Search results for: Fully Homomorphic Encryption Scheme
2779 Unconventional Hydrocarbon Management Strategy
Authors: Edi Artono, Budi Tamtomo, Gema Wahyudi Purnama
Abstract:
The world energy demand increasing extreamly high time by time, including domestic demand. That is impossible to avoid because energy a country demand proportional to surge in the number of residents, economic growth and addition of industrial sector. Domestic Oil and gas conventional reserves depleted naturally while production outcome from reservoir also depleted time to time. In the other hand, new reserve did not discover significantly to replace it all. Many people are investigating to looking for new alternative energy to answer the challenge. There are several option to solve energy fossil needed problem using Unconventional Hydrocarbon. There are four aspects to consider as a management reference in order that Unconventional Hydrocarbon business can work properly, divided to: 1. Legal aspect, 2. Environmental aspect, 3. Technical aspect and 4. Economy aspect. The economic aspect as the key to whether or not a project can be implemented or not in Oil and Gas business scheme, so do Unconventional Hydorcarbon business scheme. The support of regulation are needed to buttress Unconventional Hydorcarbon business grow up and make benefits contribute to Government.Keywords: alternative energy, unconventional hydrocarbon, regulation support, management strategy
Procedia PDF Downloads 3512778 Seismic Retrofitting of Structures Using Steel Plate Slit Dampers Based on Genetic Algorithm
Authors: Mohamed Noureldin, Jinkoo Kim
Abstract:
In this study, a genetic algorithm was used to find out the optimum locations of the slit dampers satisfying a target displacement. A seismic retrofit scheme for a building structure was presented using steel plate slit dampers. A cyclic loading test was used to verify the energy dissipation capacity of the slit damper. The seismic retrofit of the model structure using the slit dampers was compared with the retrofit with enlarging shear walls. The capacity spectrum method was used to propose a simple damper distribution scheme proportional to the inter-story drifts. The validity of the simple story-wise damper distribution procedure was verified by comparing the results of the genetic algorithm. It was observed that the proposed simple damper distribution pattern was in a good agreement with the optimum distribution obtained from the genetic algorithm. Acknowledgment: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03032809).Keywords: slit dampers, seismic retrofit, genetic algorithm, optimum design
Procedia PDF Downloads 2242777 Fault Diagnosis of Nonlinear Systems Using Dynamic Neural Networks
Authors: E. Sobhani-Tehrani, K. Khorasani, N. Meskin
Abstract:
This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPE) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FP) that are indicators of faults in the system. Two NPE structures including series-parallel and parallel are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. On the contrary, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the NPEs to systems with partial-state measurement.Keywords: hybrid fault diagnosis, dynamic neural networks, nonlinear systems, fault tolerant observer
Procedia PDF Downloads 4022776 Multichannel Scheme under Fairness Environment for Cognitive Radio Networks
Authors: Hans Marquez Ramos, Cesar Hernandez, Ingrid Páez
Abstract:
This paper develops a multiple channel assignment model, which allows to take advantage in most efficient way, spectrum opportunities in cognitive radio networks. Developed scheme allows make several available and frequency adjacent channel assignments, which require a bigger wide band, under an equality environment. The hybrid assignment model it is made by to algorithms, one who makes the ranking and select available frequency channels and the other one in charge of establishing an equality criteria, in order to not restrict spectrum opportunities for all other secondary users who wish to make transmissions. Measurements made were done for average bandwidth, average delay, as well fairness computation for several channel assignment. Reached results were evaluated with experimental spectrum occupational data from GSM frequency band captured. Developed model, shows evidence of improvement in spectrum opportunity use and a wider average transmit bandwidth for each secondary user, maintaining equality criteria in channel assignment.Keywords: bandwidth, fairness, multichannel, secondary users
Procedia PDF Downloads 5062775 Protecting the Cloud Computing Data Through the Data Backups
Authors: Abdullah Alsaeed
Abstract:
Virtualized computing and cloud computing infrastructures are no longer fuzz or marketing term. They are a core reality in today’s corporate Information Technology (IT) organizations. Hence, developing an effective and efficient methodologies for data backup and data recovery is required more than any time. The purpose of data backup and recovery techniques are to assist the organizations to strategize the business continuity and disaster recovery approaches. In order to accomplish this strategic objective, a variety of mechanism were proposed in the recent years. This research paper will explore and examine the latest techniques and solutions to provide data backup and restoration for the cloud computing platforms.Keywords: data backup, data recovery, cloud computing, business continuity, disaster recovery, cost-effective, data encryption.
Procedia PDF Downloads 892774 Combining Real Actors with Virtual Sets: The Future of Immersive Virtual Reality Fiction Cinema
Authors: Nefeli Dimitriadi
Abstract:
This paper aims to present immersive cinema where real actors are filmed and integrated in Virtual Reality environments and 360 cinematic narrative, in comparison to 360 filming of real actors and sets and to fully computer graphics animation movies with 3D avatars. Objectives: This reseach aims to present immersive cinema where real actors are integrated in Virrual Reality environments and 360 cinematic narrative as the future of immersive cinema. Meghdology: A comparative analysis is conducted between real actors filming combined with Virtual Reality sets, to 360 filming of real actors and sets, and to fully computer graphics animation movies with 3D avatars, using as case study Virtual Reality movie Neurosynapses and others. Contribution: This reseach contributes in defining the best practices leading to impactful Immersive cinematic narratives.Keywords: virtual reality, 360 movies, immersive cinema, directing for virtual reality
Procedia PDF Downloads 1212773 Explicit Iterative Scheme for Approximating a Common Solution of Generalized Mixed Equilibrium Problem and Fixed Point Problem for a Nonexpansive Semigroup in Hilbert Space
Authors: Mohammad Farid
Abstract:
In this paper, we introduce and study an explicit iterative method based on hybrid extragradient method to approximate a common solution of generalized mixed equilibrium problem and fixed point problem for a nonexpansive semigroup in Hilbert space. Further, we prove that the sequence generated by the proposed iterative scheme converge strongly to the common solution of generalized mixed equilibrium problem and fixed point problem for a nonexpansive semigroup. This common solution is the unique solution of a variational inequality problem and is the optimality condition for a minimization problem. The results presented in this paper are the supplement, extension and generalization of the previously known results in this area.Keywords: generalized mixed equilibrium problem, fixed-point problem, nonexpansive semigroup, variational inequality problem, iterative algorithms, hybrid extragradient method
Procedia PDF Downloads 4752772 Multi-Criteria Optimization of High-Temperature Reversed Starter-Generator
Authors: Flur R. Ismagilov, Irek Kh. Khayrullin, Vyacheslav E. Vavilov, Ruslan D. Karimov, Anton S. Gorbunov, Danis R. Farrakhov
Abstract:
The paper presents another structural scheme of high-temperature starter-generator with external rotor to be installed on High Pressure Shaft (HPS) of aircraft engines (AE) to implement More Electrical Engine concept. The basic materials to make this starter-generator (SG) were selected and justified. Multi-criteria optimization of the developed structural scheme was performed using a genetic algorithm and Pareto method. The optimum (in Pareto terms) active length and thickness of permanent magnets of SG were selected as a result of the optimization. Using the dimensions obtained, allowed to reduce the weight of the designed SG by 10 kg relative to a base option at constant thermal loads. Multidisciplinary computer simulation was performed on the basis of the optimum geometric dimensions, which proved performance efficiency of the design. We further plan to make a full-scale sample of SG of HPS and publish the results of its experimental research.Keywords: high-temperature starter-generator, more electrical engine, multi-criteria optimization, permanent magnet
Procedia PDF Downloads 3702771 Cooperative Sensing for Wireless Sensor Networks
Authors: Julien Romieux, Fabio Verdicchio
Abstract:
Wireless Sensor Networks (WSNs), which sense environmental data with battery-powered nodes, require multi-hop communication. This power-demanding task adds an extra workload that is unfairly distributed across the network. As a result, nodes run out of battery at different times: this requires an impractical individual node maintenance scheme. Therefore we investigate a new Cooperative Sensing approach that extends the WSN operational life and allows a more practical network maintenance scheme (where all nodes deplete their batteries almost at the same time). We propose a novel cooperative algorithm that derives a piecewise representation of the sensed signal while controlling approximation accuracy. Simulations show that our algorithm increases WSN operational life and spreads communication workload evenly. Results convey a counterintuitive conclusion: distributing workload fairly amongst nodes may not decrease the network power consumption and yet extend the WSN operational life. This is achieved as our cooperative approach decreases the workload of the most burdened cluster in the network.Keywords: cooperative signal processing, signal representation and approximation, power management, wireless sensor networks
Procedia PDF Downloads 3932770 Data Hiding by Vector Quantization in Color Image
Authors: Yung Gi Wu
Abstract:
With the growing of computer and network, digital data can be spread to anywhere in the world quickly. In addition, digital data can also be copied or tampered easily so that the security issue becomes an important topic in the protection of digital data. Digital watermark is a method to protect the ownership of digital data. Embedding the watermark will influence the quality certainly. In this paper, Vector Quantization (VQ) is used to embed the watermark into the image to fulfill the goal of data hiding. This kind of watermarking is invisible which means that the users will not conscious the existing of embedded watermark even though the embedded image has tiny difference compared to the original image. Meanwhile, VQ needs a lot of computation burden so that we adopt a fast VQ encoding scheme by partial distortion searching (PDS) and mean approximation scheme to speed up the data hiding process. The watermarks we hide to the image could be gray, bi-level and color images. Texts are also can be regarded as watermark to embed. In order to test the robustness of the system, we adopt Photoshop to fulfill sharpen, cropping and altering to check if the extracted watermark is still recognizable. Experimental results demonstrate that the proposed system can resist the above three kinds of tampering in general cases.Keywords: data hiding, vector quantization, watermark, color image
Procedia PDF Downloads 3662769 Performance Evaluation of Refinement Method for Wideband Two-Beams Formation
Authors: C. Bunsanit
Abstract:
This paper presents the refinement method for two beams formation of wideband smart antenna. The refinement method for weighting coefficients is based on Fully Spatial Signal Processing by taking Inverse Discrete Fourier Transform (IDFT), and its simulation results are presented using MATLAB. The radiation pattern is created by multiplying the incoming signal with real weights and then summing them together. These real weighting coefficients are computed by IDFT method; however, the range of weight values is relatively wide. Therefore, for reducing this range, the refinement method is used. The radiation pattern concerns with five input parameters to control. These parameters are maximum weighting coefficient, wideband signal, direction of mainbeam, beamwidth, and maximum of minor lobe level. Comparison of the obtained simulation results between using refinement method and taking only IDFT shows that the refinement method works well for wideband two beams formation.Keywords: fully spatial signal processing, beam forming, refinement method, smart antenna, weighting coefficient, wideband
Procedia PDF Downloads 2262768 Application of Scoring Rubrics by Lecturers towards Objective Assessment of Essay Questions in the Department of Social Science Education, University of Calabar, Nigeria
Authors: Donald B. Enu, Clement O. Ukpor, Abigail E. Okon
Abstract:
Unreliable scoring of students’ performance by lecturers short-chains students’ assessment in terms of underequipping the school authority with facts as intended by society through the curriculum hence, the learners, the school and the society are cheated because the usefulness of testing is defeated. This study, therefore, examined lecturers’ scoring objectivity of essay items in the Department of Social Science Education, University of Calabar, Nigeria. Specifically, it assessed lecturers’ perception of the relevance of scoring rubrics and its level of application. Data were collected from all the 36 lecturers in the Department (28 members and 8 non-members adjourned to the department), through a 20-item questionnaire and checklist instruments. A case-study design was adopted. Descriptive statistics of frequency counts, weighted means, standard deviations, and percentages were used to analyze data gathered. A mean score of 2.5 and or 60 percent and above formed the acceptance or significant level in decision taking. It was found that lecturers perceived the use of scoring rubrics as a relevant practice to ensure fairness and reliable treatment of examiners scripts particularly in marking essay items and that there is a moderately high level of adherence to the application of scoring rubrics. It was also observed that some criteria necessary for the scoring objectivity of essay items were not fully put in place in the department. It was recommended strongly that students’ identities be hidden while marking and that pre-determined marking scheme should be prepared centrally and strictly adhered to during marking and recording of scores. Conference marking should be enforced in the department.Keywords: essay items, objective scoring, scorers reliability, scoring rubrics
Procedia PDF Downloads 1812767 Photoimpedance Spectroscopy Analysis of Planar and Nano-Textured Thin-Film Silicon Solar Cells
Authors: P. Kumar, D. Eisenhauer, M. M. K. Yousef, Q. Shi, A. S. G. Khalil, M. R. Saber, C. Becker, T. Pullerits, K. J. Karki
Abstract:
In impedance spectroscopy (IS) the response of a photo-active device is analysed as a function of ac bias. It is widely applied in a broad class of material systems and devices. It gives access to fundamental mechanisms of operation of solar cells. We have implemented a method of IS where we modulate the light instead of the bias. This scheme allows us to analyze not only carrier dynamics but also impedance of device locally. Here, using this scheme, we have measured the frequency-dependent photocurrent response of the thin-film planar and nano-textured Si solar cells using this method. Photocurrent response is measured in range of 50 Hz to 50 kHz. Bode and Nyquist plots are used to determine characteristic lifetime of both the cells. Interestingly, the carrier lifetime of both planar and nano-textured solar cells depend on back and front contact positions. This is due to either heterogeneity of device or contacts are not optimized. The estimated average lifetime is found to be shorter for the nano-textured cell, which could be due to the influence of the textured interface on the carrier relaxation dynamics.Keywords: carrier lifetime, impedance, nano-textured, photocurrent
Procedia PDF Downloads 2332766 Semi-Automatic Segmentation of Mitochondria on Transmission Electron Microscopy Images Using Live-Wire and Surface Dragging Methods
Authors: Mahdieh Farzin Asanjan, Erkan Unal Mumcuoglu
Abstract:
Mitochondria are cytoplasmic organelles of the cell, which have a significant role in the variety of cellular metabolic functions. Mitochondria act as the power plants of the cell and are surrounded by two membranes. Significant morphological alterations are often due to changes in mitochondrial functions. A powerful technique in order to study the three-dimensional (3D) structure of mitochondria and its alterations in disease states is Electron microscope tomography. Detection of mitochondria in electron microscopy images due to the presence of various subcellular structures and imaging artifacts is a challenging problem. Another challenge is that each image typically contains more than one mitochondrion. Hand segmentation of mitochondria is tedious and time-consuming and also special knowledge about the mitochondria is needed. Fully automatic segmentation methods lead to over-segmentation and mitochondria are not segmented properly. Therefore, semi-automatic segmentation methods with minimum manual effort are required to edit the results of fully automatic segmentation methods. Here two editing tools were implemented by applying spline surface dragging and interactive live-wire segmentation tools. These editing tools were applied separately to the results of fully automatic segmentation. 3D extension of these tools was also studied and tested. Dice coefficients of 2D and 3D for surface dragging using splines were 0.93 and 0.92. This metric for 2D and 3D for live-wire method were 0.94 and 0.91 respectively. The root mean square symmetric surface distance values of 2D and 3D for surface dragging was measured as 0.69, 0.93. The same metrics for live-wire tool were 0.60 and 2.11. Comparing the results of these editing tools with the results of automatic segmentation method, it shows that these editing tools, led to better results and these results were more similar to ground truth image but the required time was higher than hand-segmentation timeKeywords: medical image segmentation, semi-automatic methods, transmission electron microscopy, surface dragging using splines, live-wire
Procedia PDF Downloads 1692765 New Security Approach of Confidential Resources in Hybrid Clouds
Authors: Haythem Yahyaoui, Samir Moalla, Mounir Bouden, Skander ghorbel
Abstract:
Nowadays, Cloud environments are becoming a need for companies, this new technology gives the opportunities to access to the data anywhere and anytime, also an optimized and secured access to the resources and gives more security for the data which stored in the platform, however, some companies do not trust Cloud providers, in their point of view, providers can access and modify some confidential data such as bank accounts, many works have been done in this context, they conclude that encryption methods realized by providers ensure the confidentiality, although, they forgot that Cloud providers can decrypt the confidential resources. The best solution here is to apply some modifications on the data before sending them to the Cloud in the objective to make them unreadable. This work aims on enhancing the quality of service of providers and improving the trust of the customers.Keywords: cloud, confidentiality, cryptography, security issues, trust issues
Procedia PDF Downloads 3782764 Design of Cartesian Robot for Electric Vehicle Wireless Charging Systems
Authors: Kaan Karaoglu, Raif Bayir
Abstract:
In this study, a cartesian robot is developed to improve the performance and efficiency of wireless charging of electric vehicles. The cartesian robot has three axes, each of which moves linearly. Magnetic positioning is used to align the cartesian robot transmitter charging pad. There are two different wireless charging methods, static and dynamic, for charging electric vehicles. The current state of charge information (SOC State of Charge) and location information are received wirelessly from the electric vehicle. Based on this information, the power to be transmitted is determined, and the transmitter and receiver charging pads are aligned for maximum efficiency. With this study, a fully automated cartesian robot structure will be used to charge electric vehicles with the highest possible efficiency. With the wireless communication established between the electric vehicle and the charging station, the charging status will be monitored in real-time. The cartesian robot developed in this study is a fully automatic system that can be easily used in static wireless charging systems with vehicle-machine communication.Keywords: electric vehicle, wireless charging systems, energy efficiency, cartesian robot, location detection, trajectory planning
Procedia PDF Downloads 752763 Comparison between Experimental and Numerical Studies of Fully Encased Composite Columns
Authors: Md. Soebur Rahman, Mahbuba Begum, Raquib Ahsan
Abstract:
Composite column is a structural member that uses a combination of structural steel shapes, pipes or tubes with or without reinforcing steel bars and reinforced concrete to provide adequate load carrying capacity to sustain either axial compressive loads alone or a combination of axial loads and bending moments. Composite construction takes the advantages of the speed of construction, light weight and strength of steel, and the higher mass, stiffness, damping properties and economy of reinforced concrete. The most usual types of composite columns are the concrete filled steel tubes and the partially or fully encased steel profiles. Fully encased composite column (FEC) provides compressive strength, stability, stiffness, improved fire proofing and better corrosion protection. This paper reports experimental and numerical investigations of the behaviour of concrete encased steel composite columns subjected to short-term axial load. In this study, eleven short FEC columns with square shaped cross section were constructed and tested to examine the load-deflection behavior. The main variables in the test were considered as concrete compressive strength, cross sectional size and percentage of structural steel. A nonlinear 3-D finite element (FE) model has been developed to analyse the inelastic behaviour of steel, concrete, and longitudinal reinforcement as well as the effect of concrete confinement of the FEC columns. FE models have been validated against the current experimental study conduct in the laboratory and published experimental results under concentric load. It has been observed that FE model is able to predict the experimental behaviour of FEC columns under concentric gravity loads with good accuracy. Good agreement has been achieved between the complete experimental and the numerical load-deflection behaviour in this study. The capacities of each constituent of FEC columns such as structural steel, concrete and rebar's were also determined from the numerical study. Concrete is observed to provide around 57% of the total axial capacity of the column whereas the steel I-sections contributes to the rest of the capacity as well as ductility of the overall system. The nonlinear FE model developed in this study is also used to explore the effect of concrete strength and percentage of structural steel on the behaviour of FEC columns under concentric loads. The axial capacity of FEC columns has been found to increase significantly by increasing the strength of concrete.Keywords: composite, columns, experimental, finite element, fully encased, strength
Procedia PDF Downloads 2912762 Examining the Impact of Training on Turnover Intention in Project-Based Organizations
Authors: Muhammad Safder Shafi, Uzma Javed, Tooba Qasim
Abstract:
The purpose of this paper is to find out the relationship between training and turnover intention in the presence of mediating variables promotion opportunities and job satisfaction among IT professionals in project based industry. It investigates the relationship directly between 1 independent variable training and dependent variable turnover intention. It also investigates the relationship between independent variable to the mediating variables and mediating variables to the turnover intention. Promotion opportunities and job satisfaction act as a mediator. The study sample comprised of 186 IT professionals from Pakistan, who work on different IT projects. Linear regression and Baron and Kenny approach were used to test the direct and mediated relationship between variables. The survey results demonstrated that job satisfaction fully mediate the relationship between promotion opportunities and turnover intention. Promotion opportunities fully mediate the relationship between employee training and job satisfaction. Promotion opportunities and job satisfaction mediates the relationship between training and turnover intention. The findings from the collected data may help top management to improve organizational strategies to cope up with improving different HR practices like training, pay structure and promotions in order to retain their workforce.Keywords: HCT, SET, career growth opportunities, job satisfaction, training, turnover intention
Procedia PDF Downloads 3612761 Collision Avoidance Maneuvers for Vessels Navigating through Traffic Separation Scheme
Authors: Aswin V. J., Sreeja S., R. Harikumar
Abstract:
Ship collision is one of the major concerns while navigating in the ocean. In congested sea routes where there are hectic offshore operations, ships are often forced to take close encounter maneuvers. Maritime rules for preventing collision at sea are defined in the International Regulations for Preventing Collision at Sea. Traffic Separation Schemes (TSS) are traffic management route systems ruled by International Maritime Organization (IMO), where the traffic lanes indicate the general direction of traffic flow. The Rule 10 of International Regulations for Preventing Collision at Sea prescribes the conduct of vessels while navigating through TSS. But no quantitative criteria regarding the procedures to detect and evaluate collision risk is specified in International Regulations for Preventing Collision at Sea. Most of the accidents that occur are due to operational errors affected by human factors such as lack of experience and loss of situational awareness. In open waters, the traffic density is less when compared to that in TSS, and hence the vessels can be operated in autopilot mode. A collision avoidance method that uses the possible obstacle trajectories in advance to predict “collision occurrence” and can generate suitable maneuvers for collision avoidance is presented in this paper. The suitable course and propulsion changes that can be used in a TSS considering International Regulations for Preventing Collision at Sea are found out for various obstacle scenarios.Keywords: collision avoidance, maneuvers, obstacle trajectories, traffic separation scheme
Procedia PDF Downloads 772760 Improvement of Environment and Climate Change Canada’s Gem-Hydro Streamflow Forecasting System
Authors: Etienne Gaborit, Dorothy Durnford, Daniel Deacu, Marco Carrera, Nathalie Gauthier, Camille Garnaud, Vincent Fortin
Abstract:
A new experimental streamflow forecasting system was recently implemented at the Environment and Climate Change Canada’s (ECCC) Canadian Centre for Meteorological and Environmental Prediction (CCMEP). It relies on CaLDAS (Canadian Land Data Assimilation System) for the assimilation of surface variables, and on a surface prediction system that feeds a routing component. The surface energy and water budgets are simulated with the SVS (Soil, Vegetation, and Snow) Land-Surface Scheme (LSS) at 2.5-km grid spacing over Canada. The routing component is based on the Watroute routing scheme at 1-km grid spacing for the Great Lakes and Nelson River watersheds. The system is run in two distinct phases: an analysis part and a forecast part. During the analysis part, CaLDAS outputs are used to force the routing system, which performs streamflow assimilation. In forecast mode, the surface component is forced with the Canadian GEM atmospheric forecasts and is initialized with a CaLDAS analysis. Streamflow performances of this new system are presented over 2019. Performances are compared to the current ECCC’s operational streamflow forecasting system, which is different from the new experimental system in many aspects. These new streamflow forecasts are also compared to persistence. Overall, the new streamflow forecasting system presents promising results, highlighting the need for an elaborated assimilation phase before performing the forecasts. However, the system is still experimental and is continuously being improved. Some major recent improvements are presented here and include, for example, the assimilation of snow cover data from remote sensing, a backward propagation of assimilated flow observations, a new numerical scheme for the routing component, and a new reservoir model.Keywords: assimilation system, distributed physical model, offline hydro-meteorological chain, short-term streamflow forecasts
Procedia PDF Downloads 1302759 Cryptographic Protocol for Secure Cloud Storage
Authors: Luvisa Kusuma, Panji Yudha Prakasa
Abstract:
Cloud storage, as a subservice of infrastructure as a service (IaaS) in Cloud Computing, is the model of nerworked storage where data can be stored in server. In this paper, we propose a secure cloud storage system consisting of two main components; client as a user who uses the cloud storage service and server who provides the cloud storage service. In this system, we propose the protocol schemes to guarantee against security attacks in the data transmission. The protocols are login protocol, upload data protocol, download protocol, and push data protocol, which implement hybrid cryptographic mechanism based on data encryption before it is sent to the cloud, so cloud storage provider does not know the user's data and cannot analysis user’s data, because there is no correspondence between data and user.Keywords: cloud storage, security, cryptographic protocol, artificial intelligence
Procedia PDF Downloads 3582758 Evaluating Contextually Targeted Advertising with Attention Measurement
Authors: John Hawkins, Graham Burton
Abstract:
Contextual targeting is a common strategy for advertising that places marketing messages in media locations that are expected to be aligned with the target audience. There are multiple major challenges to contextual targeting: the ideal categorisation scheme needs to be known, as well as the most appropriate subsections of that scheme for a given campaign or creative. In addition, the campaign reach is typically limited when targeting becomes narrow, so a balance must be struck between requirements. Finally, refinement of the process is limited by the use of evaluation methods that are either rapid but non-specific (click through rates), or reliable but slow and costly (conversions or brand recall studies). In this study we evaluate the use of attention measurement as a technique for understanding the performance of targeting on the basis of specific contextual topics. We perform the analysis using a large scale dataset of impressions categorised using the iAB V2.0 taxonomy. We evaluate multiple levels of the categorisation hierarchy, using categories at different positions within an initial creative specific ranking. The results illustrate that measuring attention time is an affective signal for the performance of a specific creative within a specific context. Performance is sustained across a ranking of categories from one period to another.Keywords: contextual targeting, digital advertising, attention measurement, marketing performance
Procedia PDF Downloads 1052757 T-S Fuzzy Modeling Based on Power Coefficient Limit Nonlinearity Applied to an Isolated Single Machine Load Frequency Deviation Control
Authors: R. S. Sheu, H. Usman, M. S. Lawal
Abstract:
Takagi-Sugeno (T-S) fuzzy model based control of a load frequency deviation in a single machine with limit nonlinearity on power coefficient is presented in the paper. Two T-S fuzzy rules with only rotor angle variable as input in the premise part, and linear state space models in the consequent part involving characteristic matrices determined from limits set on the power coefficient constant are formulated, state feedback control gains for closed loop control was determined from the formulated Linear Matrix Inequality (LMI) with eigenvalue optimization scheme for asymptotic and exponential stability (speed of esponse). Numerical evaluation of the closed loop object was carried out in Matlab. Simulation results generated of both the open and closed loop system showed the effectiveness of the control scheme in maintaining load frequency stability.Keywords: T-S fuzzy model, state feedback control, linear matrix inequality (LMI), frequency deviation control
Procedia PDF Downloads 3982756 A Simulation Study for Potential Natural Gas Liquids Recovery Processes under Various Upstream Conditions
Authors: Mesfin Getu Woldetensay
Abstract:
Representatives and commercially viable natural gas liquids (NGLs) recovery processes were studied under various feed conditions that are classified as lean and rich. The conventional turbo- expander process scheme (ISS) was taken as a base case. The performance of this scheme was compared against with the gas sub-cooled process (GSP), cold residue-gas (CRR) and recycle split-vapor (RSV), enhanced NGL recovery process (IPSI-1) and enhanced NGL recovery process with internal refrigeration (IPSI-2). The development made for the GSP, CRR and RSV are at the top section of the demethanizer column whereas the IPSI-1 and IPSI-2 improvement focus in the lower section. HYSYS process flowsheet was initially developed for all the processes including the ISS under a common criteria that could help to demonstrate the performance comparison. Accordingly, a number of simulation runs were made for the selected eight types of feed. Results show that the reboiler duty requirement using rich feeds for GSP, CRR and RSV is quite high compared to IPSI-1 and IPSI-2. The latter shows relatively lower duty due to the presence of self-refrigeration system that allows the inlet feed to be used for achieving cooling without the need to use propane refrigerant. The energy consumption for lean feed is much lower than that of the rich feed in all process schemes.Keywords: composition, lean, rich, duty
Procedia PDF Downloads 2192755 Split-Flow Method to Reduce Duty Required in Amine Gas Sweetening Units
Authors: Abdallah Sofiane Berrouk, Dara Satyadileep
Abstract:
This paper investigates the feasibility of retrofitting a middle-east based commercial amine sweetening unit with a split-flow scheme which involves withdrawing a portion of partially stripped semi-lean solvent from the stripping column and re-injecting it in the absorption column to reduce the overall energy consumption of the unit. This method is comprehensively explored by performing parametric analysis of the split fraction of the semi-lean solvent using a kinetics based process simulator ProMax V 3.2. Re-boiler duty, condenser duty, solvent cooling and pumping loads are analysed as functions of a split fraction of the semi-lean solvent from the stripper. It is shown that the proposed method significantly reduces the overall energy consumption of the unit resulting in an annual savings of 325,000 USD. The thorough economic analysis is performed using Aspen Economic Evaluation V 8.4 to reveal that the retrofit scheme pays back the capital cost in less than eight years and is highly recommended for any commercial plant having suitable provisions for solvent inlet/withdrawal on the columns.Keywords: split flow, Amine, gas processing, optimization
Procedia PDF Downloads 3332754 Deep Learning for SAR Images Restoration
Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli
Abstract:
In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network
Procedia PDF Downloads 712753 Phase Control in Population Inversion Using Chirped Laser
Authors: Avijit Datta
Abstract:
We have presented a phase control scheme in population transfer using chirped laser fields. A chirped pulse can do population transfer from one level to another level via adiabatic rapid passage accessible by one photon dipole transition. We propose to use a pair of phase-locked chirped pulses of the same frequency w(t) instead of a singly chirped-pulse frequency w(t). Simultaneous action of phase controlled interference in addition to rapid adiabatic passages due to chirped pulses lead to phase control over this population transfer dynamics. We have demonstrated the proposed phase control scheme over the population distribution from the initial level X(v=0,j=0) to C(v=2,j=1) level of hydrogen molecule using a pair of phase-locked and similarly chirped laser pulses. We have extended this two-level system to three-level 1+1 ladder system of hydrogen molecule from X level to final J(v=2,j=2) level via C intermediate level using two pairs of laser pulses having frequencies w(t) and w'(t) respectively and obtained laudable control over the population distribution among three levels. We also have presented some results of interference effects of w₁(t) and its third harmonics w₃(t).Keywords: phase control, population transfer, chirped laser pulses, rapid adiabatic passage, laser-molecule interaction
Procedia PDF Downloads 3632752 Symbol Synchronization and Resource Reuse Schemes for Layered Video Multicast Service in Long Term Evolution Networks
Authors: Chung-Nan Lee, Sheng-Wei Chu, You-Chiun Wang
Abstract:
LTE (Long Term Evolution) employs the eMBMS (evolved Multimedia Broadcast/Multicast Service) protocol to deliver video streams to a multicast group of users. However, it requires all multicast members to receive a video stream in the same transmission rate, which would degrade the overall service quality when some users encounter bad channel conditions. To overcome this problem, this paper provides two efficient resource allocation schemes in such LTE network: The symbol synchronization (S2) scheme assumes that the macro and pico eNodeBs use the same frequency channel to deliver the video stream to all users. It then adopts a multicast transmission index to guarantee the fairness among users. On the other hand, the resource reuse (R2) scheme allows eNodeBs to transmit data on different frequency channels. Then, by introducing the concept of frequency reuse, it can further improve the overall service quality. Extensive simulation results show that the S2 and R2 schemes can respectively improve around 50% of fairness and 14% of video quality as compared with the common maximum throughput method.Keywords: LTE networks, multicast, resource allocation, layered video
Procedia PDF Downloads 3902751 Deep Learning Based Polarimetric SAR Images Restoration
Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli
Abstract:
In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry
Procedia PDF Downloads 932750 Operator Optimization Based on Hardware Architecture Alignment Requirements
Authors: Qingqing Gai, Junxing Shen, Yu Luo
Abstract:
Due to the hardware architecture characteristics, some operators tend to acquire better performance if the input/output tensor dimensions are aligned to a certain minimum granularity, such as convolution and deconvolution commonly used in deep learning. Furthermore, if the requirements are not met, the general strategy is to pad with 0 to satisfy the requirements, potentially leading to the under-utilization of the hardware resources. Therefore, for the convolution and deconvolution whose input and output channels do not meet the minimum granularity alignment, we propose to transfer the W-dimensional data to the C-dimension for computation (W2C) to enable the C-dimension to meet the hardware requirements. This scheme also reduces the number of computations in the W-dimension. Although this scheme substantially increases computation, the operator’s speed can improve significantly. It achieves remarkable speedups on multiple hardware accelerators, including Nvidia Tensor cores, Qualcomm digital signal processors (DSPs), and Huawei neural processing units (NPUs). All you need to do is modify the network structure and rearrange the operator weights offline without retraining. At the same time, for some operators, such as the Reducemax, we observe that transferring the Cdimensional data to the W-dimension(C2W) and replacing the Reducemax with the Maxpool can accomplish acceleration under certain circumstances.Keywords: convolution, deconvolution, W2C, C2W, alignment, hardware accelerator
Procedia PDF Downloads 106