seasonal basis, high SFGR prevalence was recorded during spring season (48.1%, 26.32%, 17.76%) as compared to winter (27.9%, 21.43%, 15.38%) in vector and host (cattle and buffalo respectively) population. Sequencing analysis indicated that rickettsial endo-symbionts were associated with ticks of the study area. These results provided baseline information about the prevalence of SFGR in vector and host population.

Keywords: Rickettsia, livestock, polymerase chain reaction, sequencing, ticks, vectors

Procedia PDF Downloads 269
4796 Comparison of Leeway Space Predictions Using Moyers and Tanaka-Johnston Upper Jaw and Lower Jaw on Batak Tribe Between Male and Female in Elementary School Students in Medan City, Sumatera Utara, Indonesia: A Cross-sectional Study

Authors: Hilda Fitria Lubis, Erna Sulistyawati

Abstract:

Objective: The study aims to compare Leeway space averages between Moyers and Tanaka-Johnston's analysis of elementary school students from the Batak tribe in Medan City. Material and Methods: The study involved 106 students from the Batak tribe elementary school in Medan, comprising 53 male and 53 female students. The samples obtained were then printed on both jaws to obtain a working model, and the mesiodistal width of the four permanent biting teeth of the lower jaw and the amount of space available on the canine-premolar region, as well as the predicted mesiodistal number of the canine-premolar on the Moyers probability table with a 75% degree of confidence and the Tanaka-Johnston formula. Results: Using Moyers analysis, students at Batak Elementary School in Medan City have an average Leeway space value of 2 mm on the upper jaw and 2.78 mm on the lower jaw. The average Leeway spatial value using Tanaka-Johnston analysis in the Batak tribe in elementary school in Medan City is 1.33 mm on the top jaw and 2.39 mm on the bottom jaw. Conclusion: According to Moyers and Tanaka-Johnsnton's analysis of both the upper and lower jaws in elementary school students of the Batak tribe in Medan City, there is a significant difference between Leeway's average space.

Keywords: leeways space, batak tribe, genders, diagnosis

Procedia PDF Downloads 31
4795 Some Efficient Higher Order Iterative Schemes for Solving Nonlinear Systems

Authors: Sandeep Singh

Abstract:

In this article, two classes of iterative schemes are proposed for approximating solutions of nonlinear systems of equations whose orders of convergence are six and eight respectively. Sixth order scheme requires the evaluation of two vector-functions, two first Fr'echet derivatives and three matrices inversion per iteration. This three-step sixth-order method is further extended to eighth-order method which requires one more step and the evaluation of one extra vector-function. Moreover, computational efficiency is compared with some other recently published methods in which we found, our methods are more efficient than existing numerical methods for higher and medium size nonlinear system of equations. Numerical tests are performed to validate the proposed schemes.

Keywords: Nonlinear systems, Computational complexity, order of convergence, Jarratt-type scheme

Procedia PDF Downloads 136
4794 Attitude and Knowledge of Primary Health Care Physicians and Local Inhabitants about Leishmaniasis and Sandfly in West Alexandria, Egypt

Authors: Randa M. Ali, Naguiba F. Loutfy, Osama M. Awad

Abstract:

Background: Leishmaniasis is a worldwide disease, affecting 88 countries, it is estimated that about 350 million people are at risk of leishmaniasis. Overall prevalence is 12 million people with annual mortality of about 60,000. Annual incidence is 1,500,000 cases of cutaneous leishmaniasis (CL) worldwide and half million cases of visceral Leishmaniasis (VL). Objectives: The objective of this study was to assess primary health care physicians knowledge (PHP) and attitude about leishmaniasis and to assess awareness of local inhabitants about the disease and its vector in four areas in west Alexandria, Egypt. Methods: This study was a cross sectional survey that was conducted in four PHC units in west Alexandria. All physicians currently working in these units during the study period were invited to participate in the study, only 20 PHP completed the questionnaire. 60 local inhabitant were selected randomly from the four areas of the study, 15 from each area; Data was collected through two different specially designed questionnaires. Results: 11(55%) percent of the physicians had satisfactory knowledge, they answered more than 9 (60%) questions out of a total 14 questions about leishmaniasis and sandfly. The second part of the questionnaire is concerned with attitude of the primary health care physicians about leishmaniasis, 17 (85%) had good attitude and 3 (15%) had poor attitude. The second questionnaire showed that the awareness of local inhabitants about leishmaniasis and sandly as a vector of the disease is poor and needs to be corrected. Most of the respondents (90%) had not heard about leishmaniasis, Only 3 (5%) of the interviewed inhabitants said they know sandfly and its role in transmission of leishmaniasis. Conclusions: knowledge and attitudes of physicians are acceptable. However, there is, room for improvement and could be done through formal training courses and distribution of guidelines. In addition to raising the awareness of primary health care physicians about the importance of early detection and notification of cases of lesihmaniasis. Moreover, health education for raising awareness of the public regarding the vector and the disease is necessary because related studies have demonstrated that if the inhabitants do not perceive mosquitoes to be responsible for diseases such as malaria they do not take enough measures to protect themselves against the vector.

Keywords: leishmaniasis, PHP, knowledge, attitude, local inhabitants

Procedia PDF Downloads 447
4793 On Quasi Conformally Flat LP-Sasakian Manifolds with a Coefficient α

Authors: Jay Prakash Singh

Abstract:

The aim of the present paper is to study properties of Quasi conformally flat LP-Sasakian manifolds with a coefficient α. In this paper, we prove that a Quasi conformally flat LP-Sasakian manifold M (n > 3) with a constant coefficient α is an η−Einstein and in a quasi conformally flat LP-Sasakian manifold M (n > 3) with a constant coefficient α if the scalar curvature tensor is constant then M is of constant curvature.

Keywords: LP-Sasakian manifolds, quasi-conformal curvature tensor, concircular vector field, torse forming vector field, Einstein manifold

Procedia PDF Downloads 792
4792 Coding and Decoding versus Space Diversity for ‎Rayleigh Fading Radio Frequency Channels ‎

Authors: Ahmed Mahmoud Ahmed Abouelmagd

Abstract:

The diversity is the usual remedy of the transmitted signal level variations (Fading phenomena) in radio frequency channels. Diversity techniques utilize two or more copies of a signal and combine those signals to combat fading. The basic concept of diversity is to transmit the signal via several independent diversity branches to get independent signal replicas via time – frequency - space - and polarization diversity domains. Coding and decoding processes can be an alternative remedy for fading phenomena, it cannot increase the channel capacity, but it can improve the error performance. In this paper we propose the use of replication decoding with BCH code class, and Viterbi decoding algorithm with convolution coding; as examples of coding and decoding processes. The results are compared to those obtained from two optimized selection space diversity techniques. The performance of Rayleigh fading channel, as the model considered for radio frequency channels, is evaluated for each case. The evaluation results show that the coding and decoding approaches, especially the BCH coding approach with replication decoding scheme, give better performance compared to that of selection space diversity optimization approaches. Also, an approach for combining the coding and decoding diversity as well as the space diversity is considered, the main disadvantage of this approach is its complexity but it yields good performance results.

Keywords: Rayleigh fading, diversity, BCH codes, Replication decoding, ‎convolution coding, viterbi decoding, space diversity

Procedia PDF Downloads 442
4791 DNA Based Identification of Insect Vectors for Zoonotic Diseases From District Faisalabad, Pakistan

Authors: Zain Ul Abdin, Mirza Aizaz Asim, Rao Sohail Ahmad Khan, Luqman Amrao, Fiaz Hussain, Hasooba Hira, Saqi Kosar Abbas

Abstract:

The success of Integrated vector management programmes mainly depends on the correct identification of insect vector species involved in vector borne diseases. Based on molecular data the most important insect species involved as vectors for Zoonotic diseases in Pakistan were identified. The precise and accurate identification of such type of organism is only possible through molecular based techniques like “DNA barcoding”. Morphological species identification in insects at any life stage, is very challenging, therefore, DNA barcoding was used as a tool for rapid and accurate species identification in a wide variety of taxa across the globe and parallel studies revealed that DNA barcoding data can be effectively used in resolving taxonomic ambiguities, detection of cryptic diversity, invasion biology, description of new species etc. A comprehensive survey was carried out for the collection of insects (both adult and immature stages) in district Faisalabad, Pakistan and their DNA was extracted and mitochondrial cytochrome oxidase subunit I (COI-59) barcode sequences was used for molecular identification of immature and adult life stage.This preliminary research work opens new frontiers for developing sustainable insect vectors management programmes for saving lives of mankind from fatal diseases.

Keywords: zoonotic diseases, cytochrome oxidase, and insect vectors, CO1

Procedia PDF Downloads 168
4790 An Analysis of Classification of Imbalanced Datasets by Using Synthetic Minority Over-Sampling Technique

Authors: Ghada A. Alfattni

Abstract:

Analysing unbalanced datasets is one of the challenges that practitioners in machine learning field face. However, many researches have been carried out to determine the effectiveness of the use of the synthetic minority over-sampling technique (SMOTE) to address this issue. The aim of this study was therefore to compare the effectiveness of the SMOTE over different models on unbalanced datasets. Three classification models (Logistic Regression, Support Vector Machine and Nearest Neighbour) were tested with multiple datasets, then the same datasets were oversampled by using SMOTE and applied again to the three models to compare the differences in the performances. Results of experiments show that the highest number of nearest neighbours gives lower values of error rates. 

Keywords: imbalanced datasets, SMOTE, machine learning, logistic regression, support vector machine, nearest neighbour

Procedia PDF Downloads 350