Search results for: controlled stochastic differential equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6059

Search results for: controlled stochastic differential equation

1019 To Identify the Importance of Telemedicine in Diabetes and Its Impact on Hba1c

Authors: Sania Bashir

Abstract:

A promising approach to healthcare delivery, telemedicine makes use of communication technology to reach out to remote regions of the world, allowing for beneficial interactions between diabetic patients and healthcare professionals as well as the provision of affordable and easily accessible medical care. The emergence of contemporary care models, fueled by the pervasiveness of mobile devices, provides better information, offers low cost with the best possible outcomes, and is known as digital health. It involves the integration of collected data using software and apps, as well as low-cost, high-quality outcomes. The goal of this study is to assess how well telemedicine works for diabetic patients and how it impacts their HbA1c levels. A questionnaire-based survey of 300 diabetics included 150 patients in each of the groups receiving usual care and via telemedicine. A descriptive and observational study that lasted from September 2021 to May 2022 was conducted. HbA1c has been gathered for both categories every three months. A remote monitoring tool has been used to assess the efficacy of telemedicine and continuing therapy instead of the customary three monthly meetings like in-person consultations. The patients were (42.3) 18.3 years old on average. 128 men were outnumbered by 172 women (57.3% of the total). 200 patients (66.6%) have type 2 diabetes, compared to over 100 (33.3%) candidates for type 1. Despite the average baseline BMI being within normal ranges at 23.4 kg/m², the mean baseline HbA1c (9.45 1.20) indicates that glycemic treatment is not well-controlled at the time of registration. While patients who use telemedicine experienced a mean percentage change of 10.5, those who visit the clinic experienced a mean percentage change of 3.9. Changes in HbA1c are dependent on several factors, including improvements in BMI (61%) after 9 months of research and compliance with healthy lifestyle recommendations for diet and activity. More compliance was achieved by the telemedicine group. It is an undeniable reality that patient-physician communication is crucial for enhancing health outcomes and avoiding long-term issues. Telemedicine has shown its value in the management of diabetes and holds promise as a novel technique for improved clinical-patient communication in the twenty-first century.

Keywords: diabetes, digital health, mobile app, telemedicine

Procedia PDF Downloads 90
1018 Obtainment of Systems with Efavirenz and Lamellar Double Hydroxide as an Alternative for Solubility Improvement of the Drug

Authors: Danilo A. F. Fontes, Magaly A. M.Lyra, Maria L. C. Moura, Leslie R. M. Ferraz, Salvana P. M. Costa, Amanda C. Q. M. Vieira, Larissa A. Rolim, Giovanna C. R. M. Schver, Ping I. Lee, Severino Alves-Júnior, José L. Soares-Sobrinho, Pedro J. Rolim-Neto

Abstract:

Efavirenz (EFV) is a first-choice drug in antiretroviral therapy with high efficacy in the treatment of infection by Human Immunodeficiency Virus, which causes Acquired Immune Deficiency Syndrome (AIDS). EFV has low solubility in water resulting in a decrease in the dissolution rate and, consequently, in its bioavailability. Among the technological alternatives to increase solubility, the Lamellar Double Hydroxides (LDH) have been applied in the development of systems with poorly water-soluble drugs. The use of analytical techniques such as X-Ray Diffraction (XRD), Infrared Spectroscopy (IR) and Differential Scanning Calorimetry (DSC) allowed the elucidation of drug interaction with the lamellar compounds. The objective of this work was to characterize and develop the binary systems with EFV and LDH in order to increase the solubility of the drug. The LDH-CaAl was synthesized by the method of co-precipitation from salt solutions of calcium nitrate and aluminum nitrate in basic medium. The systems EFV-LDH and their physical mixtures (PM) were obtained at different concentrations (5-60% of EFV) using the solvent technique described by Takahashi & Yamaguchi (1991). The characterization of the systems and the PM’s was performed by XRD techniques, IR, DSC and dissolution test under non-sink conditions. The results showed improvements in the solubility of EFV when associated with LDH, due to a possible change in its crystal structure and formation of an amorphous material. From the DSC results, one could see that the endothermic peak at 173°C, temperature that correspond to the melting process of EFZ in the crystal form, was present in the PM results. For the EFZ-LDH systems (with 5, 10 and 30% of drug loading), this peak was not observed. XRD profiles of the PM showed well-defined peaks for EFV. Analyzing the XRD patterns of the systems, it was found that the XRD profiles of all the systems showed complete attenuation of the characteristic peaks of the crystalline form of EFZ. The IR technique showed that, in the results of the PM, there was the appearance of one band and overlap of other bands, while the IR results of the systems with 5, 10 and 30% drug loading showed the disappearance of bands and a few others with reduced intensity. The dissolution test under non-sink conditions showed that systems with 5, 10 and 30% drug loading promoted a great increase in the solubility of EFV, but the system with 10% of drug loading was the only one that could keep substantial amount of drug in solution at different pHs.

Keywords: Efavirenz, Lamellar Double Hydroxides, Pharmaceutical Techonology, Solubility

Procedia PDF Downloads 581
1017 Expression of Micro-RNA268 in Zinc Deficient Rice

Authors: Sobia Shafqat, Saeed Ahmad Qaisrani

Abstract:

MicroRNAs play an essential role in the regulation and development of all processes in most eukaryotes because of their prospective part as mediators controlling cell growth and differentiation towards the exact position of RNAs response in plants under biotic and abiotic factors or stressors. In a few cases, Zn is oblivious poisonous for plants due to its heavy metal status. Some other metals are extremely toxic, like Cd, Hg, and Pb, but these elements require in rice for the programming of genes under abiotic stress resembling Zn stress when micro RNAs268 was importantly introduced in rice. The micro RNAs overexpressed in transgenic plants with an accumulation of a large amount of melanin dialdehyde, hydrogen peroxide, and an excessive quantity of Zn in the seedlings stage. Let out results for rice pliability under Zn stress micro RNAs act as negative controllers. But the role of micro RNA268 act as a modulator in different ecological condition. It has been explained clearly with a long understanding of the role of micro RNA268 under stress conditions; pliability and practically showed outcome to increase plant sufferance under Zn stress because micro RNAs is an intervention technique for gene regulation in gene expression. The proposed study was experimented with by using genetic factors of Zn stress and toxicity effect on rice plants done at District Vehari, Pakistan. The trial was performed randomly with three replications in a complete block design (RCBD). These blocks were controlled with different concentrations of genetic factors. By overexpression of micro RNA268 rice, seedling growth was not stopped under Zn deficiency due to the accumulation of a large amount of melanin dialdehyde, hydrogen peroxide, and an excessive quantity of Zn in their seedlings. Results showed that micro RNA268 act as a negative controller under Zn stress. In the end, under stress conditions, micro RNA268 showed the necessary function in the tolerance of rice plants. The directorial work sketch gave out high agronomic applications and yield outcomes in rice with a specific amount of Zn application.

Keywords: micro RNA268, zinc, rice, agronomic approach

Procedia PDF Downloads 59
1016 Acceleration Techniques of DEM Simulation for Dynamics of Particle Damping

Authors: Masato Saeki

Abstract:

Presented herein is a novel algorithms for calculating the damping performance of particle dampers. The particle damper is a passive vibration control technique and has many practical applications due to simple design. It consists of granular materials constrained to move between two ends in the cavity of a primary vibrating system. The damping effect results from the exchange of momentum during the impact of granular materials against the wall of the cavity. This damping has the advantage of being independent of the environment. Therefore, particle damping can be applied in extreme temperature environments, where most conventional dampers would fail. It was shown experimentally in many papers that the efficiency of the particle dampers is high in the case of resonant vibration. In order to use the particle dampers effectively, it is necessary to solve the equations of motion for each particle, considering the granularity. The discrete element method (DEM) has been found to be effective for revealing the dynamics of particle damping. In this method, individual particles are assumed as rigid body and interparticle collisions are modeled by mechanical elements as springs and dashpots. However, the computational cost is significant since the equation of motion for each particle must be solved at each time step. In order to improve the computational efficiency of the DEM, the new algorithms are needed. In this study, new algorithms are proposed for implementing the high performance DEM. On the assumption that behaviors of the granular particles in the each divided area of the damper container are the same, the contact force of the primary system with all particles can be considered to be equal to the product of the divided number of the damper area and the contact force of the primary system with granular materials per divided area. This convenience makes it possible to considerably reduce the calculation time. The validity of this calculation method was investigated and the calculated results were compared with the experimental ones. This paper also presents the results of experimental studies of the performance of particle dampers. It is shown that the particle radius affect the noise level. It is also shown that the particle size and the particle material influence the damper performance.

Keywords: particle damping, discrete element method (DEM), granular materials, numerical analysis, equivalent noise level

Procedia PDF Downloads 450
1015 “A Watched Pot Never Boils.” Exploring the Impact of Job Autonomy on Organizational Commitment among New Employees: A Comprehensive Study of How Empowerment and Independence Influence Workplace Loyalty and Engagement in Early Career Stages

Authors: Atnafu Ashenef Wondim

Abstract:

In today’s highly competitive business environment, employees are considered a source of competitive advantage. Researchers have looked into job autonomy's effect on organizational commitment and declared superior organizational performance strongly depends on the effort and commitment of employees. The purpose of this study was to explore the relationship between job autonomy and organizational commitment from newcomer’s point of view. The mediation role of employee engagement (physical, emotional, and cognitive) was also examined in the case of Ethiopian Commercial Banks. An exploratory survey research design with mixed-method approach that included partial least squares structural equation modeling and Fuzzy-Set Qualitative Comparative Analysis technique were using to address the sample size of 348 new employees. In-depth interviews with purposive and convenientsampling techniques are conducted with new employees (n=43). The results confirmed that job autonomy had positive, significant direct effects on physical engagement, emotional engagement, and cognitive engagement (path coeffs. = 0.874, 0.931, and 0.893).The results showed thatthe employee engagement driver, physical engagement, had a positive significant influence on affective commitment (path coeff. = 0.187) and normative commitment (path coeff. = 0.512) but no significant effect on continuance commitment. Employee engagement partially mediates the relationship between job autonomy and organizational commitment, which means supporting the indirect effects of job autonomy on affective, continuance, and normative commitment through physical engagement. The findings of this study add new perspectives by positioning it within a complex organizational African setting and by expanding the job autonomy and organizational commitment literature, which will benefit future research. Much of the literature on job autonomy and organizational commitment has been conducted within a well-established organizational business context in Western developed countries.The findings lead to fresh information on job autonomy and organizational commitment implementation enablers that can assist in the formulation of a better policy/strategy to efficiently adopt job autonomy and organizational commitment.

Keywords: employee engagement, job autonomy, organizational commitment, social exchange theory

Procedia PDF Downloads 27
1014 Latent Heat Storage Using Phase Change Materials

Authors: Debashree Ghosh, Preethi Sridhar, Shloka Atul Dhavle

Abstract:

The judicious and economic consumption of energy for sustainable growth and development is nowadays a thing of primary importance; Phase Change Materials (PCM) provide an ingenious option of storing energy in the form of Latent Heat. Energy storing mechanism incorporating phase change material increases the efficiency of the process by minimizing the difference between supply and demand; PCM heat exchangers are used to storing the heat or non-convectional energy within the PCM as the heat of fusion. The experimental study evaluates the effect of thermo-physical properties, variation in inlet temperature, and flow rate on charging period of a coiled heat exchanger. Secondly, a numerical study is performed on a PCM double pipe heat exchanger packed with two different PCMs, namely, RT50 and Fatty Acid, in the annular region. In this work, the simulation of charging of paraffin wax (RT50) using water as high-temperature fluid (HTF) is performed. Commercial software Ansys-Fluent 15 is used for simulation, and hence charging of PCM is studied. In the Enthalpy-porosity model, a single momentum equation is applicable to describe the motion of both solid and liquid phases. The details of the progress of phase change with time are presented through the contours of melt-fraction, temperature. The velocity contour is shown to describe the motion of the liquid phase. The experimental study revealed that paraffin wax melts with almost the same temperature variation at the two Intermediate positions. Fatty acid, on the other hand, melts faster owing to greater thermal conductivity and low melting temperature. It was also observed that an increase in flow rate leads to a reduction in the charging period. The numerical study also supports some of the observations found in the experimental study like the significant dependence of driving force on the process of melting. The numerical study also clarifies the melting pattern of the PCM, which cannot be observed in the experimental study.

Keywords: latent heat storage, charging period, discharging period, coiled heat exchanger

Procedia PDF Downloads 114
1013 Optical and Surface Characteristics of Direct Composite, Polished and Glazed Ceramic Materials After Exposure to Tooth Brush Abrasion and Staining Solution

Authors: Maryam Firouzmandi, Moosa Miri

Abstract:

Aim and background: esthetic and structural reconstruction of anterior teeth may require the application of different restoration material. In this regard combination of direct composite veneer and ceramic crown is a common treatment option. Despite the initial matching, their long term harmony in term of optical and surface characteristics is a matter of concern. The purpose of this study is to evaluate and compare optical and surface characteristic of direct composite polished and glazed ceramic materials after exposure to tooth brush abrasion and staining solution. Materials and Methods: ten 2 mm thick disk shape specimens were prepared from IPS empress direct composite and twenty specimens from IPS e.max CAD blocks. Composite specimens and ten ceramic specimens were polished by using D&Z composite and ceramic polishing kit. The other ten specimens of ceramic were glazed with glazing liquid. Baseline measurement of roughness, CIElab coordinate, and luminance were recorded. Then the specimens underwent thermocycling, tooth brushing, and coffee staining. Afterword, the final measurements were recorded. Color coordinate were used to calculate ΔE76, ΔE00, translucency parameter, and contrast ratio. Data were analyzed by One-way ANOVA and post hoc LSD test. Results: baseline and final roughness of the study group were not different. At baseline, the order of roughness for the study group were as follows: composite < glazed ceramic < polished ceramic, but after aging, no difference. Between ceramic groups was not detected. The comparison of baseline and final luminance was similar to roughness but in reverse order. Unlike differential roughness which was comparable between the groups, changes in luminance of the glazed ceramic group was higher than other groups. ΔE76 and ΔE00 in the composite group were 18.35 and 12.84, in the glazed ceramic group were 1.3 and 0.79, and in polished ceramic were 1.26 and 0.85. These values for the composite group were significantly different from ceramic groups. Translucency of composite at baseline was significantly higher than final, but there was no significant difference between these values in ceramic groups. Composite was more translucency than ceramic at baseline and final measurement. Conclusion: Glazed ceramic surface was smoother than polished ceramic. Aging did not change the roughness. Optical properties (color and translucency) of the composite were influenced by aging. Luminance of composite, glazed ceramic, and polished ceramic decreased after aging, but the reduction in glazed ceramic was more pronounced.

Keywords: ceramic, tooth-brush abrasion, staining solution, composite resin

Procedia PDF Downloads 184
1012 Upconversion Nanoparticle-Mediated Carbon Monoxide Prodrug Delivery System for Cancer Therapy

Authors: Yaw Opoku-Damoah, Run Zhang, Hang Thu Ta, Zhi Ping Xu

Abstract:

Gas therapy is still at an early stage of research and development. Even though most gasotransmitters have proven their therapeutic potential, their handling, delivery, and controlled release have been extremely challenging. This research work employs a versatile nanosystem that is capable of delivering a gasotransmitter in the form of a photo-responsive carbon monoxide-releasing molecule (CORM) for targeted cancer therapy. The therapeutic action was mediated by upconversion nanoparticles (UCNPs) designed to transfer bio-friendly low energy near-infrared (NIR) light to ultraviolet (UV) light capable of triggering carbon monoxide (CO) from a water-soluble amphiphilic manganese carbonyl complex CORM incorporated into a carefully designed lipid drug delivery system. Herein, gaseous CO that plays a role as a gasotransmitter with cytotoxic and homeostatic properties was investigated to instigate cellular apoptosis. After successfully synthesizing the drug delivery system, the ability of the system to encapsulate and mediate the sustained release of CO after light excitation was demonstrated. CO fluorescence probe (COFP) was successfully employed to determine the in vitro drug release profile upon NIR light irradiation. The uptake of nanoparticles enhanced by folates and its receptor interaction was also studied for cellular uptake purposes. The anticancer potential of the final lipid nanoparticle Lipid/UCNPs/CORM/FA (LUCF) was also determined by cell viability assay. Intracellular CO release and a subsequent therapeutic action involving ROS production, mitochondrial damage, and CO production was also evaluated. In all, this current project aims to use in vitro studies to determine the potency and efficiency of a NIR-mediated CORM prodrug delivery system.

Keywords: carbon monoxide-releasing molecule, upconversion nanoparticles, site-specific delivery, amphiphilic manganese carbonyl complex, prodrug delivery system.

Procedia PDF Downloads 111
1011 Comparison between the Roller-Foam and Neuromuscular Facilitation Stretching on Flexibility of Hamstrings Muscles

Authors: Paolo Ragazzi, Olivier Peillon, Paul Fauris, Mathias Simon, Raul Navarro, Juan Carlos Martin, Oriol Casasayas, Laura Pacheco, Albert Perez-Bellmunt

Abstract:

Introduction: The use of stretching techniques in the sports world is frequent and widely used for its many effects. One of the main benefits is the gain in flexibility, range of motion and facilitation of the sporting performance. Recently the use of Roller-Foam (RF) has spread in sports practice both at elite and recreational level for its benefits being similar to those observed in stretching. The objective of the following study is to compare the results of the Roller-Foam with the proprioceptive neuromuscular facilitation stretching (PNF) (one of the stretchings with more evidence) on the hamstring muscles. Study design: The design of the study is a single-blind, randomized controlled trial and the participants are 40 healthy volunteers. Intervention: The subjects are distributed randomly in one of the following groups; stretching (PNF) intervention group: 4 repetitions of PNF stretching (5seconds of contraction, 5 second of relaxation, 20 second stretch), Roller-Foam intervention group: 2 minutes of Roller-Foam was realized on the hamstring muscles. Main outcome measures: hamstring muscles flexibility was assessed at the beginning, during (30’’ of intervention) and the end of the session by using the Modified Sit and Reach test (MSR). Results: The baseline results data given in both groups are comparable to each other. The PNF group obtained an increase in flexibility of 3,1 cm at 30 seconds (first series) and of 5,1 cm at 2 minutes (the last of all series). The RF group obtained a 0,6 cm difference at 30 seconds and 2,4 cm after 2 minutes of application of roller foam. The results were statistically significant when comparing intragroups but not intergroups. Conclusions: Despite the fact that the use of roller foam is spreading in the sports and rehabilitation field, the results of the present study suggest that the gain of flexibility on the hamstrings is greater if PNF type stretches are used instead of RF. These results may be due to the fact that the use of roller foam intervened more in the fascial tissue, while the stretches intervene more in the myotendinous unit. Future studies are needed, increasing the sample number and diversifying the types of stretching.

Keywords: hamstring muscle, stretching, neuromuscular facilitation stretching, roller foam

Procedia PDF Downloads 185
1010 Causal-Explanatory Model of Academic Performance in Social Anxious Adolescents

Authors: Beatriz Delgado

Abstract:

Although social anxiety is one of the most prevalent disorders in adolescents and causes considerable difficulties and social distress in those with the disorder, to date very few studies have explored the impact of social anxiety on academic adjustment in student populations. The aim of this study was analyze the effect of social anxiety on school functioning in Secondary Education. Specifically, we examined the relationship between social anxiety and self-concept, academic goals, causal attributions, intellectual aptitudes, and learning strategies, personality traits, and academic performance, with the purpose of creating a causal-explanatory model of academic performance. The sample consisted of 2,022 students in the seven to ten grades of Compulsory Secondary Education in Spain (M = 13.18; SD = 1.35; 51.1% boys). We found that: (a) social anxiety has a direct positive effect on internal attributional style, and a direct negative effect on self-concept. Social anxiety also has an indirect negative effect on internal causal attributions; (b) prior performance (first academic trimester) exerts a direct positive effect on intelligence, achievement goals, academic self-concept, and final academic performance (third academic trimester), and a direct negative effect on internal causal attributions. It also has an indirect positive effect on causal attributions (internal and external), learning goals, achievement goals, and study strategies; (c) intelligence has a direct positive effect on learning goals and academic performance (third academic trimester); (d) academic self-concept has a direct positive effect on internal and external attributional style. Also, has an indirect effect on learning goals, achievement goals, and learning strategies; (e) internal attributional style has a direct positive effect on learning strategies and learning goals. Has a positive but indirect effect on achievement goals and learning strategies; (f) external attributional style has a direct negative effect on learning strategies and learning goals and a direct positive effect on internal causal attributions; (g) learning goals have direct positive effect on learning strategies and achievement goals. The structural equation model fit the data well (CFI = .91; RMSEA = .04), explaining 93.8% of the variance in academic performance. Finally, we emphasize that the new causal-explanatory model proposed in the present study represents a significant contribution in that it includes social anxiety as an explanatory variable of cognitive-motivational constructs.

Keywords: academic performance, adolescence, cognitive-motivational variables, social anxiety

Procedia PDF Downloads 330
1009 Differences in Guilt, Shame, Self-Anger, and Suicide Cognitions Based on Recent Suicide Ideation and Lifetime Suicide Attempt History

Authors: E. H. Szeto, E. Ammendola, J. V. Tabares, A. Starkey, J. Hay, J. G. McClung, C. J. Bryan

Abstract:

Introduction: Suicide is a leading cause of death globally, which accounts for more deaths annually than war, acquired immunodeficiency syndrome, homicides, and car accidents, while an estimated 140 million individuals have significant suicide ideation (SI) each year in the United States. Typical risk factors such as hopelessness, depression, and psychiatric disorders can predict suicide ideation but cannot distinguish between those who ideate from those who attempt suicide (SA). The Fluid Vulnerability Theory of suicide posits that a person’s activation of the suicidal mode is predicated on one’s predisposition, triggers, baseline/acute risk, and protective factors. The current study compares self-conscious cognitive-affective states (including guilt, shame, anger towards the self, and suicidal beliefs) among patients based on the endorsement of recent SI (i.e., past two weeks; acute risk) and lifetime SA (i.e., baseline risk). Method: A total of 2,722 individuals in an outpatient primary care setting were included in this cross-sectional, observational study; data for 2,584 were valid and retained for analysis. The Differential Emotions Scale measuring guilt, shame, and self-anger and the Suicide Cognitions Scale measuring suicide cognitions were administered. Results: A total of 2,222 individuals reported no recent SI or lifetime SA (Group 1), 161 reported recent SI only (Group 2), 145 reported lifetime SA only (Group 3), 56 reported both recent SI and lifetime SA (Group 4). The Kruskal-Wallis test showed that guilt, shame, self-anger, and suicide cognitions were the highest for Group 4 (both recent SI and lifetime SA), followed by Group 2 (recent SI-only), then Group 3 (lifetime SA-only), and lastly, Group 1 (no recent SI or lifetime SA). Conclusion: The results on recent SI-only versus lifetime SA-only contribute to the literature on the Fluid Vulnerability Theory of suicide by capturing SI and SA in two different time periods, which signify the acute risks and chronic baseline risks of the suicidal mode, respectively. It is also shown that: (a) people with a lifetime SA reported more severe symptoms than those without, (b) people with recent SI reported more severe symptoms than those without, and (c) people with both recent SI and lifetime SA were the most severely distressed. Future studies may replicate the findings here with other pertinent risk factors such as thwarted belongingness, perceived burdensomeness, and acquired capability, the last of which is consistently linked to attempting among ideators.

Keywords: suicide, guilt, shame, self-anger, suicide cognitions, suicide ideation, suicide attempt

Procedia PDF Downloads 161
1008 Formulation and Evaluation of Glimepiride (GMP)-Solid Nanodispersion and Nanodispersed Tablets

Authors: Ahmed. Abdel Bary, Omneya. Khowessah, Mojahed. al-jamrah

Abstract:

Introduction: The major challenge with the design of oral dosage forms lies with their poor bioavailability. The most frequent causes of low oral bioavailability are attributed to poor solubility and low permeability. The aim of this study was to develop solid nanodispersed tablet formulation of Glimepiride for the enhancement of the solubility and bioavailability. Methodology: Solid nanodispersions of Glimepiride (GMP) were prepared using two different ratios of 2 different carriers, namely; PEG6000, pluronic F127, and by adopting two different techniques, namely; solvent evaporation technique and fusion technique. A full factorial design of 2 3 was adopted to investigate the influence of formulation variables on the prepared nanodispersion properties. The best chosen formula of nanodispersed powder was formulated into tablets by direct compression. The Differential Scanning Calorimetry (DSC) analysis and Fourier Transform Infra-Red (FTIR) analysis were conducted for the thermal behavior and surface structure characterization, respectively. The zeta potential and particle size analysis of the prepared glimepiride nanodispersions was determined. The prepared solid nanodispersions and solid nanodispersed tablets of GMP were evaluated in terms of pre-compression and post-compression parameters, respectively. Results: The DSC and FTIR studies revealed that there was no interaction between GMP and all the excipients used. Based on the resulted values of different pre-compression parameters, the prepared solid nanodispersions powder blends showed poor to excellent flow properties. The resulted values of the other evaluated pre-compression parameters of the prepared solid nanodispersion were within the limits of pharmacopoeia. The drug content of the prepared nanodispersions ranged from 89.6 ± 0.3 % to 99.9± 0.5% with particle size ranged from 111.5 nm to 492.3 nm and the resulted zeta potential (ζ ) values of the prepared GMP-solid nanodispersion formulae (F1-F8) ranged from -8.28±3.62 mV to -78±11.4 mV. The in-vitro dissolution studies of the prepared solid nanodispersed tablets of GMP concluded that GMP- pluronic F127 combinations (F8), exhibited the best extent of drug release, compared to other formulations, and to the marketed product. One way ANOVA for the percent of drug released from the prepared GMP-nanodispersion formulae (F1- F8) after 20 and 60 minutes showed significant differences between the percent of drug released from different GMP-nanodispersed tablet formulae (F1- F8), (P<0.05). Conclusion: Preparation of glimepiride as nanodispersed particles proven to be a promising tool for enhancing the poor solubility of glimepiride.

Keywords: glimepiride, solid Nanodispersion, nanodispersed tablets, poorly water soluble drugs

Procedia PDF Downloads 485
1007 Wetting Features of Butterflies Morpho Peleides and Anti-icing Behavior

Authors: Burdin Louise, Brulez Anne-Catherine, Mazurcyk Radoslaw, Leclercq Jean-louis, Benayoun Stéphane

Abstract:

By using a biomimetic approach, an investigation was conducted to determine the connections between morphology and wetting. The interest is focused on the Morpho peleides butterfly. This butterfly is already well-known among researchers for its brilliant iridescent color and has inspired numerous innovations. The intricate structure of its wings is responsible for such color. However, this multiscale structure exhibits a multitude of other features, such as hydrophobicity. Given the limited research on the wetting properties of Morpho butterfly, a detailed analysis of its wetting behavior is proposed. Multiscale surface topographies of the Morpho peleides butterfly were analyzed using scanning electron microscope and atomic force microscopy. To understand the relationship between morphology and wettability, a goniometer was employed to measured static and dynamic contact angle. Since several studies have consistently demonstrated that superhydrophobic surfaces can effectively delay freezing, icing delay time the Morpho’s wings was also measured. The results revealed contact angles close to 136°, indicating a high degree of hydrophobicity. Moreover, sliding angles (SA) were measured in different directions, including along and against the rolling-outward direction. The findings suggest anisotropic wetting. Specifically, when the wing was tilted along the rolling outward direction (i.e., away from the insect’s body) SA was about 7°. While, when the wing was tilted against the rolling outward direction, SA was about 29°. This phenomenon is directly linked to the butterfly’s survival strategy. To investigate the exclusive morphological impact on anti-icing properties, PDMS replicas of the Morpho butterfly were obtained. When compared to flat PDMS and microscale textured PDMS, Morpho replications exhibited a longer freezing time. Therefore, this could be a source of inspiration for designing superhydrophobic surfaces with anti-icing applications or functional surfaces with controlled wettability.

Keywords: biomimetic, anisotropic wetting, anti-icing, multiscale roughness

Procedia PDF Downloads 56
1006 An Experimental Investigation on Explosive Phase Change of Liquefied Propane During a Bleve Event

Authors: Frederic Heymes, Michael Albrecht Birk, Roland Eyssette

Abstract:

Boiling Liquid Expanding Vapor Explosion (BLEVE) has been a well know industrial accident for over 6 decades now, and yet it is still poorly predicted and avoided. BLEVE is created when a vessel containing a pressure liquefied gas (PLG) is engulfed in a fire until the tank rupture. At this time, the pressure drops suddenly, leading the liquid to be in a superheated state. The vapor expansion and the violent boiling of the liquid produce several shock waves. This works aimed at understanding the contribution of vapor ad liquid phases in the overpressure generation in the near field. An experimental work was undertaken at a small scale to reproduce realistic BLEVE explosions. Key parameters were controlled through the experiments, such as failure pressure, fluid mass in the vessel, and weakened length of the vessel. Thirty-four propane BLEVEs were then performed to collect data on scenarios similar to common industrial cases. The aerial overpressure was recorded all around the vessel, and also the internal pressure changed during the explosion and ground loading under the vessel. Several high-speed cameras were used to see the vessel explosion and the blast creation by shadowgraph. Results highlight how the pressure field is anisotropic around the cylindrical vessel and highlights a strong dependency between vapor content and maximum overpressure from the lead shock. The time chronology of events reveals that the vapor phase is the main contributor to the aerial overpressure peak. A prediction model is built upon this assumption. Secondary flow patterns are observed after the lead. A theory on how the second shock observed in experiments forms is exposed thanks to an analogy with numerical simulation. The phase change dynamics are also discussed thanks to a window in the vessel. Ground loading measurements are finally presented and discussed to give insight into the order of magnitude of the force.

Keywords: phase change, superheated state, explosion, vapor expansion, blast, shock wave, pressure liquefied gas

Procedia PDF Downloads 77
1005 Effect of the Food Distribution on Household Food Security Status in Iran

Authors: Delaram Ghodsi, Nasrin Omidvar, Hassan Eini-Zinab, Arash Rashidian, Hossein Raghfar

Abstract:

Food supplementary programs are policy approaches that aim to reduce financial barriers to healthy diets and tackle food insecurity. This study aimed to evaluate the effect of the supportive section of Multidisciplinary Supplementary Program for Improvement of Nutritional Status of Children (MuPINSC) on households’ food security status and nutritional status of mothers. MuPINSC is a national integrative program in Iran that distributes supplementary food basket to malnourished or growth retarded children living in low-income families in addition to providing health services, including sanitation, growth monitoring, and empowerment of families. This longitudinal study is part of a comprehensive evaluation of the program. The study participants included 359 mothers of children aged 6 to 72 month under coverage of the supportive section of the program in two provinces of Iran (Semnan and Qazvin). Demographic and economic characteristics of families were assessed by a questionnaire. Data on food security of family was collected by locally adapted Household Food Insecurity Access Scale (HFIAS) at the baseline of the study and six month thereafter. Weight and height of mothers were measured at the baseline and end of the study and mother’s BMI was calculated. Data were analysed, using paired t-test, GEE (Generalized Estimating Equation), and Chi-square tests. Based on the findings, at the baseline, only 4.7% of families were food-secure, while 13.1%, 38.7% and, 43.5% were categorized as mild, moderate and severe food insecure. After six months follow up, the distribution of different levels of food security changed significantly (P<0.001) to 7.9%, 11.6%, 42.6%, and 38%, respectively. At the end of the study, the chance of food insecurity was significantly 20% lower than the beginning (OR=0.796; 0.653-0.971). No significant difference was observed in maternal BMI based on food security (P>0.05). The findings show that the food supplementary program for children improved household food security status in the studied households. Further research is needed to assess other factors that affect the effectiveness of this large scale program on nutritional status and household’s food security.

Keywords: food security, food supplementary program, household, malnourished children

Procedia PDF Downloads 400
1004 Development of Vertically Integrated 2D Lake Victoria Flow Models in COMSOL Multiphysics

Authors: Seema Paul, Jesper Oppelstrup, Roger Thunvik, Vladimir Cvetkovic

Abstract:

Lake Victoria is the second largest fresh water body in the world, located in East Africa with a catchment area of 250,000 km², of which 68,800 km² is the actual lake surface. The hydrodynamic processes of the shallow (40–80 m deep) water system are unique due to its location at the equator, which makes Coriolis effects weak. The paper describes a St.Venant shallow water model of Lake Victoria developed in COMSOL Multiphysics software, a general purpose finite element tool for solving partial differential equations. Depth soundings taken in smaller parts of the lake were combined with recent more extensive data to resolve the discrepancies of the lake shore coordinates. The topography model must have continuous gradients, and Delaunay triangulation with Gaussian smoothing was used to produce the lake depth model. The model shows large-scale flow patterns, passive tracer concentration and water level variations in response to river and tracer inflow, rain and evaporation, and wind stress. Actual data of precipitation, evaporation, in- and outflows were applied in a fifty-year simulation model. It should be noted that the water balance is dominated by rain and evaporation and model simulations are validated by Matlab and COMSOL. The model conserves water volume, the celerity gradients are very small, and the volume flow is very slow and irrotational except at river mouths. Numerical experiments show that the single outflow can be modelled by a simple linear control law responding only to mean water level, except for a few instances. Experiments with tracer input in rivers show very slow dispersion of the tracer, a result of the slow mean velocities, in turn, caused by the near-balance of rain with evaporation. The numerical and hydrodynamical model can evaluate the effects of wind stress which is exerted by the wind on the lake surface that will impact on lake water level. Also, model can evaluate the effects of the expected climate change, as manifest in changes to rainfall over the catchment area of Lake Victoria in the future.

Keywords: bathymetry, lake flow and steady state analysis, water level validation and concentration, wind stress

Procedia PDF Downloads 225
1003 Comparison of Power Generation Status of Photovoltaic Systems under Different Weather Conditions

Authors: Zhaojun Wang, Zongdi Sun, Qinqin Cui, Xingwan Ren

Abstract:

Based on multivariate statistical analysis theory, this paper uses the principal component analysis method, Mahalanobis distance analysis method and fitting method to establish the photovoltaic health model to evaluate the health of photovoltaic panels. First of all, according to weather conditions, the photovoltaic panel variable data are classified into five categories: sunny, cloudy, rainy, foggy, overcast. The health of photovoltaic panels in these five types of weather is studied. Secondly, a scatterplot of the relationship between the amount of electricity produced by each kind of weather and other variables was plotted. It was found that the amount of electricity generated by photovoltaic panels has a significant nonlinear relationship with time. The fitting method was used to fit the relationship between the amount of weather generated and the time, and the nonlinear equation was obtained. Then, using the principal component analysis method to analyze the independent variables under five kinds of weather conditions, according to the Kaiser-Meyer-Olkin test, it was found that three types of weather such as overcast, foggy, and sunny meet the conditions for factor analysis, while cloudy and rainy weather do not satisfy the conditions for factor analysis. Therefore, through the principal component analysis method, the main components of overcast weather are temperature, AQI, and pm2.5. The main component of foggy weather is temperature, and the main components of sunny weather are temperature, AQI, and pm2.5. Cloudy and rainy weather require analysis of all of their variables, namely temperature, AQI, pm2.5, solar radiation intensity and time. Finally, taking the variable values in sunny weather as observed values, taking the main components of cloudy, foggy, overcast and rainy weather as sample data, the Mahalanobis distances between observed value and these sample values are obtained. A comparative analysis was carried out to compare the degree of deviation of the Mahalanobis distance to determine the health of the photovoltaic panels under different weather conditions. It was found that the weather conditions in which the Mahalanobis distance fluctuations ranged from small to large were: foggy, cloudy, overcast and rainy.

Keywords: fitting, principal component analysis, Mahalanobis distance, SPSS, MATLAB

Procedia PDF Downloads 142
1002 The Role of Agroforestry Practices in Climate Change Mitigation in Western Kenya

Authors: Humphrey Agevi, Harrison Tsingalia, Richard Onwonga, Shem Kuyah

Abstract:

Most of the world ecosystems have been affected by the effects of climate change. Efforts have been made to mitigate against climate change effects. While most studies have been done in forest ecosystems and pure plant plantations, trees on farms including agroforestry have only received attention recently. Agroforestry systems and tree cover on agricultural lands make an important contribution to climate change mitigation but are not systematically accounted for in the global carbon budgets. This study sought to: (i) determine tree diversity in different agroforestry practices; (ii) determine tree biomass in different agroforestry practices. Study area was determined according to the Land degradation surveillance framework (LSDF). Two study sites were established. At each of the site, a 5km x 10km block was established on a map using Google maps and satellite images. Way points were then uploaded in a GPS helped locate the blocks on the ground. In each of the blocks, Nine (8) sentinel clusters measuring 1km x 1km were randomized. Randomization was done in a common spreadsheet program and later be downloaded to a Global Positioning System (GPS) so that during surveys the researchers were able to navigate to the sampling points. In each of the sentinel cluster, two farm boundaries were randomly identified for convenience and to avoid bias. This led to 16 farms in Kakamega South and 16 farms in Kakamega North totalling to 32 farms in Kakamega Site. Species diversity was determined using Shannon wiener index. Tree biomass was determined using allometric equation. Two agroforestry practices were found; homegarden and hedgerow. Species diversity ranged from 0.25-2.7 with a mean of 1.8 ± 0.10. Species diversity in homegarden ranged from 1-2.7 with a mean of 1.98± 0.14. Hedgerow species diversity ranged from 0.25-2.52 with a mean of 1.74± 0.11. Total Aboveground Biomass (AGB) determined was 13.96±0.37 Mgha-1. Homegarden with the highest abundance of trees had higher above ground biomass (AGB) compared to hedgerow agroforestry. This study is timely as carbon budgets in the agroforestry can be incorporated in the global carbon budgets and improve the accuracy of national reporting of greenhouse gases.

Keywords: agroforestry, allometric equations, biomass, climate change

Procedia PDF Downloads 361
1001 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation

Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong

Abstract:

Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation

Procedia PDF Downloads 189
1000 Effects of Machining Parameters on the Surface Roughness and Vibration of the Milling Tool

Authors: Yung C. Lin, Kung D. Wu, Wei C. Shih, Jui P. Hung

Abstract:

High speed and high precision machining have become the most important technology in manufacturing industry. The surface roughness of high precision components is regarded as the important characteristics of the product quality. However, machining chatter could damage the machined surface and restricts the process efficiency. Therefore, selection of the appropriate cutting conditions is of importance to prevent the occurrence of chatter. In addition, vibration of the spindle tool also affects the surface quality, which implies the surface precision can be controlled by monitoring the vibration of the spindle tool. Based on this concept, this study was aimed to investigate the influence of the machining conditions on the surface roughness and the vibration of the spindle tool. To this end, a series of machining tests were conducted on aluminum alloy. In tests, the vibration of the spindle tool was measured by using the acceleration sensors. The surface roughness of the machined parts was examined using white light interferometer. The response surface methodology (RSM) was employed to establish the mathematical models for predicting surface finish and tool vibration, respectively. The correlation between the surface roughness and spindle tool vibration was also analyzed by ANOVA analysis. According to the machining tests, machined surface with or without chattering was marked on the lobes diagram as the verification of the machining conditions. Using multivariable regression analysis, the mathematical models for predicting the surface roughness and tool vibrations were developed based on the machining parameters, cutting depth (a), feed rate (f) and spindle speed (s). The predicted roughness is shown to agree well with the measured roughness, an average percentage of errors of 10%. The average percentage of errors of the tool vibrations between the measurements and the predictions of mathematical model is about 7.39%. In addition, the tool vibration under various machining conditions has been found to have a positive influence on the surface roughness (r=0.78). As a conclusion from current results, the mathematical models were successfully developed for the predictions of the surface roughness and vibration level of the spindle tool under different cutting condition, which can help to select appropriate cutting parameters and to monitor the machining conditions to achieve high surface quality in milling operation.

Keywords: machining parameters, machining stability, regression analysis, surface roughness

Procedia PDF Downloads 230
999 Hydrothermal Alteration and Mineralization of Cisarua, Nanggung District, Bogor Regency, West Java, Indonesia

Authors: A. Asaga, N. I. Basuki

Abstract:

The research area is located in Cisarua, Bogor Regency, West Java, with 12,8 km2 wide. This area belongs to mining region of PT Aneka Tambang Tbk. The purpose of this research is to study geological condition, alteration type and pattern, and type of mineralization. Geomorphology of the research area is at young to mature stage, which can be divided into Ciparigi’s Parasite Volcanic Cone Unit, Ciparigi Caldera Valley Unit, Ciparigi Caldera Rim Hill Unit, and Pongkor Volcanic Hill. Stratigraphy of the research area consist of five units, they are Laharic Breccia (Pliocene), Pyroclastic Breccia, Lapilli Tuff, Flow Tuff, Fall Tuff, and Andesite Lava (Pleistocene). Based on mineral composition, it is interpreted that there is magma composition changing from rhyolite to andesitic. Geological structures in the research area are caused by NE-SW and N-S stress direction; they are Ciparay Right Strike-Slip Fault (Pliocene), Cisarua Right Strike-Slip Fault, G. Singa Left Strike-Slip Fault, and Cinyuncung Right Strike-Slip Fault (Pleistocene). Weak to strong hydrothermal alteration can be found in the research area.They are Chlorite ± Smectite ± Halloysite Zone, Smectite - Illite - Quartz Zone, Smectite - Kaolinite - Illite - Chlorite Zone, and Smectite - Chlorite - Calcite - Quartz Zone. The distribution and assemblage of alteration minerals is controlled by lithology and geological structures in Pleistocene. Mineralization produce ore minerals, those are pyrite, marcasite, chalcopyrite, sphalerite, galena, and chalcocite. There are calcite and quartz veins that show colloform, comb, and crystalline textures. Hydrothermal alteration assemblages, ore minerals, and cavity filling textures suggest that mineralization type in research area is epithermal low sulphidation.

Keywords: Pongkor, hydrothermal alteration, epithermal, geochemistry

Procedia PDF Downloads 395
998 Cybernetic Model-Based Optimization of a Fed-Batch Process for High Cell Density Cultivation of E. Coli In Shake Flasks

Authors: Snehal D. Ganjave, Hardik Dodia, Avinash V. Sunder, Swati Madhu, Pramod P. Wangikar

Abstract:

Batch cultivation of recombinant bacteria in shake flasks results in low cell density due to nutrient depletion. Previous protocols on high cell density cultivation in shake flasks have relied mainly on controlled release mechanisms and extended cultivation protocols. In the present work, we report an optimized fed-batch process for high cell density cultivation of recombinant E. coli BL21(DE3) for protein production. A cybernetic model-based, multi-objective optimization strategy was implemented to obtain the optimum operating variables to achieve maximum biomass and minimized substrate feed rate. A syringe pump was used to feed a mixture of glycerol and yeast extract into the shake flask. Preliminary experiments were conducted with online monitoring of dissolved oxygen (DO) and offline measurements of biomass and glycerol to estimate the model parameters. Multi-objective optimization was performed to obtain the pareto front surface. The selected optimized recipe was tested for a range of proteins that show different extent soluble expression in E. coli. These included eYFP and LkADH, which are largely expressed in soluble fractions, CbFDH and GcanADH , which are partially soluble, and human PDGF, which forms inclusion bodies. The biomass concentrations achieved in 24 h were in the range 19.9-21.5 g/L, while the model predicted value was 19.44 g/L. The process was successfully reproduced in a standard laboratory shake flask without online monitoring of DO and pH. The optimized fed-batch process showed significant improvement in both the biomass and protein production of the tested recombinant proteins compared to batch cultivation. The proposed process will have significant implications in the routine cultivation of E. coli for various applications.

Keywords: cybernetic model, E. coli, high cell density cultivation, multi-objective optimization

Procedia PDF Downloads 252
997 Effective, Affordable, and Accessible Treatment for Pregnancy’s Commonest Complication: Online Synchronous Interpersonal Psychotherapy for Mothers with Postpartum Depression

Authors: Vivian Polak, Lena Verdeli, Wendy Lou, Caroline Lovett

Abstract:

Postnatal depression (PND) is a common complication of childbirth that increases the risk of future depressive episodes in women, postpartum depression in partners, as well as social, emotional, behavioural, language, and cognitive problems in offspring. Although psychotherapy, and in particular Group Interpersonal Psychotherapy (IPT-G), has been proven effective in treating PND, it remains largely inaccessible. However, research has indicated that online synchronous group therapy can be equally as effective as in-person therapy and is a more affordable and accessible modality of treatment. This study aimed to ascertain whether delivering IPT-G virtually when compared to treatment as usual, could more effectively reduce depressive and anxiety symptoms, enhance mother-infant attachment, improve the couple relationship, augment social support, improve overall functioning, and enhance the quality of life for women in rural and northern Ontario who are suffering from PND. By bridging the gap in access to mental health services during the postpartum period, this study seeks to improve the well-being of mothers and their families in rural and northern Ontario, Canada. A randomized controlled trial was conducted to determine whether virtual IPT-G plus treatment as usual would be more effective than treatment as usual alone in treating women with PND in Ontario, Canada. Preliminary results indicate that women who received virtual IPT-G had a clinically and statistically significant decrease in overall depressive symptoms compared to their counterparts who received only the treatment as usual. As such, providing online synchronous IPT-G in the perinatal period not only has the potential to improve women's outcomes in the present but also to decrease future health costs, reduce the burden on the educational and justice systems, and decrease the number of disability life years lost to postnatal depression.

Keywords: family wellbeing, group psychotherapy, interpersonal psychotherapy, postnatal depression, virtual psychotherapy

Procedia PDF Downloads 67
996 Nanoparticles Made from PNIPAM-G-PEO Double Hydrophilic Copolymers for Temperature-Controlled Drug Delivery

Authors: Victoria I. Michailova, Denitsa B. Momekova, Hristiana A. Velichkova, Evgeni H. Ivanov

Abstract:

The aim of this work is to design and develop thermo-responsive nanosized drug delivery systems based on poly(N-isopropylacrylamide)-g-poly(ethylene oxide) (PNIPAM-g-PEO) double hydrophilic graft copolymers. The PNIPAM-g-PEO copolymers are able to self-assemble in water into nanoparticles above the LCST of the thermo-responsive PNIPAM backbone and to disassemble and rapidly release the entrapped drugs upon cooling. However, their drug delivery applications are often hindered by their low loading capacity as the drugs to be encapsulated do not dissolve in water. In order to overcome this limitation, here we applied a low-temperature procedure with ethanol as an alternative route to the formation and loading a model hydrophobic drug, Indomethacin (IMC), into PNIPAM-g-PEO nanoparticles. The rationale for this approach was that ethanol dissolves both IMC and the copolymer and its mixing with water may induce micellization of PNIPAM-g-PEO at temperatures lower than the LCST. The influence of the volume fraction of ethanol and the temperature on the aggregation characteristics of PNIPAM-g-PEO copolymers (2.7 mol% PEO) was investigated by means of DLS, TEM and rheological dynamic oscillatory tests. The studies showed rich phase behavior at T < LCST, incl. the formation of highly solvated 500-1000 nm complex structures, 30-70 nm micelles and polymersomes as well as giant polymersomes, as the fraction of added ethanol increased. We believe that the PNIPAM-g-PEO self-assembly is favored due to the different solvation of its constituting blocks in ethanol-water mixtures. The incorporation of IMC led to alteration of the physicochemical and morphological characteristics of the blank nanoparticles. In this case, only monodisperse polymersomes and micelles were observed in the solutions with an average diameter less than 65 nm and substantial drug loading (DLC ~117 – 146 wt%). Indomethacin release from the nanoparticles was responsive to temperature changes, being much faster at a temperature of 42oC compared to that of 37oC under otherwise the same conditions. The results obtained suggest that these PNIPAM-g-PEO nanoparticles could be potential in mild hyper-thermic delivery of nonsteroidal anti-inflammatory drugs.

Keywords: drug delivery, nanoparticles, poly(N-isopropylacryl amide)-g-poly(ethylene oxide), thermo-responsive

Procedia PDF Downloads 287
995 International Entrepreneurial Orientation and Institutionalism: The Effect on International Performance for Latin American SMEs

Authors: William Castillo, Hugo Viza, Arturo Vargas

Abstract:

The Pacific Alliance is a trade bloc that is composed of four emerging economies: Chile, Colombia, Peru, and Mexico. These economies have gained macroeconomic stability in the past decade and as a consequence present future economic progress. Under this positive scenario, international business firms have flourished. However, the literature in this region has been widely unexamined. Therefore, it is critical to fill this theoretical gap, especially considering that Latin America is starting to become a global player and it possesses a different institutional context than developed markets. This paper analyzes the effect of international entrepreneurial orientation and institutionalism on international performance, for the Pacific Alliance small-to-medium enterprises (SMEs). The literature considers international entrepreneurial orientation to be a powerful managerial capability – along the resource based view- that firms can leverage to obtain a satisfactory international performance. Thereby, obtaining a competitive advantage through the correct allocation of key resources to exploit the capabilities here involved. Entrepreneurial Orientation is defined around five factors: innovation, proactiveness, risk-taking, competitive aggressiveness, and autonomy. Nevertheless, the institutional environment – both local and foreign, adversely affects International Performance; this is especially the case for emerging markets with uncertain scenarios. In this way, the study analyzes an Entrepreneurial Orientation, key endogenous variable of international performance, and Institutionalism, an exogenous variable. The survey data consists of Pacific Alliance SMEs that have foreign operations in at least another country in the trade bloc. Findings are still in an ongoing research process. Later, the study will undertake a structural equation modeling (SEM) using the variance-based partial least square estimation procedure. The software that is going to be used is the SmartPLS. This research contributes to the theoretical discussion of a largely postponed topic: SMEs in Latin America, that has had limited academic research. Also, it has practical implication for decision-makers and policy-makers, providing insights into what is behind international performance.

Keywords: institutional theory, international entrepreneurial orientation, international performance, SMEs, Pacific Alliance

Procedia PDF Downloads 248
994 Expectation for Professionalism Effects Reality Shock: A Qualitative And Quantitative Study of Reality Shock among New Human Service Professionals

Authors: Hiromi Takafuji

Abstract:

It is a well-known fact that health care and welfare are the foundation of human activities, and human service professionals such as nurses and child care workers support these activities. COVID-19 pandemic has made the severity of the working environment in these fields even more known. It is high time to discuss the work of human service workers for the sustainable development of the human environment. Early turnover has been recognized as a long-standing issue in these fields. In Japan, the attrition rate within three years of graduation for these occupations has remained high at about 40% for more than 20 years. One of the reasons for this is Reality Shock: RS, which refers to the stress caused by the gap between pre-employment expectations and the post-employment reality experienced by new workers. The purpose of this study was to academically elucidate the mechanism of RS among human service professionals and to contribute to countermeasures against it. Firstly, to explore the structure of the relationship between professionalism and workers' RS, an exploratory interview survey was conducted and analyzed by text mining and content analysis. The results showed that the expectation of professionalism influences RS as a pre-employment job expectation. Next, the expectations of professionalism were quantified and categorized, and the responses of a total of 282 human service work professionals, nurses, child care workers, and caregivers; were finalized for data analysis. The data were analyzed using exploratory factor analysis, confirmatory factor analysis, multiple regression analysis, and structural equation modeling techniques. The results revealed that self-control orientation and authority orientation by qualification had a direct positive significant impact on RS. On the other hand, interpersonal helping orientation and altruistic orientation were found to have a direct negative significant impact and an indirect positive significant impact on RS.; we were able to clarify the structure of work expectations that affect the RS of welfare professionals, which had not been clarified in previous studies. We also explained the limitations, practical implications, and directions for future research.

Keywords: human service professional, new hire turnover, SEM, reality shock

Procedia PDF Downloads 98
993 The Practice of Low Flow Anesthesia to Reduce Carbon Footprints Sustainability Project

Authors: Ahmed Eid, Amita Gupta

Abstract:

Abstract: Background: Background Medical gases are estimated to contribute to 5% of the carbon footprints produced by hospitals, Desflurane has the largest impact, but all increase significantly when used with N2O admixture. Climate Change Act 2008, we must reduce our carbon emission by 80% of the 1990 baseline by 2050.NHS carbon emissions have reduced by 18.5% (2007-2017). The NHS Long Term Plan has outlined measures to achieve this objective, including a 2% reduction by transforming anaesthetic practices. FGF is an important variable that determines the utilization of inhalational agents and can be tightly controlled by the anaesthetist. Aims and Objectives Environmental safety, Identification of areas of high N20 and different anaesthetic agents used across the St Helier operating theatres and consider improvising on the current practice. Methods: Data was collected from St Helier operating theatres and retrieved daily from Care Station 650 anaesthetic machines. 60 cases were included in the sample. Collected data (average flow rate, amount and type of agent used, duration of surgery, type of surgery, duration, and the total amount of Air, O2 and N2O used. AAGBI impact anaesthesia calculator was used to identify the amount of CO2 produced and also the cost per hour for every pt. Communication via reminder emails to staff emphasized the significance of low-flow anaesthesia and departmental meeting presentations aimed at heightening awareness of LFA, Distribution of AAGBI calculator QR codes in all theatres enables the calculation of volatile anaesthetic consumption and CO2e post each case, facilitating informed environmental impact assessment. Results: A significant reduction in the flow rate use in the 2nd sample was observed, flow rate usage between 0-1L was 60% which means a great reduction of the consumption of volatile anaesthetics and also Co2e. By using LFA we can save money but most importantly we can make our lives much greener and save the planet.

Keywords: low flow anesthesia, sustainability project, N₂0, Co2e

Procedia PDF Downloads 67
992 3-D Strain Imaging of Nanostructures Synthesized via CVD

Authors: Sohini Manna, Jong Woo Kim, Oleg Shpyrko, Eric E. Fullerton

Abstract:

CVD techniques have emerged as a promising approach in the formation of a broad range of nanostructured materials. The realization of many practical applications will require efficient and economical synthesis techniques that preferably avoid the need for templates or costly single-crystal substrates and also afford process adaptability. Towards this end, we have developed a single-step route for the reduction-type synthesis of nanostructured Ni materials using a thermal CVD method. By tuning the CVD growth parameters, we can synthesize morphologically dissimilar nanostructures including single-crystal cubes and Au nanostructures which form atop untreated amorphous SiO2||Si substrates. An understanding of the new properties that emerge in these nanostructures materials and their relationship to function will lead to for a broad range of magnetostrictive devices as well as other catalysis, fuel cell, sensor, and battery applications based on high-surface-area transition-metal nanostructures. We use coherent X-ray diffraction imaging technique to obtain 3-D image and strain maps of individual nanocrystals. Coherent x-ray diffractive imaging (CXDI) is a technique that provides the overall shape of a nanostructure and the lattice distortion based on the combination of highly brilliant coherent x-ray sources and phase retrieval algorithm. We observe a fine interplay of reduction of surface energy vs internal stress, which plays an important role in the morphology of nano-crystals. The strain distribution is influenced by the metal-substrate interface and metal-air interface, which arise due to differences in their thermal expansion. We find the lattice strain at the surface of the octahedral gold nanocrystal agrees well with the predictions of the Young-Laplace equation quantitatively, but exhibits a discrepancy near the nanocrystal-substrate interface resulting from the interface. The strain in the bottom side of the Ni nanocube, which is contacted on the substrate surface is compressive. This is caused by dissimilar thermal expansion coefficients between Ni nanocube and Si substrate. Research at UCSD support by NSF DMR Award # 1411335.

Keywords: CVD, nanostructures, strain, CXRD

Procedia PDF Downloads 391
991 Development of the Maturity Sensor Prototype and Method of Its Placement in the Structure

Authors: Yelbek B. Utepov, Assel S. Tulebekova, Alizhan B. Kazkeyev

Abstract:

Maturity sensors are used to determine concrete strength by the non-destructive method. The method of placement of the maturity sensors determines their number required for a certain frame of a monolithic building. Previous studies weakly describe this aspect, giving only logical assumptions. This paper proposes a cheap prototype of an embedded wireless sensor for monitoring concrete structures, as well as an alternative strategy for placing sensors based on the transitional boundaries of the temperature distribution of concrete curing, which were determined by building a heat map of the temperature distribution, where unknown values are calculated by the method of inverse distance weighing. The developed prototype can simultaneously measure temperature and relative humidity over a smartphone-controlled time interval. It implements a maturity method to assess the in-situ strength of concrete, which is considered an alternative to the traditional shock impulse and compression testing method used in Kazakhstan. The prototype was tested in laboratory and field conditions. The tests were aimed at studying the effect of internal and external temperature and relative humidity on concrete's strength gain. Based on an experimentally poured concrete slab with randomly integrated maturity sensors, it was determined that the transition boundaries form elliptical forms. Temperature distribution over the largest diameter of the ellipses was plotted, resulting in correct and inverted parabolas. As a result, the distance between the closest opposite crossing points of the parabolas is accepted as the maximum permissible step for setting the maturity sensors. The proposed placement strategy can be applied to sensors that measure various continuous phenomena such as relative humidity. Prototype testing has also revealed Bluetooth inconvenience due to weak signal and inability to access multiple prototypes simultaneously. For this reason, further prototype upgrades are planned in future work.

Keywords: heat map, placement strategy, temperature and relative humidity, wireless embedded sensor

Procedia PDF Downloads 175
990 Performance Improvement of Long-Reach Optical Access Systems Using Hybrid Optical Amplifiers

Authors: Shreyas Srinivas Rangan, Jurgis Porins

Abstract:

The internet traffic has increased exponentially due to the high demand for data rates by the users, and the constantly increasing metro networks and access networks are focused on improving the maximum transmit distance of the long-reach optical networks. One of the common methods to improve the maximum transmit distance of the long-reach optical networks at the component level is to use broadband optical amplifiers. The Erbium Doped Fiber Amplifier (EDFA) provides high amplification with low noise figure but due to the characteristics of EDFA, its operation is limited to C-band and L-band. In contrast, the Raman amplifier exhibits a wide amplification spectrum, and negative noise figure values can be achieved. To obtain such results, high powered pumping sources are required. Operating Raman amplifiers with such high-powered optical sources may cause fire hazards and it may damage the optical system. In this paper, we implement a hybrid optical amplifier configuration. EDFA and Raman amplifiers are used in this hybrid setup to combine the advantages of both EDFA and Raman amplifiers to improve the reach of the system. Using this setup, we analyze the maximum transmit distance of the network by obtaining a correlation diagram between the length of the single-mode fiber (SMF) and the Bit Error Rate (BER). This hybrid amplifier configuration is implemented in a Wavelength Division Multiplexing (WDM) system with a BER of 10⁻⁹ by using NRZ modulation format, and the gain uniformity noise ratio (signal-to-noise ratio (SNR)), the efficiency of the pumping source, and the optical signal gain efficiency of the amplifier are studied experimentally in a mathematical modelling environment. Numerical simulations were implemented in RSoft OptSim simulation software based on the nonlinear Schrödinger equation using the Split-Step method, the Fourier transform, and the Monte Carlo method for estimating BER.

Keywords: Raman amplifier, erbium doped fibre amplifier, bit error rate, hybrid optical amplifiers

Procedia PDF Downloads 67