Search results for: Parametric learning
2971 Integrative Omics-Portrayal Disentangles Molecular Heterogeneity and Progression Mechanisms of Cancer
Authors: Binder Hans
Abstract:
Cancer is no longer seen as solely a genetic disease where genetic defects such as mutations and copy number variations affect gene regulation and eventually lead to aberrant cell functioning which can be monitored by transcriptome analysis. It has become obvious that epigenetic alterations represent a further important layer of (de-)regulation of gene activity. For example, aberrant DNA methylation is a hallmark of many cancer types, and methylation patterns were successfully used to subtype cancer heterogeneity. Hence, unraveling the interplay between different omics levels such as genome, transcriptome and epigenome is inevitable for a mechanistic understanding of molecular deregulation causing complex diseases such as cancer. This objective requires powerful downstream integrative bioinformatics methods as an essential prerequisite to discover the whole genome mutational, transcriptome and epigenome landscapes of cancer specimen and to discover cancer genesis, progression and heterogeneity. Basic challenges and tasks arise ‘beyond sequencing’ because of the big size of the data, their complexity, the need to search for hidden structures in the data, for knowledge mining to discover biological function and also systems biology conceptual models to deduce developmental interrelations between different cancer states. These tasks are tightly related to cancer biology as an (epi-)genetic disease giving rise to aberrant genomic regulation under micro-environmental control and clonal evolution which leads to heterogeneous cellular states. Machine learning algorithms such as self organizing maps (SOM) represent one interesting option to tackle these bioinformatics tasks. The SOMmethod enables recognizing complex patterns in large-scale data generated by highthroughput omics technologies. It portrays molecular phenotypes by generating individualized, easy to interpret images of the data landscape in combination with comprehensive analysis options. Our image-based, reductionist machine learning methods provide one interesting perspective how to deal with massive data in the discovery of complex diseases, gliomas, melanomas and colon cancer on molecular level. As an important new challenge, we address the combined portrayal of different omics data such as genome-wide genomic, transcriptomic and methylomic ones. The integrative-omics portrayal approach is based on the joint training of the data and it provides separate personalized data portraits for each patient and data type which can be analyzed by visual inspection as one option. The new method enables an integrative genome-wide view on the omics data types and the underlying regulatory modes. It is applied to high and low-grade gliomas and to melanomas where it disentangles transversal and longitudinal molecular heterogeneity in terms of distinct molecular subtypes and progression paths with prognostic impact.Keywords: integrative bioinformatics, machine learning, molecular mechanisms of cancer, gliomas and melanomas
Procedia PDF Downloads 1512970 Building Secondary School Mathematics Teachers’ Effective Teaching Practices Through Professional Development with Lesson Study
Authors: Temesgen Yadeta, Abbi Lemma, Maina Faith, Adula Bekele Hunde
Abstract:
Effective teaching plays a central role in students’ success in school. The main purpose of the study was to understand how engaging in a lesson study could help to develop secondary school mathematics teachers’ effective teaching practices to support students’ learning better. The research was conducted in Jimma City and employed design-based research with qualitative and quantitative data collected from two secondary schools and 12 mathematics teachers. A purposive sampling technique was used to select participants. Interviews, observations, document analysis, and questionnaires were the main sources of data. Qualitative data were analyzed through coding, categorizing, and thematizing supported by Atlas-ti qualitative data analysis software. Quantitative data were analyzed using mean, standard deviations, medians, and a Wilcoxon-ranked signed test supported by statistical packages for social sciences software. The findings of the study revealed that engaging in lesson study built mathematics teachers’ effective teaching practices. School leaders’ positive attitudes and initiative towards the lesson study were found to be supportive. Teachers’ collaboration, commitment with determination, and active participation during the study periods were also found to be supportive. Shortage of time and teachers’ high teaching load had constrained teachers’ active engagement in lesson study during study periods. In conclusion, the lesson study provided a more practical link between teachers’ professional learning activities and actual classroom practices. Therefore, it would be crucial to integrate lesson study into the present school-based teachers’ pedagogical capacity-building program in the country. It would also be beneficial to extend the merits of lesson study to other school subjects and more schools in the country based on their specific school contexts to build teachers’ effective teaching practices.Keywords: effective teaching practices, lesson study, mathematics teachers, professional development, secondary school
Procedia PDF Downloads 122969 Promoting Creative and Critical Thinking in Mathematics
Authors: Ana Maria Reis D'Azevedo Breda, Catarina Maria Neto da Cruz
Abstract:
The Japanese art of origami provides a rich context for designing exploratory mathematical activities for children and young people. By folding a simple sheet of paper, fascinating and surprising planar and spatial configurations emerge. Equally surprising is the unfolding process, which also produces striking patterns. The procedure of folding, unfolding, and folding again allows the exploration of interesting geometric patterns. When adequately and systematically done, we may deduce some of the mathematical rules ruling origami. As the child/youth folds the sheet of paper repeatedly, he can physically observe how the forms he obtains are transformed and how they relate to the pattern of the corresponding unfolding, creating space for the understanding/discovery of mathematical principles regulating the folding-unfolding process. As part of a 2023 Summer Academy organized by a Portuguese university, a session entitled “Folding, Thinking and Generalizing” took place. Twenty-three students attended the session, all enrolled in the 2nd cycle of Portuguese Basic Education and aged between 10 and 12 years old. The main focus of this session was to foster the development of critical cognitive and socio-emotional skills among these young learners using origami. These skills included creativity, critical analysis, mathematical reasoning, collaboration, and communication. Employing a qualitative, descriptive, and interpretative analysis of data collected during the session through field notes and students’ written productions, our findings reveal that structured origami-based activities not only promote student engagement with mathematical concepts in a playful and interactive but also facilitate the development of socio-emotional skills, which include collaboration and effective communication between participants. This research highlights the value of integrating origami into educational practices, highlighting its role in supporting comprehensive cognitive and emotional learning experiences.Keywords: skills, origami rules, active learning, hands-on activities
Procedia PDF Downloads 722968 FracXpert: Ensemble Machine Learning Approach for Localization and Classification of Bone Fractures in Cricket Athletes
Authors: Madushani Rodrigo, Banuka Athuraliya
Abstract:
In today's world of medical diagnosis and prediction, machine learning stands out as a strong tool, transforming old ways of caring for health. This study analyzes the use of machine learning in the specialized domain of sports medicine, with a focus on the timely and accurate detection of bone fractures in cricket athletes. Failure to identify bone fractures in real time can result in malunion or non-union conditions. To ensure proper treatment and enhance the bone healing process, accurately identifying fracture locations and types is necessary. When interpreting X-ray images, it relies on the expertise and experience of medical professionals in the identification process. Sometimes, radiographic images are of low quality, leading to potential issues. Therefore, it is necessary to have a proper approach to accurately localize and classify fractures in real time. The research has revealed that the optimal approach needs to address the stated problem and employ appropriate radiographic image processing techniques and object detection algorithms. These algorithms should effectively localize and accurately classify all types of fractures with high precision and in a timely manner. In order to overcome the challenges of misidentifying fractures, a distinct model for fracture localization and classification has been implemented. The research also incorporates radiographic image enhancement and preprocessing techniques to overcome the limitations posed by low-quality images. A classification ensemble model has been implemented using ResNet18 and VGG16. In parallel, a fracture segmentation model has been implemented using the enhanced U-Net architecture. Combining the results of these two implemented models, the FracXpert system can accurately localize exact fracture locations along with fracture types from the available 12 different types of fracture patterns, which include avulsion, comminuted, compressed, dislocation, greenstick, hairline, impacted, intraarticular, longitudinal, oblique, pathological, and spiral. This system will generate a confidence score level indicating the degree of confidence in the predicted result. Using ResNet18 and VGG16 architectures, the implemented fracture segmentation model, based on the U-Net architecture, achieved a high accuracy level of 99.94%, demonstrating its precision in identifying fracture locations. Simultaneously, the classification ensemble model achieved an accuracy of 81.0%, showcasing its ability to categorize various fracture patterns, which is instrumental in the fracture treatment process. In conclusion, FracXpert has become a promising ML application in sports medicine, demonstrating its potential to revolutionize fracture detection processes. By leveraging the power of ML algorithms, this study contributes to the advancement of diagnostic capabilities in cricket athlete healthcare, ensuring timely and accurate identification of bone fractures for the best treatment outcomes.Keywords: multiclass classification, object detection, ResNet18, U-Net, VGG16
Procedia PDF Downloads 1302967 To Handle Data-Driven Software Development Projects Effectively
Authors: Shahnewaz Khan
Abstract:
Machine learning (ML) techniques are often used in projects for creating data-driven applications. These tasks typically demand additional research and analysis. The proper technique and strategy must be chosen to ensure the success of data-driven projects. Otherwise, even exerting a lot of effort, the necessary development might not always be possible. In this post, an effort to examine the workflow of data-driven software development projects and its implementation process in order to describe how to manage a project successfully. Which will assist in minimizing the added workload.Keywords: data, data-driven projects, data science, NLP, software project
Procedia PDF Downloads 872966 Science Anxiety Levels in Emirati Pre-Service Teachers
Authors: Martina Dickson, Hanadi Kadbey, Melissa Mcminn
Abstract:
Research has shown that anxiety and trepidation towards learning about science is prevalent among elementary school teachers in Western countries. It has also been shown repeatedly that pre-service and in-service teachers who show signs of anxiety towards science are; a) less likely to teach it at all, where they have some autonomy over this, b) less likely to teach it effectively c) ultimately that their students have lower attainment scores in science. It is therefore critically important to gauge pre-service teachers’ science anxiety levels early on whilst there are still possibilities to overturn some of the reasons behind these fears and avert these serious issues occurring later on. This study takes place in the capital of the United Arab Emirates (U.A.E.) in the context of training local elementary school teachers. In the U.A.E., where Emirati teachers are already in the vast minority and attrition rates are high, it is important to offer as much support to pre-service teachers as possible. If pre-service teachers are graduating with high levels of science anxiety unabated, according to the research there is a very real concern that as generalist primary school teachers, their science teaching will be far from optimal. The aims of this research study were to ascertain the science anxiety levels of pre-service elementary teachers and to identify particular areas of their science anxiety, if appropriate. We surveyed 200 Emirati pre-service teachers and found that levels of science anxiety were directly related to their perceptions of performance in science exams, laboratory experiments and inquiry approaches to science learning. Whilst some studies have shown that science anxiety can decrease as students gain confidence in science knowledge by studying courses, we did not see this effect in our study. This is based upon a theoretical framework which holds that in some cases, science anxiety is related to lack of exposure to, or insecurity with science content itself which in some cases is alleviated by the students’ covering of material and greater confidence in the subject. Exploring this variable allowed us to explore whether students educated in schools influenced by the educational reform in Abu Dhabi have differing science anxiety levels from those who were educated prior to the reforms. We discuss the possible implications of these findings to the future teaching of science in Abu Dhabi public schools.Keywords: pre-service teachers, science anxiety, United Arab Emirates, educational reform
Procedia PDF Downloads 3382965 The Price of Knowledge in the Times of Commodification of Higher Education: A Case Study on the Changing Face of Education
Authors: Joanna Peksa, Faith Dillon-Lee
Abstract:
Current developments in the Western economies have turned some universities into corporate institutions driven by practices of production and commodity. Academia is increasingly becoming integrated into national economies as a result of students paying fees and is consequently using business practices in student retention and engagement. With these changes, pedagogy status as a priority within the institution has been changing in light of these new demands. New strategies have blurred the boundaries that separate a student from a client. This led to a change of the dynamic, disrupting the traditional idea of the knowledge market, and emphasizing the corporate aspect of universities. In some cases, where students are seen primarily as a customer, the purpose of academia is no longer to educate but sell a commodity and retain fee-paying students. This paper considers opposing viewpoints on the commodification of higher education, reflecting on the reality of maintaining a pedagogic grounding in an increasingly commercialized sector. By analysing a case study of the Student Success Festival, an event that involved academic and marketing teams, the differences are considered between the respective visions of the pedagogic arm of the university and the corporate. This study argues that the initial concept of the event, based on the principles of gamification, independent learning, and cognitive criticality, was more clearly linked to a grounded pedagogic approach. However, when liaising with the marketing team in a crucial step in the creative process, it became apparent that these principles were not considered a priority in terms of their remit. While the study acknowledges in the power of pedagogy, the findings show that a pact of concord is necessary between different stakeholders in order for students to benefit fully from their learning experience. Nevertheless, while issues of power prevail and whenever power is unevenly distributed, reaching a consensus becomes increasingly challenging and further research should closely monitor the developments in pedagogy in the UK higher education.Keywords: economic pressure, commodification, pedagogy, gamification, public service, marketization
Procedia PDF Downloads 1362964 The Structure and Development of a Wing Tip Vortex under the Effect of Synthetic Jet Actuation
Authors: Marouen Dghim, Mohsen Ferchichi
Abstract:
The effect of synthetic jet actuation on the roll-up and the development of a wing tip vortex downstream a square-tipped rectangular wing was investigated experimentally using hotwire anemometry. The wing is equipped with a hallow cavity designed to generate a high aspect ratio synthetic jets blowing at an angles with respect to the spanwise direction. The structure of the wing tip vortex under the effect of fluidic actuation was examined at a chord Reynolds number Re_c=8×10^4. An extensive qualitative study on the effect of actuation on the spanwise pressure distribution at c⁄4 was achieved using pressure scanner measurements in order to determine the optimal actuation parameters namely, the blowing momentum coefficient, Cμ, and the non-dimensionalized actuation frequency, F^+. A qualitative study on the effect of actuation parameters on the spanwise pressure distribution showed that optimal actuation frequencies of the synthetic jet were found within the range amplified by both long and short wave instabilities where spanwise pressure coefficients exhibited a considerable decrease by up to 60%. The vortex appeared larger and more diffuse than that of the natural vortex case. Operating the synthetic jet seemed to introduce unsteadiness and turbulence into the vortex core. Based on the ‘a priori’ optimal selected parameters, results of the hotwire wake survey indicated that the actuation achieved a reduction and broadening of the axial velocity deficit. A decrease in the peak tangential velocity associated with an increase in the vortex core radius was reported as a result of the accelerated radial transport of angular momentum. Peak vorticity level near the core was also found to be largely diffused as a direct result of the increased turbulent mixing within the vortex. The wing tip vortex a exhibited a reduced strength and a diffused core as a direct result of increased turbulent mixing due to the presence of turbulent small scale vortices within its core. It is believed that the increased turbulence within the vortex due to the synthetic jet control was the main mechanism associated with the decreased strength and increased size of the wing tip vortex as it evolves downstream. A comparison with a ‘non-optimal’ case was included to demonstrate the effectiveness of selecting the appropriate control parameters. The Synthetic Jet will be operated at various actuation configurations and an extensive parametric study is projected to determine the optimal actuation parameters.Keywords: flow control, hotwire anemometry, synthetic jet, wing tip vortex
Procedia PDF Downloads 4392963 Impact of Information and Communication Technology on Academic Performance of Senior Secondary Schools Students in Gwagwalada Area Council of Federal Capital Territory, Abuja
Authors: Suleiman Garba, Haruna Ishaku
Abstract:
Information and communication technology (ICT) includes any communication device encompassing: radio, television, cellular phones, computer, satellite systems and so on, as well as the various services and applications associated with them. The significance of ICT cannot be over-emphasized in education. The teaching and learning processes have integrated with the application of ICTs for effectiveness and enhancement of academic performance among the students. Today, as the educational sector is faced with series of changes and reforms, it was noted that the problem of information technology illiteracy was a serious one among the schools’ teachers in the country as it cuts across primary, secondary schools and tertiary institutions. This study investigated the impact of ICT on the academic performance of senior secondary schools students in Gwagwalada Area Council of Federal Capital Territory (FCT), Abuja. A sample of 120 SSS III students was involved in the study. They were selected by using simple random sampling technique. A questionnaire was developed and validated through expert judgement and reliability co-efficient of 0.81 was obtained. It was used to gather relevant data from the respondents. Findings revealed that there was positive impact of ICT on academic performance of senior secondary schools students. The findings indicated the causes of poor academic performance among the students as lack of qualified teachers to teach in schools, peer group influence, and bullying. Significantly, the findings revealed that ICT had a positive impact on students’ academic performance. The null hypotheses were tested using t-test at 0.05 level of significance. It was discovered that there was significant difference between male and female secondary schools’ students' impact of ICT on academic performance in Gwagawalada Area Council of FCT-Abuja. Based on these findings, some recommendations were made which include: adequate funds should be provided towards procurement of ICT resources, relevant textbooks to enhance students’ active participation in learning processes and students should be provided with internet accessibility at inexpensive rate so as to create a platform for accessing useful information in the pursuit of academic excellence.Keywords: academic performance, impact, information communication technology, schools, students
Procedia PDF Downloads 2242962 Evaluation of a Higher Diploma in Mental Health Nursing Using Qualitative and Quantitative Methods: Effects on Student Behavior, Attitude and Perception
Authors: T. Frawley, G. O'Kelly
Abstract:
The UCD School of Nursing, Midwifery and Health Systems Higher Diploma in Mental Health (HDMH) nursing programme commenced in January 2017. Forty students successfully completed the programme. Programme evaluation was conducted from the outset. Research ethics approval was granted by the UCD Human Research Ethics Committee – Sciences in November 2016 (LS-E-16-163). Plan for Sustainability: Each iteration of the programme continues to be evaluated and adjusted accordingly. Aims: The ultimate purpose of the HDMH programme is to prepare registered nurses (registered children’s nurse (RCN), registered nurse in intellectual disability (RNID) and registered general nurse (RGN)) to function as effective registered psychiatric nurses in all settings which provide care and treatment for people experiencing mental health difficulties. Curriculum evaluation is essential to ensure that the programme achieves its purpose, that aims and expected outcomes are met and that required changes are highlighted for the programme’s continuing positive development. Methods: Both quantitative and qualitative methods were used in the evaluation. A series of questionnaires were used (the majority pre and post programme) to determine student perceptions of the programme, behaviour and attitudinal change from commencement to completion. These included the student assessment of learning gains (SALG); mental health knowledge schedule (MAKS); mental health clinician attitudes scale (MICA); reported and intended behaviour scale (RIBS); and community attitudes towards the mentally ill (CAMI). In addition, student and staff focus groups were conducted. Evaluation methods also incorporated module feedback. Outcome/Results: The evaluation highlighted a very positive response in relation to the achievement of programme outcomes and preparation for future work as registered psychiatric nursing. Some areas were highlighted for further development, which have been taken cognisance of in the 2019 iteration of the programme.Keywords: learning gains, mental health, nursing, stigma
Procedia PDF Downloads 1422961 AI/ML Atmospheric Parameters Retrieval Using the “Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN)”
Authors: Thomas Monahan, Nicolas Gorius, Thanh Nguyen
Abstract:
Exoplanet atmospheric parameters retrieval is a complex, computationally intensive, inverse modeling problem in which an exoplanet’s atmospheric composition is extracted from an observed spectrum. Traditional Bayesian sampling methods require extensive time and computation, involving algorithms that compare large numbers of known atmospheric models to the input spectral data. Runtimes are directly proportional to the number of parameters under consideration. These increased power and runtime requirements are difficult to accommodate in space missions where model size, speed, and power consumption are of particular importance. The use of traditional Bayesian sampling methods, therefore, compromise model complexity or sampling accuracy. The Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN) is a deep convolutional generative adversarial network that improves on the previous model’s speed and accuracy. We demonstrate the efficacy of artificial intelligence to quickly and reliably predict atmospheric parameters and present it as a viable alternative to slow and computationally heavy Bayesian methods. In addition to its broad applicability across instruments and planetary types, ARcGAN has been designed to function on low power application-specific integrated circuits. The application of edge computing to atmospheric retrievals allows for real or near-real-time quantification of atmospheric constituents at the instrument level. Additionally, edge computing provides both high-performance and power-efficient computing for AI applications, both of which are critical for space missions. With the edge computing chip implementation, ArcGAN serves as a strong basis for the development of a similar machine-learning algorithm to reduce the downlinked data volume from the Compact Ultraviolet to Visible Imaging Spectrometer (CUVIS) onboard the DAVINCI mission to Venus.Keywords: deep learning, generative adversarial network, edge computing, atmospheric parameters retrieval
Procedia PDF Downloads 1752960 Emotion Recognition in Video and Images in the Wild
Authors: Faizan Tariq, Moayid Ali Zaidi
Abstract:
Facial emotion recognition algorithms are expanding rapidly now a day. People are using different algorithms with different combinations to generate best results. There are six basic emotions which are being studied in this area. Author tried to recognize the facial expressions using object detector algorithms instead of traditional algorithms. Two object detection algorithms were chosen which are Faster R-CNN and YOLO. For pre-processing we used image rotation and batch normalization. The dataset I have chosen for the experiments is Static Facial Expression in Wild (SFEW). Our approach worked well but there is still a lot of room to improve it, which will be a future direction.Keywords: face recognition, emotion recognition, deep learning, CNN
Procedia PDF Downloads 1922959 An Infinite Mixture Model for Modelling Stutter Ratio in Forensic Data Analysis
Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer
Abstract:
Forensic DNA analysis has received much attention over the last three decades, due to its incredible usefulness in human identification. The statistical interpretation of DNA evidence is recognised as one of the most mature fields in forensic science. Peak heights in an Electropherogram (EPG) are approximately proportional to the amount of template DNA in the original sample being tested. A stutter is a minor peak in an EPG, which is not masking as an allele of a potential contributor, and considered as an artefact that is presumed to be arisen due to miscopying or slippage during the PCR. Stutter peaks are mostly analysed in terms of stutter ratio that is calculated relative to the corresponding parent allele height. Analysis of mixture profiles has always been problematic in evidence interpretation, especially with the presence of PCR artefacts like stutters. Unlike binary and semi-continuous models; continuous models assign a probability (as a continuous weight) for each possible genotype combination, and significantly enhances the use of continuous peak height information resulting in more efficient reliable interpretations. Therefore, the presence of a sound methodology to distinguish between stutters and real alleles is essential for the accuracy of the interpretation. Sensibly, any such method has to be able to focus on modelling stutter peaks. Bayesian nonparametric methods provide increased flexibility in applied statistical modelling. Mixture models are frequently employed as fundamental data analysis tools in clustering and classification of data and assume unidentified heterogeneous sources for data. In model-based clustering, each unknown source is reflected by a cluster, and the clusters are modelled using parametric models. Specifying the number of components in finite mixture models, however, is practically difficult even though the calculations are relatively simple. Infinite mixture models, in contrast, do not require the user to specify the number of components. Instead, a Dirichlet process, which is an infinite-dimensional generalization of the Dirichlet distribution, is used to deal with the problem of a number of components. Chinese restaurant process (CRP), Stick-breaking process and Pólya urn scheme are frequently used as Dirichlet priors in Bayesian mixture models. In this study, we illustrate an infinite mixture of simple linear regression models for modelling stutter ratio and introduce some modifications to overcome weaknesses associated with CRP.Keywords: Chinese restaurant process, Dirichlet prior, infinite mixture model, PCR stutter
Procedia PDF Downloads 3332958 Digital Revolution a Veritable Infrastructure for Technological Development
Authors: Osakwe Jude Odiakaosa
Abstract:
Today’s digital society is characterized by e-education or e-learning, e-commerce, and so on. All these have been propelled by digital revolution. Digital technology such as computer technology, Global Positioning System (GPS) and Geographic Information System (GIS) has been having a tremendous impact on the field of technology. This development has positively affected the scope, methods, speed of data acquisition, data management and the rate of delivery of the results (map and other map products) of data processing. This paper tries to address the impact of revolution brought by digital technology.Keywords: digital revolution, internet, technology, data management
Procedia PDF Downloads 4532957 Towards Intercultural Competence in EFL Textbook: the Case of ‘New Prospects’
Authors: Kamilia Mebarki
Abstract:
The promotion of intercultural competence plays an important role in foreign language education. The outcome of intercultural educationalists‟ studies was the adoption of intercultural language learning and a modified version of the Communicative Competence that encompasses an intercultural component enabling language learners to communicate successfully interculturally. Intercultural Competencehas an even more central role in teaching English as a foreign language (EFL) since efforts are critical to preparing learners for intercultural communisation in our global world. In these efforts, EFL learning materials are a crucial stimulus for developing learners’ intercultural competence. There has been a continuous interest in the analysis of EFL textbooks by researcher all over the world. One specific area that has received prominent attention in recent years is a focus on how the cultural content of EFL materials promote intercultural competence. In the Algerian context, research on the locally produced EFL textbooks tend to focus on investigating the linguistic and communicative competence. The cultural content of the materials has not yet been systematically researched. Therefore, this study contributes to filling this gap by evaluating the locally published EFL textbook ‘New Prospects’ used at the high school level as well as investigating teachers’ views and attitudes on the cultural content of ‘New Prospects’ alongside two others locally produced EFL textbooks ‘Getting Through’ and ‘At the Crossroad’ used at high school level. To estimate the textbook’s potential of developing intercultural competence, mixed methods, a combination of quantitative and qualitative data collection, was used in the material evaluation analysed via content analysis and in the survey questionnaire and interview with teachers.Data collection and analysis were supported by the frameworks developed by the researcher for analysing the textbook, questionnaire, and interview. Indeed, based on the literature, three frameworks/ models are developed in this study to analyse, on one hand, the cultural contexts and themes discussed in the material that play an important role in fostering learners’ intercultural awareness. On the other hand, to evaluate the promotion of developing intercultural competence.Keywords: intercultural communication, intercultural communicative competence, intercultural competence, EFL materials
Procedia PDF Downloads 982956 Extent of Fruit and Vegetable Waste at Wholesaler Stage of the Food Supply Chain in Western Australia
Authors: P. Ghosh, S. B. Sharma
Abstract:
The growing problem of food waste is causing unacceptable economic, environmental and social impacts across the globe. In Australia, food waste is estimated at about AU$8 billion per year; however, information on the extent of wastage at different stages of the food value chain from farm to fork is very limited. This study aims to identify causes for and extent of food waste at wholesaler stage of the food value chain in the state of Western Australia. It also explores approaches applied to reduce and utilize food waste by the wholesalers. The study was carried out at Perth city market in Caning Vale, the main wholesale distribution centre for fruits and vegetables in Western Australia. A survey questionnaire was prepared and shared with 51 wholesalers and their responses to 10 targeted questions on quantity of produce (fruits and vegetables) delivery received and further supplied, reasons for waste generation and innovations applied or being considered to reduce and utilize food waste. Data were computed using the Statistical Package for the Social Sciences (SPSS version 21). Among the wholesalers 52% were primary wholesalers (buy produce directly from growers) and 48% were secondary wholesalers (buy produce in bulk from major wholesalers and supply to the local retail market, caterers, and customers with specific requirements). Average fruit and vegetable waste was 180 Kilogram per week per primary wholesaler and 30 Kilogram per secondary wholesaler. Based on this survey, the fruit and vegetable waste at wholesaler stage was estimated at about 286 tonnes per year. The secondary wholesalers distributed pre-ordered commodities, which minimized the potential to cause waste. Non-parametric test (Mann Whitney test) was carried out to assess contributions of wholesalers to waste generation. Over 56% of secondary wholesalers generally had nothing to bin as waste. Pearson’s correlation coefficient analysis showed positive correlation (r = 0.425; P=0.01) between the quantity of produce received and waste generated. Low market demand was the predominant reason identified by the wholesalers for waste generation. About a third of the wholesalers suggested that high cosmetic standards for fruits and vegetables - appearance, shape, and size - should be relaxed to reduce waste. Donation of unutilized fruits and vegetables to charity was overwhelmingly (95%) considered as one of the best options for utilization of discarded produce. The extent of waste at other stages of fruit and vegetable supply chain is currently being studied.Keywords: food waste, fruits and vegetables, supply chain, waste generation
Procedia PDF Downloads 3162955 Problem Solving: Process or Product? A Mathematics Approach to Problem Solving in Knowledge Management
Authors: A. Giannakopoulos, S. B. Buckley
Abstract:
Problem solving in any field is recognised as a prerequisite for any advancement in knowledge. For example in South Africa it is one of the seven critical outcomes of education together with critical thinking. As a systematic way to problem solving was initiated in mathematics by the great mathematician George Polya (the father of problem solving), more detailed and comprehensive ways in problem solving have been developed. This paper is based on the findings by the author and subsequent recommendations for further research in problem solving and critical thinking. Although the study was done in mathematics, there is no doubt by now in almost anyone’s mind that mathematics is involved to a greater or a lesser extent in all fields, from symbols, to variables, to equations, to logic, to critical thinking. Therefore it stands to reason that mathematical principles and learning cannot be divorced from any field. In management of knowledge situations, the types of problems are similar to mathematics problems varying from simple to analogical to complex; from well-structured to ill-structured problems. While simple problems could be solved by employees by adhering to prescribed sequential steps (the process), analogical and complex problems cannot be proceduralised and that diminishes the capacity of the organisation of knowledge creation and innovation. The low efficiency in some organisations and the low pass rates in mathematics prompted the author to view problem solving as a product. The authors argue that using mathematical approaches to knowledge management problem solving and treating problem solving as a product will empower the employee through further training to tackle analogical and complex problems. The question the authors asked was: If it is true that problem solving and critical thinking are indeed basic skills necessary for advancement of knowledge why is there so little literature of knowledge management (KM) about them and how they are connected and advance KM?This paper concludes with a conceptual model which is based on general accepted principles of knowledge acquisition (developing a learning organisation), knowledge creation, sharing, disseminating and storing thereof, the five pillars of knowledge management (KM). This model, also expands on Gray’s framework on KM practices and problem solving and opens the doors to a new approach to training employees in general and domain specific areas problems which can be adapted in any type of organisation.Keywords: critical thinking, knowledge management, mathematics, problem solving
Procedia PDF Downloads 6012954 Influence of Single and Multiple Skin-Core Debonding on Free Vibration Characteristics of Innovative GFRP Sandwich Panels
Authors: Indunil Jayatilake, Warna Karunasena, Weena Lokuge
Abstract:
An Australian manufacturer has fabricated an innovative GFRP sandwich panel made from E-glass fiber skin and a modified phenolic core for structural applications. Debonding, which refers to separation of skin from the core material in composite sandwiches, is one of the most common types of damage in composites. The presence of debonding is of great concern because it not only severely affects the stiffness but also modifies the dynamic behaviour of the structure. Generally, it is seen that the majority of research carried out has been concerned about the delamination of laminated structures whereas skin-core debonding has received relatively minor attention. Furthermore, it is observed that research done on composite slabs having multiple skin-core debonding is very limited. To address this gap, a comprehensive research investigating dynamic behaviour of composite panels with single and multiple debonding is presented. The study uses finite-element modelling and analyses for investigating the influence of debonding on free vibration behaviour of single and multilayer composite sandwich panels. A broad parametric investigation has been carried out by varying debonding locations, debonding sizes and support conditions of the panels in view of both single and multiple debonding. Numerical models were developed with Strand7 finite element package by innovatively selecting the suitable elements to diligently represent their actual behavior. Three-dimensional finite element models were employed to simulate the physically real situation as close as possible, with the use of an experimentally and numerically validated finite element model. Comparative results and conclusions based on the analyses are presented. For similar extents and locations of debonding, the effect of debonding on natural frequencies appears greatly dependent on the end conditions of the panel, giving greater decrease in natural frequency when the panels are more restrained. Some modes are more sensitive to debonding and this sensitivity seems to be related to their vibration mode shapes. The fundamental mode seems generally the least sensitive mode to debonding with respect to the variation in free vibration characteristics. The results indicate the effectiveness of the developed three-dimensional finite element models in assessing debonding damage in composite sandwich panelsKeywords: debonding, free vibration behaviour, GFRP sandwich panels, three dimensional finite element modelling
Procedia PDF Downloads 3192953 Using Support Vector Machines for Measuring Democracy
Authors: Tommy Krieger, Klaus Gruendler
Abstract:
We present a novel approach for measuring democracy, which enables a very detailed and sensitive index. This method is based on Support Vector Machines, a mathematical algorithm for pattern recognition. Our implementation evaluates 188 countries in the period between 1981 and 2011. The Support Vector Machines Democracy Index (SVMDI) is continuously on the 0-1-Interval and robust to variations in the numerical process parameters. The algorithm introduced here can be used for every concept of democracy without additional adjustments, and due to its flexibility it is also a valuable tool for comparison studies.Keywords: democracy, democracy index, machine learning, support vector machines
Procedia PDF Downloads 3832952 Education of Purchasing Professionals in Austria: Competence Based View
Authors: Volker Koch
Abstract:
This paper deals with the education of purchasing professionals in Austria. In this education, equivalent and measurable criteria are collected in order to create a comparison. The comparison shows the problem. To make the aforementioned comparison possible, methodologies such as KODE-Competence Atlas or presentations in a matrix form are used. The result shows the content taught and whether there are any similarities or interesting differences in the current Austrian purchasers’ formations. Purchasing professionals learning competencies are also illustrated in the study result.Keywords: competencies, education, purchasing professional, technological-oriented
Procedia PDF Downloads 3012951 Robotics Technology Supported Pedagogic Models in Science, Technology, Engineering, Arts and Mathematics Education
Authors: Sereen Itani
Abstract:
As the world aspires for technological innovation, Innovative Robotics Technology-Supported Pedagogic Models in STEAM Education (Science, Technology, Engineering, Arts, and Mathematics) are critical in our global education system to build and enhance the next generation 21st century skills. Thus, diverse international schools endeavor in attempts to construct an integrated robotics and technology enhanced curriculum based on interdisciplinary subjects. Accordingly, it is vital that the globe remains resilient in STEAM fields by equipping the future learners and educators with Innovative Technology Experiences through robotics to support such fields. A variety of advanced teaching methods is employed to learn about Robotics Technology-integrated pedagogic models. Therefore, it is only when STEAM and innovations in Robotic Technology becomes integrated with real-world applications that transformational learning can occur. Robotics STEAM education implementation faces major challenges globally. Moreover, STEAM skills and concepts are communicated in separation from the real world. Instilling the passion for robotics and STEAM subjects and educators’ preparation could lead to the students’ majoring in such fields by acquiring enough knowledge to make vital contributions to the global STEAM industries. Thus, this necessitates the establishment of Pedagogic models such as Innovative Robotics Technologies to enhance STEAM education and develop students’ 21st-century skills. Moreover, an ICT innovative supported robotics classroom will help educators empower and assess students academically. Globally, the Robotics Design System and platforms are developing in schools and university labs creating a suitable environment for the robotics cross-discipline STEAM learning. Accordingly, the research aims at raising awareness about the importance of robotics design systems and methodologies of effective employment of robotics innovative technology-supported pedagogic models to enhance and develop (STEAM) education globally and enhance the next generation 21st century skills.Keywords: education, robotics, STEAM (Science, Technology, Engineering, Arts and Mathematics Education), challenges
Procedia PDF Downloads 3872950 A Data-Driven Compartmental Model for Dengue Forecasting and Covariate Inference
Authors: Yichao Liu, Peter Fransson, Julian Heidecke, Jonas Wallin, Joacim Rockloev
Abstract:
Dengue, a mosquito-borne viral disease, poses a significant public health challenge in endemic tropical or subtropical countries, including Sri Lanka. To reveal insights into the complexity of the dynamics of this disease and study the drivers, a comprehensive model capable of both robust forecasting and insightful inference of drivers while capturing the co-circulating of several virus strains is essential. However, existing studies mostly focus on only one aspect at a time and do not integrate and carry insights across the siloed approach. While mechanistic models are developed to capture immunity dynamics, they are often oversimplified and lack integration of all the diverse drivers of disease transmission. On the other hand, purely data-driven methods lack constraints imposed by immuno-epidemiological processes, making them prone to overfitting and inference bias. This research presents a hybrid model that combines machine learning techniques with mechanistic modelling to overcome the limitations of existing approaches. Leveraging eight years of newly reported dengue case data, along with socioeconomic factors, such as human mobility, weekly climate data from 2011 to 2018, genetic data detecting the introduction and presence of new strains, and estimates of seropositivity for different districts in Sri Lanka, we derive a data-driven vector (SEI) to human (SEIR) model across 16 regions in Sri Lanka at the weekly time scale. By conducting ablation studies, the lag effects allowing delays up to 12 weeks of time-varying climate factors were determined. The model demonstrates superior predictive performance over a pure machine learning approach when considering lead times of 5 and 10 weeks on data withheld from model fitting. It further reveals several interesting interpretable findings of drivers while adjusting for the dynamics and influences of immunity and introduction of a new strain. The study uncovers strong influences of socioeconomic variables: population density, mobility, household income and rural vs. urban population. The study reveals substantial sensitivity to the diurnal temperature range and precipitation, while mean temperature and humidity appear less important in the study location. Additionally, the model indicated sensitivity to vegetation index, both max and average. Predictions on testing data reveal high model accuracy. Overall, this study advances the knowledge of dengue transmission in Sri Lanka and demonstrates the importance of incorporating hybrid modelling techniques to use biologically informed model structures with flexible data-driven estimates of model parameters. The findings show the potential to both inference of drivers in situations of complex disease dynamics and robust forecasting models.Keywords: compartmental model, climate, dengue, machine learning, social-economic
Procedia PDF Downloads 902949 Neural Networks Models for Measuring Hotel Users Satisfaction
Authors: Asma Ameur, Dhafer Malouche
Abstract:
Nowadays, user comments on the Internet have an important impact on hotel bookings. This confirms that the e-reputation issue can influence the likelihood of customer loyalty to a hotel. In this way, e-reputation has become a real differentiator between hotels. For this reason, we have a unique opportunity in the opinion mining field to analyze the comments. In fact, this field provides the possibility of extracting information related to the polarity of user reviews. This sentimental study (Opinion Mining) represents a new line of research for analyzing the unstructured textual data. Knowing the score of e-reputation helps the hotelier to better manage his marketing strategy. The score we then obtain is translated into the image of hotels to differentiate between them. Therefore, this present research highlights the importance of hotel satisfaction ‘scoring. To calculate the satisfaction score, the sentimental analysis can be manipulated by several techniques of machine learning. In fact, this study treats the extracted textual data by using the Artificial Neural Networks Approach (ANNs). In this context, we adopt the aforementioned technique to extract information from the comments available in the ‘Trip Advisor’ website. This actual paper details the description and the modeling of the ANNs approach for the scoring of online hotel reviews. In summary, the validation of this used method provides a significant model for hotel sentiment analysis. So, it provides the possibility to determine precisely the polarity of the hotel users reviews. The empirical results show that the ANNs are an accurate approach for sentiment analysis. The obtained results show also that this proposed approach serves to the dimensionality reduction for textual data’ clustering. Thus, this study provides researchers with a useful exploration of this technique. Finally, we outline guidelines for future research in the hotel e-reputation field as comparing the ANNs with other technique.Keywords: clustering, consumer behavior, data mining, e-reputation, machine learning, neural network, online hotel ‘reviews, opinion mining, scoring
Procedia PDF Downloads 1382948 The Use of Telecare in the Re-design of Overnight Supports for People with Learning Disabilities: Implementing a Cluster-based Approach in North Ayrshire
Authors: Carly Nesvat, Dominic Jarrett, Colin Thomson, Wilma Coltart, Thelma Bowers, Jan Thomson
Abstract:
Introduction: Within Scotland, the Same As You strategy committed to moving people with learning disabilities out of long-stay hospital accommodation into homes in the community. Much of the focus of this movement was on the placement of people within individual homes. In order to achieve this, potentially excessive supports were put in place which created dependence, and carried significant ongoing cost primarily for local authorities. The greater focus on empowerment and community participation which has been evident in more recent learning disability strategy, along with the financial pressures being experienced across the public sector, created an imperative to re-examine that provision, particularly in relation to the use of expensive sleepover supports to individuals, and the potential for this to be appropriately scaled back through the use of telecare. Method: As part of a broader programme of redesigning overnight supports within North Ayrshire, a cluster of individuals living in close proximity were identified, who were in receipt of overnight supports, but who were identified as having the capacity to potentially benefit from their removal. In their place, a responder service was established (an individual staying overnight in a nearby service user’s home), and a variety of telecare solutions were placed within individual’s homes. Active and passive technology was connected to an Alarm Receiving Centre, which would alert the local responder service when necessary. Individuals and their families were prepared for the change, and continued to be informed about progress with the pilot. Results: 4 individuals, 2 of whom shared a tenancy, had their sleepover supports removed as part of the pilot. Extensive data collection in relation to alarm activation was combined with feedback from the 4 individuals, their families, and staff involved in their support. Varying perspectives emerged within the feedback. 3 of the individuals were clearly described as benefitting from the change, and the greater sense of independence it brought, while more concerns were evident in relation to the fourth. Some family members expressed a need for greater preparation in relation to the change and ongoing information provision. Some support staff also expressed a need for more information, to help them understand the new support arrangements for an individual, as well as noting concerns in relation to the outcomes for one participant. Conclusion: Developing a telecare response in relation to a cluster of individuals was facilitated by them all being supported by the same care provider. The number of similar clusters of individuals being identified within North Ayrshire is limited. Developing other solutions such as a response service for redesign will potentially require greater collaboration between different providers of home support, as well as continuing to explore the full range of telecare, including digital options. The pilot has highlighted the need for effective preparatory and ongoing engagement with staff and families, as well as the challenges which can accompany making changes to long-standing packages of support.Keywords: challenges, change, engagement, telecare
Procedia PDF Downloads 1842947 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland
Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski
Abstract:
PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks
Procedia PDF Downloads 1532946 A Simulation-Based Investigation of the Smooth-Wall, Radial Gravity Problem of Granular Flow through a Wedge-Shaped Hopper
Authors: A. F. Momin, D. V. Khakhar
Abstract:
Granular materials consist of particulate particles found in nature and various industries that, due to gravity flow, behave macroscopically like liquids. A fundamental industrial unit operation is a hopper with inclined walls or a converging channel in which material flows downward under gravity and exits the storage bin through the bottom outlet. The simplest form of the flow corresponds to a wedge-shaped, quasi-two-dimensional geometry with smooth walls and radially directed gravitational force toward the apex of the wedge. These flows were examined using the Mohr-Coulomb criterion in the classic work of Savage (1965), while Ravi Prakash and Rao used the critical state theory (1988). The smooth-wall radial gravity (SWRG) wedge-shaped hopper is simulated using the discrete element method (DEM) to test existing theories. DEM simulations involve the solution of Newton's equations, taking particle-particle interactions into account to compute stress and velocity fields for the flow in the SWRG system. Our computational results are consistent with the predictions of Savage (1965) and Ravi Prakash and Rao (1988), except for the region near the exit, where both viscous and frictional effects are present. To further comprehend this behaviour, a parametric analysis is carried out to analyze the rheology of wedge-shaped hoppers by varying the orifice diameter, wedge angle, friction coefficient, and stiffness. The conclusion is that velocity increases as the flow rate increases but decreases as the wedge angle and friction coefficient increase. We observed no substantial changes in velocity due to varying stiffness. It is anticipated that stresses at the exit result from the transfer of momentum during particle collisions; for this reason, relationships between viscosity and shear rate are shown, and all data are collapsed into a single curve. In addition, it is demonstrated that viscosity and volume fraction exhibit power law correlations with the inertial number and that all the data collapse into a single curve. A continuum model for determining granular flows is presented using empirical correlations.Keywords: discrete element method, gravity flow, smooth-wall, wedge-shaped hoppers
Procedia PDF Downloads 942945 An ANOVA-based Sequential Forward Channel Selection Framework for Brain-Computer Interface Application based on EEG Signals Driven by Motor Imagery
Authors: Forouzan Salehi Fergeni
Abstract:
Converting the movement intents of a person into commands for action employing brain signals like electroencephalogram signals is a brain-computer interface (BCI) system. When left or right-hand motions are imagined, different patterns of brain activity appear, which can be employed as BCI signals for control. To make better the brain-computer interface (BCI) structures, effective and accurate techniques for increasing the classifying precision of motor imagery (MI) based on electroencephalography (EEG) are greatly needed. Subject dependency and non-stationary are two features of EEG signals. So, EEG signals must be effectively processed before being used in BCI applications. In the present study, after applying an 8 to 30 band-pass filter, a car spatial filter is rendered for the purpose of denoising, and then, a method of analysis of variance is used to select more appropriate and informative channels from a category of a large number of different channels. After ordering channels based on their efficiencies, a sequential forward channel selection is employed to choose just a few reliable ones. Features from two domains of time and wavelet are extracted and shortlisted with the help of a statistical technique, namely the t-test. Finally, the selected features are classified with different machine learning and neural network classifiers being k-nearest neighbor, Probabilistic neural network, support-vector-machine, Extreme learning machine, decision tree, Multi-layer perceptron, and linear discriminant analysis with the purpose of comparing their performance in this application. Utilizing a ten-fold cross-validation approach, tests are performed on a motor imagery dataset found in the BCI competition III. Outcomes demonstrated that the SVM classifier got the greatest classification precision of 97% when compared to the other available approaches. The entire investigative findings confirm that the suggested framework is reliable and computationally effective for the construction of BCI systems and surpasses the existing methods.Keywords: brain-computer interface, channel selection, motor imagery, support-vector-machine
Procedia PDF Downloads 552944 Learning the History of a Tuscan Village: A Serious Game Using Geolocation Augmented Reality
Authors: Irene Capecchi, Tommaso Borghini, Iacopo Bernetti
Abstract:
An important tool for the enhancement of cultural sites is serious games (SG), i.e., games designed for educational purposes; SG is applied in cultural sites through trivia, puzzles, and mini-games for participation in interactive exhibitions, mobile applications, and simulations of past events. The combination of Augmented Reality (AR) and digital cultural content has also produced examples of cultural heritage recovery and revitalization around the world. Through AR, the user perceives the information of the visited place in a more real and interactive way. Another interesting technological development for the revitalization of cultural sites is the combination of AR and Global Positioning System (GPS), which integrated have the ability to enhance the user's perception of reality by providing historical and architectural information linked to specific locations organized on a route. To the author’s best knowledge, there are currently no applications that combine GPS AR and SG for cultural heritage revitalization. The present research focused on the development of an SG based on GPS and AR. The study area is the village of Caldana in Tuscany, Italy. Caldana is a fortified Renaissance village; the most important architectures are the walls, the church of San Biagio, the rectory, and the marquis' palace. The historical information is derived from extensive research by the Department of Architecture at the University of Florence. The storyboard of the SG is based on the history of the three characters who built the village: marquis Marcello Agostini, who was commissioned by Cosimo I de Medici, Grand Duke of Tuscany, to build the village, his son Ippolito and his architect Lorenzo Pomarelli. The three historical characters were modeled in 3D using the freeware MakeHuman and imported into Blender and Mixamo to associate a skeleton and blend shapes to have gestural animations and reproduce lip movement during speech. The Unity Rhubarb Lip Syncer plugin was used for the lip sync animation. The historical costumes were created by Marvelous Designer. The application was developed using the Unity 3D graphics and game engine. The AR+GPS Location plugin was used to position the 3D historical characters based on GPS coordinates. The ARFoundation library was used to display AR content. The SG is available in two versions: for children and adults. the children's version consists of finding a digital treasure consisting of valuable items and historical rarities. Players must find 9 village locations where 3D AR models of historical figures explaining the history of the village provide clues. To stimulate players, there are 3 levels of rewards for every 3 clues discovered. The rewards consist of AR masks for archaeologist, professor, and explorer. At the adult level, the SG consists of finding the 16 historical landmarks in the village, and learning historical and architectural information interactively and engagingly. The application is being tested on a sample of adults and children. Test subjects will be surveyed on a Likert scale to find out their perceptions of using the app and the learning experience between the guided tour and interaction with the app.Keywords: augmented reality, cultural heritage, GPS, serious game
Procedia PDF Downloads 982943 Tracing Graduates of Vocational Schools with Transnational Mobility Experience: Conclusions and Recommendations from Poland
Authors: Michal Pachocki
Abstract:
This study investigates the effects of mobility in the context of a different environment and work culture through analysing the learners perception of their international work experience. Since this kind of professional training abroad is becoming more popular in Europe, mainly due to the EU funding opportunities, it is of paramount importance to assess its long-term impact on educational and career paths of former students. Moreover, the tracer study aimed at defining what professional, social and intercultural competencies were gained or developed by the interns and to which extent those competences proved to be useful meeting the labor market requirements. Being a populous EU member state which actively modernizes its vocational education system (also with European funds), Poland can serve as an illustrative case study to investigate the above described research problems. However, the examined processes are most certainly universal, wherever mobility is included in the learning process. The target group of this research was the former mobility participants and the study was conducted using quantitative and qualitative methods, such as the online survey with over 2 600 questionnaires completed by the former mobility participants; -individual in-depth interviews (IDIs) with 20 Polish graduates already present in the labour market; - 5 focus group interviews (FGIs) with 60 current students of the Polish vocational schools, who have recently returned from the training abroad. As the adopted methodology included a data triangulation, the collected findings have also been supplemented with data obtained by the desk research (mainly contextual information and statistical summary of mobility implementation). The results of this research – to be presented in full scope within the conference presentation – include the participants’ perception of their work mobility. The vast majority of graduates agrees that such an experience has had a significant impact on their professional careers and claims that they would recommend training abroad to persons who are about to enter the labor market. Moreover, in their view, such form of practical training going beyond formal education provided them with an opportunity to try their hand in the world of work. This allowed them – as they accounted for them – to get acquainted with a work system and context different from the ones experienced in Poland. Although the work mobility becomes an important element of the learning process in the growing number of Polish schools, this study reveals that many sending institutions suffer from a lack of the coherent strategy for planning domestic and foreign training programmes. Nevertheless, the significant number of graduates claims that such a synergy improves the quality of provided training. Despite that, the research proved that the transnational mobilities exert an impact on their future careers and personal development. However, such impact is, in their opinion, dependant on other factors, such as length of the training period, the nature and extent of work, recruitment criteria and the quality of organizational arrangement and mentoring provided to learners. This may indicate the salience of the sending and receiving institutions organizational capacity to deal with mobility.Keywords: learning mobility, transnational training, vocational education and training graduates, tracer study
Procedia PDF Downloads 992942 MEAL Project–Modifying Eating Attitudes and Actions through Learning
Authors: E. Oliver, A. Cebolla, A. Dominguez, A. Gonzalez-Segura, E. de la Cruz, S. Albertini, L. Ferrini, K. Kronika, T. Nilsen, R. Baños
Abstract:
The main objective of MEAL is to develop a pedagogical tool aimed to help teachers and nutritionists (students and professionals) to acquire, train, promote and deliver to children basic nutritional education and healthy eating behaviours competencies. MEAL is focused on eating behaviours and not only in nutritional literacy, and will use new technologies like Information and Communication Technologies (ICTs) and serious games (SG) platforms to consolidate the nutritional competences and habits.Keywords: nutritional education, pedagogical ICT platform, serious games, training course
Procedia PDF Downloads 530