Search results for: youth personal decision aid
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6734

Search results for: youth personal decision aid

1784 The Relationship between Hot and Cool Executive Function and Theory of Mind in School-Aged Children with Autism Spectrum Disorder

Authors: Evangelia-Chrysanthi Kouklari, Stella Tsermentseli, Claire P. Monks

Abstract:

Executive function (EF) refers to a set of future-oriented and goal-directed cognitive skills that are crucial for problem solving and social behaviour, as well as the ability to organise oneself. It has been suggested that EF could be conceptualised as two distinct but interrelated constructs, one emotional (hot) and one cognitive (cool), as it facilitates both affective and cognitive regulation. Cool EF has been found to be strongly related to Theory of Mind (ToM) that is the ability to infer mental states, but research has not taken into account the association between hot EF and ToM in Autism Spectrum Disorder (ASD) to date. The present study investigates the associations between both hot and cool EF and ToM in school-aged children with ASD. This cross-sectional study assesses 79 school-aged children with ASD (7-15 years) and 91 controls matched for age and IQ, on tasks tapping cool EF (working memory, inhibition, planning), hot EF (effective decision making, delay discounting), and ToM (emotional understanding and false/no false belief). Significant group differences in each EF measure support a global executive dysfunction in ASD. Strong associations between hot EF and ToM in ASD are reported for the first time (i.e. ToM emotional understanding and delay discounting). These findings highlight that hot EF also makes a unique contribution to the developmental profile of ASD. Considering the role of both hot and cool EF in association with ToM in individuals with ASD may aid in gaining a greater understanding not just of how these complex multifaceted cognitive abilities relate to one another, but their joint role in the distinct developmental pathway followed in ASD.

Keywords: ASD, executive function, school age, theory of mind

Procedia PDF Downloads 294
1783 ePLANETe Idea and Functionalities: Agricultural Sustainability Assessment, Biodiversity, and Stakeholder Involvement

Authors: S. K. Ashiquer Rahman

Abstract:

A cutting-edge online knowledge mediation system called "ePLANETe" provides a framework for building knowledge, tools and methods for all education, research and sustainable practices and elsewhere, as well as the deliberative assessment support of sustainability, biodiversity, and stakeholder involvement issues of the territorial development sector, e.g., agriculture.The purpose is to present, as sectorial and institutional perception, the 'ePLANETe' concept and functionalities as an experimental online platform for contributing the sustainability assessment, biodiversity, and stakeholder involvement. In the upshot, the concept of 'ePLANETe'isan investigation of the challenges of "online things, technology and application". The new digital technologies are exploited to facilitate collaborative technology and application to territorial development issues, e.g., agriculture. In order to investigate the dealing capacity (Qualitative and Quantitative) of sustainability, biodiversity, and stakeholder involvement of the agriculture sector through the stakeholder-based integrated assessment "Deliberation Support Tools (DST) and INTEGRAAL method" of collective resources. Specifically, this paper focuses on integrating system methodologies with deliberation tools for collective assessment and decision-making in implementing regional plans of agriculture. The aim of this report is to identify effective knowledge and tools and to enable deliberation methodologies regarding practices on the sustainability of agriculture and biodiversity issues, societal responsibilities, and regional planning that will create the scope for qualitative and quantitative assessments of sustainability as a new landmark of the agriculture sector.

Keywords: sustainability, biodiversity, stakeholder, dst, integraal

Procedia PDF Downloads 120
1782 Sexting Phenomenon in Educational Settings: A Data Mining Approach

Authors: Koutsopoulou Ioanna, Gkintoni Evgenia, Halkiopoulos Constantinos, Antonopoulou Hera

Abstract:

Recent advances in Internet Computer Technology (ICT) and the ever-increasing use of technological equipment amongst adolescents and young adults along with unattended access to the internet and social media and uncontrolled use of smart phones and PCs have caused social problems like sexting to emerge. The main purpose of the present article is first to present an analytic theoretical framework of sexting as a recent social phenomenon based on studies that have been conducted the last decade or so; and second to investigate Greek students’ and also social network users, sexting perceptions and to record how often social media users exchange sexual messages and to retrace demographic variables predictors. Data from 1,000 students were collected and analyzed and all statistical analysis was done by the software package WEKA. The results indicate among others, that the use of data mining methods is an important tool to draw conclusions that could affect decision and policy making especially in the field and related social topics of educational psychology. To sum up, sexting lurks many risks for adolescents and young adults students in Greece and needs to be better addressed in relevance to the stakeholders as well as society in general. Furthermore, policy makers, legislation makers and authorities will have to take action to protect minors. Prevention strategies based on Greek cultural specificities are being proposed. This social problem has raised concerns in recent years and will most likely escalate concerns in global communities in the future.

Keywords: educational ethics, sexting, Greek sexters, sex education, data mining

Procedia PDF Downloads 184
1781 Innovative Approaches to Water Resources Management: Addressing Challenges through Machine Learning and Remote Sensing

Authors: Abdelrahman Elsehsah, Abdelazim Negm, Eid Ashour, Mohamed Elsahabi

Abstract:

Water resources management is a critical field that encompasses the planning, development, conservation, and allocation of water resources to meet societal needs while ensuring environmental sustainability. This paper reviews the key concepts and challenges in water resources management, emphasizing the significance of a holistic approach that integrates social, economic, and environmental factors. Traditional water management practices, characterized by supply-oriented strategies and centralized control, are increasingly inadequate in addressing contemporary challenges such as water scarcity, climate change impacts, and ecosystem degradation. Emerging technologies, particularly machine learning and remote sensing, offer innovative solutions to enhance decision-making processes in water management. Machine learning algorithms facilitate accurate water demand forecasting, quality monitoring, and leak detection, while remote sensing technologies provide vital data for assessing water availability and quality. This review highlights the need for integrated water management strategies that leverage these technologies to promote sustainable practices and foster resilience in water systems. Future research should focus on improving data quality, accessibility, and the integration of diverse datasets to optimize the benefits of these technological advancements.

Keywords: water resources management, water scarcity, climate change, machine learning, remote sensing, water quality, water governance, sustainable practices, ecosystem management

Procedia PDF Downloads 16
1780 The Effective Method for Postering Thinking Dispositions of Learners

Authors: H. Jalahi, A. Yazdanpanah Nozari

Abstract:

Background and Purpose: Assessment of learners’ performance is an important factors in teaching-learning process. When a factor is sensitive and has high influence on life, their assessment should be done precisely. Thinking dispositions are very important factors in medical education because of its specific condition. In this study a model is designed for fostering thinking dispositions of learners in which authentic assessment is an important element. Materials and Methods: Objective based research is developmental, and such a model was not designed for curricula. Data collection and comparing approaches about assessment and analyzing current assessments offered applied proposals. Results: Based on research findings, the current assessments are response-based, that is students instead of product of response, only offers the specific response which the teachers expects; but authentic assessment is a form of assessment in which students are asked to perform real-word tasks that demonstrate meaningful application of essential knowledge and skills. Conclusion: Because of the difficulties and unexpected problems in life and individuals needs to lifelong learning and conditions in medical course that require decision making in specific times, we must pay attention to reach thinking dispositions and it should be included in curriculum. Authentic assessment as an important aspect of curriculum can help fostering thinking dispositions of learners. Using this kind of assessments which focus on application of information and skills to solve real-word tasks have more important role in medical courses.

Keywords: assessment, authentic, medical courses, developmental

Procedia PDF Downloads 366
1779 A Rapid Colorimetric Assay for Direct Detection of Unamplified Hepatitis C Virus RNA Using Gold Nanoparticles

Authors: M. Shemis, O. Maher, G. Casterou, F. Gauffre

Abstract:

Hepatitis C virus (HCV) is a major cause of chronic liver disease with a global 170 million chronic carriers at risk of developing liver cirrhosis and/or liver cancer. Egypt reports the highest prevalence of HCV worldwide. Currently, two classes of assays are used in the diagnosis and management of HCV infection. Despite the high sensitivity and specificity of the available diagnostic assays, they are time-consuming, labor-intensive, expensive, and require specialized equipment and highly qualified personal. It is therefore important for clinical and economic terms to develop a low-tech assay for the direct detection of HCV RNA with acceptable sensitivity and specificity, short turnaround time, and cost-effectiveness. Such an assay would be critical to control HCV in developing countries with limited resources and high infection rates, such as Egypt. The unique optical and physical properties of gold nanoparticles (AuNPs) have allowed the use of these nanoparticles in developing simple and rapid colorimetric assays for clinical diagnosis offering higher sensitivity and specificity than current detection techniques. The current research aims to develop a detection assay for HCV RNA using gold nanoparticles (AuNPs). Methods: 200 anti-HCV positive samples and 50 anti-HCV negative plasma samples were collected from Egyptian patients. HCV viral load was quantified using m2000rt (Abbott Molecular Inc., Des Plaines, IL). HCV genotypes were determined using multiplex nested RT- PCR. The assay is based on the aggregation of AuNPs in presence of the target RNA. Aggregation of AuNPs causes a color shift from red to blue. AuNPs were synthesized using citrate reduction method. Different sets of probes within the 5’ UTR conserved region of the HCV genome were designed, grafted on AuNPs and optimized for the efficient detection of HCV RNA. Results: The nano-gold assay could colorimetrically detect HCV RNA down to 125 IU/ml with sensitivity and specificity of 91.1% and 93.8% respectively. The turnaround time of the assay is < 30 min. Conclusions: The assay allows sensitive and rapid detection of HCV RNA and represents an inexpensive and simple point-of-care assay for resource-limited settings.

Keywords: HCV, gold nanoparticles, point of care, viral load

Procedia PDF Downloads 207
1778 Effects of Mindfulness Practice on Clinician Burnout: A Scoping Review

Authors: Hani Malik

Abstract:

Background: Clinician burnout is a growing phenomenon in current health systems worldwide. Increasing emotional exhaustion, depersonalisation, and reduced personal accomplishment threaten the effective delivery of healthcare. This can potentially be mitigated by mindfulness practice, which has shown promising results in reducing burnout, restoring compassion, and preventing moral injury in clinicians. Objectives: To conduct a scoping review and identify high-quality studies on mindfulness practice in clinician burnout, synthesize themes that emerge from these studies, and discuss the implications of the results to healthcare leadership and innovation. Methodology: A focused scoping review was carried out to investigate the effects of mindfulness practice on clinician burnout. High-ranking journals were targeted to analyse high-quality studies and synthesize common themes in the literature. Studies conducted on current, practicing physicians were included. Mindfulness practice of varying forms was the main intervention studied. Grey literature and studies conducted only on allied health personnel were excluded from this review. Analysis:31 studies were included in this scoping review. Mindfulness practice was found to decrease emotional exhaustion and depersonalisation while improving mood, responses to stress, and vigour. Self-awareness, compassion, and empathy were also increased in study participants. From this review, four themes emerged which include: innovations in mindfulness practice, mindfulness and positive psychology, the impact of mindfulness on work and patient care, and barriers and facilitators to clinician mindfulness practice. Conclusion: Mindfulness had widely been reported to benefit mental health and well-being, but the studies reviewed seemed to adopt a mono focus and omitted key considerations to healthcare leadership, systems-level culture, and practices. Mindfulness practice is a quintessential component of positive psychology and is inherently linked to effective leadership. A mindful and compassionate clinician leader will play a crucial role in addressing gaps in current practice, prioritise staff mental health, and provide a supportive platform for innovation.

Keywords: mindfulness practice, clinician burnout, healthcare leadership, COVID-19

Procedia PDF Downloads 156
1777 Analyzing Healthy Eating Among Adolescent Teens Using the Socioecological Model

Authors: Kaavya Chandrasekar

Abstract:

Healthy eating is essential to maintain good health and stable mental status regardless of age. WHO describes that a healthy diet consists of incorporating more fruits and vegetables and reducing the consumption of sugary and salty foods into a regularly scheduled healthy diet. Although this attitude is rather uncommon among all age groups, it is notably uncommon among the teens being a very vulnerable state in a man’s life. Faulty dietary habits, in the long run, interfere with health, leading to obesity, cardiovascular diseases, and mental instability. This study collates a discussion on the barriers prevailing among adolescents, to inculcate healthy eating practices by means of the socioecological model. The studies consisted of teens aged 13 to 19 years from schools and colleges of both sexes. The socio-ecological model emphasizes the interplay and interconnectedness of elements at all levels of health behavior, acknowledging that the majority of public health issues are just too complicated to be solved from a single-level perspective. As a result, it necessitates that people are not considered in isolation from bigger social groups. According to the studies retrieved from ten articles studies conducted globally, more than five articles suggest that socioeconomic class, lack of adult supervision and easy access to fast food stores and schools affect their decision of healthy eating. Awareness via personalized intervention has been tried and found successful. Future research is still needed to address various dimensions of the issue.

Keywords: socio ecological model, healthy eating, adolescents, fast food consumption, interventions.

Procedia PDF Downloads 32
1776 Towards an Equitable Proprietary Regime: Property Rights Over Human Genes as a Case Study

Authors: Aileen Editha

Abstract:

The legal recognition of property rights over human genes is a divisive topic to which there is no resolution. As a frequently discussed topic, scholars and practitioners often highlight the inadequacies of a proprietary regime. However, little has been said in regard to the nature of human genetic materials (HGMs). This paper proposes approaching the issue of property over HGMs from an alternative perspective that looks at the personal and social value and valuation of HGMs. This paper will highlight how the unique and unresolved status of HGMs is incompatible with the main tenets of property and, consequently, contributes to legal ambiguity and uncertainty in the regulation of property rights over human genes. HGMs are perceived as part of nature and a free-for-all while also being within an individual’s private sphere. Additionally, it is also considered to occupy a unique “not-private-nor-public” status. This limbo-like position clashes with property’s fundamental characteristic that relies heavily on a clear public/private dichotomy. Moreover, as property is intrinsically linked to the legal recognition of one’s personhood, this irresolution benefits some while disadvantages others. In particular, it demands the publicization of once-private genes for the “common good” but subsequently encourages privatization (through labor) of these now-public genes. This results in the gain of some (already privileged) individuals while enabling the disenfranchisement of members of minority groups, such as Indigenous communities. This paper will discuss real and intellectual property rights over human genes, such as the right to income or patent rights, in Canada and the US. This paper advocates for a sui generis approach to governing rights and interests over human genes that would not rely on having a strict public/private dichotomy. Not only would this improve legal certainty and clarity, but it would also alleviate—or, at the very least, minimize—the role that the current law plays in further entrenching existing systemic inequalities. Despite the specificity of this topic, this paper argues that there are broader lessons to be learned. This issue is an insightful case study on the interconnection of various principles in law, society, and property, and what must be done when discordance between one or more of those principles has detrimental societal outcomes. Ultimately, it must be remembered that property is an adaptable and malleable instrument that can be developed to ensure it contributes to equity and flourishing.

Keywords: property rights, human genetic materials, critical legal scholarship, systemic inequalities

Procedia PDF Downloads 82
1775 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier

Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh

Abstract:

This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.

Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems

Procedia PDF Downloads 48
1774 Assessment of Water Availability and Quality in the Climate Change Context in Urban Areas

Authors: Rose-Michelle Smith, Musandji Fuamba, Salomon Salumu

Abstract:

Water is vital for life. Access to drinking water and sanitation for humans is one of the Sustainable Development Goals (specifically the sixth) approved by United Nations Member States in September 2015. There are various problems identified relating to water: insufficient fresh water, inequitable distribution of water resources, poor water management in certain places on the planet, detection of water-borne diseases due to poor water quality, and the negative impacts of climate change on water. One of the major challenges in the world is finding ways to ensure that people and the environment have enough water resources to sustain and support their existence. Thus, this research project aims to develop a tool to assess the availability, quality and needs of water in current and future situations with regard to climate change. This tool was tested using threshold values for three regions in three countries: the Metropolitan Community of Montreal (Canada), Normandie Region (France) and North Department (Haiti). The WEAP software was used to evaluate the available quantity of water resources. For water quality, two models were performed: the Canadian Council of Ministers of the Environment (CCME) and the Malaysian Water Quality Index (WQI). Preliminary results showed that the ratio of the needs could be estimated at 155, 308 and 644 m3/capita in 2023 for Normandie, Cap-Haitian and CMM, respectively. Then, the Water Quality Index (WQI) varied from one country to another. Other simulations regarding the water availability and quality are still in progress. This tool will be very useful in decision-making on projects relating to water use in the future; it will make it possible to estimate whether the available resources will be able to satisfy the needs.

Keywords: climate change, water needs, balance sheet, water quality

Procedia PDF Downloads 78
1773 Enhancing Quality Management Systems through Automated Controls and Neural Networks

Authors: Shara Toibayeva, Irbulat Utepbergenov, Lyazzat Issabekova, Aidana Bodesova

Abstract:

The article discusses the importance of quality assessment as a strategic tool in business and emphasizes the significance of the effectiveness of quality management systems (QMS) for enterprises. The evaluation of these systems takes into account the specificity of quality indicators, the multilevel nature of the system, and the need for optimal selection of the number of indicators and evaluation of the system state, which is critical for making rational management decisions. Methods and models of automated enterprise quality management are proposed, including an intelligent automated quality management system integrated with the Management Information and Control System. These systems make it possible to automate the implementation and support of QMS, increasing the validity, efficiency, and effectiveness of management decisions by automating the functions performed by decision makers and personnel. The paper also emphasizes the use of recurrent neural networks to improve automated quality management. Recurrent neural networks (RNNs) are used to analyze and process sequences of data, which is particularly useful in the context of document quality assessment and non-conformance detection in quality management systems. These networks are able to account for temporal dependencies and complex relationships between different data elements, which improves the accuracy and efficiency of automated decisions. The project was supported by a grant from the Ministry of Education and Science of the Republic of Kazakhstan under the Zhas Galym project No. AR 13268939, dedicated to research and development of digital technologies to ensure consistency of QMS regulatory documents.

Keywords: automated control system, quality management, document structure, formal language

Procedia PDF Downloads 43
1772 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals

Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty

Abstract:

A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.

Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction

Procedia PDF Downloads 119
1771 Integrated Imaging Management System: An Approach in the Collaborative Coastal Resource Management of Bagac, Bataan

Authors: Aljon Pangan

Abstract:

The Philippines being an archipelagic country, is surrounded by coastlines (36,289 km), coastal waters (226,000 km²), oceanic waters (1.93 million km²) and territorial waters (2.2 million km²). Studies show that the Philippine coastal ecosystems are the most productive and biologically diverse in the world, however, plagued by degradation problems due to over-exploitation and illegal activities. The existence of coastal degradation issues in the country led to the emergence of Coastal Resource Management (CRM) as an approach to both national and local government in providing solutions for sustainable coastal resource utilization. CRM applies the idea of planning, implementing and monitoring through the lens of collaborative governance. It utilizes collective action and decision-making to achieve sustainable use of coastal resources. The Municipality of Bagac in Bataan is one of the coastal municipalities in the country who crafts its own CRM Program as a solution to coastal resource degradation and problems. Information and Communications Technology (ICT), particularly Integrated Imaging Management System (IIMS) is one approach that can be applied in the formula of collaborative governance which entails the Government, Private Sector, and Civil Society. IIMS can help policymakers, managers, and citizens in managing coastal resources through analyzed spatial data describing the physical, biological, and socioeconomic characteristics of the coastal areas. Moreover, this study will apply the qualitative approach in deciphering possible impacts of the application of IIMS in the Coastal Resource Management policy making and implementation of the Municipality of Bagac.

Keywords: coastal resource management, collaborative governance, integrated imaging management system, information and communication technology

Procedia PDF Downloads 402
1770 Ten Patterns of Organizational Misconduct and a Descriptive Model of Interactions

Authors: Ali Abbas

Abstract:

This paper presents a descriptive model of organizational misconduct based on observed patterns that occur before and after an ethical collapse. The patterns were classified by categorizing media articles in both "for-profit" and "not-for-profit" organizations. Based on the model parameters, the paper provides a descriptive model of various organizational deflection strategies under numerous scenarios, including situations where ethical complaints build-up, situations under which whistleblowers become more prevalent, situations where large scandals that relate to leadership occur, and strategies by which organizations deflect blame when pressure builds up or when media finds out. The model parameters start with the premise of a tolerance to double standards in unethical acts when conducted by leadership or by members of corporate governance. Following this premise, the model explains how organizations engage in discursive strategies to cover up the potential conflicts that arise, including secret agreements and weakening stakeholders who may oppose the organizational acts. Deflection strategies include "preemptive" and "post-complaint" secret agreements, absence of (or vague) documented procedures, engaging in blame and scapegoating, remaining silent on complaints until the media finds out, as well as being slow (if at all) to acknowledge misconduct and fast to cover it up. The results of this paper may be used to guide organizational leaders into the implications of such shortsighted strategies toward unethical acts, even if they are deemed legal. Validation of the model assumptions through numerous media articles is provided.

Keywords: ethical decision making, prediction, scandals, organizational strategies

Procedia PDF Downloads 130
1769 Equity and Quality in Saudi Early Childhood Education: A Case Study on Inclusion School

Authors: Ahlam A. Alghamdi

Abstract:

For many years and until now, education based on gendered division is endorsed in the public Saudi schools starting from the primary grades (1,2, 3rd grades). Although preschool has no boys and girls segregation restrictions, children from first grade starting their first form of cultural ideology based on gender. Ensuring high-quality education serving all children -both boys and girls- is an aim for policymakers and early learning professionals in Saudi Arabia. The past five years have witnessed a major change in terms of shifting the paradigm to educating young children in the country. In May 2018, the Ministry of Education (MoE) had declared a commencement decision of inclusion schools serve both girls and boys in primary grades with a high-quality early learning opportunity. This study sought to shed light on one of the earliest schools that have implemented the inclusion experience. The methodological approach adopted is based on the qualitative inquiry of case study to investigate complex phenomena within the contexts of inclusion school. Data collection procedures included on-site visitations and semi-structured interviews with the teachers to document their thoughts, narratives, and living experiences. The findings of this study identified three themes based on cultural, educational, and professional interpretations. An overview of recommendations highlighted the benefits and possible challenges of future implementations of inclusion schools in Saudi Arabia.

Keywords: early learning, gender division, inclusion school, Saudi Arabia

Procedia PDF Downloads 154
1768 Assessment of Green Infrastructure for Sustainable Urban Water Management

Authors: Suraj Sharma

Abstract:

Green infrastructure (GI) offers a contemporary approach for reducing the risk of flooding, improve water quality, and harvesting stormwater for sustainable use. GI promotes landscape planning to enhance sustainable development and urban resilience. However, the existing literature is lacking in ensuring the comprehensive assessment of GI performance in terms of ecosystem function and services for social, ecological, and economical system resilience. We propose a robust indicator set and fuzzy comprehensive evaluation (FCE) for quantitative and qualitative analysis for sustainable water management to assess the capacity of urban resilience. Green infrastructure in urban resilience water management system (GIUR-WMS) supports decision-making for GI planning through scenario comparisons with urban resilience capacity index. To demonstrate the GIUR-WMS, we develop five scenarios for five sectors of Chandigarh (12, 26, 14, 17, and 34) to test common type of GI (rain barrel, rain gardens, detention basins, porous pavements, and open spaces). The result shows the open spaces achieve the highest green infrastructure urban resilience index of 4.22/5. To implement the open space scenario in urban sites, suitable vacant can be converted to green spaces (example: forest, low impact recreation areas, and detention basins) GIUR-WMS is easy to replicate, customize and apply to cities of different sizes to assess environmental, social and ecological dimensions.

Keywords: green infrastructure, assessment, urban resilience, water management system, fuzzy comprehensive evaluation

Procedia PDF Downloads 146
1767 Using Motives of Sports Consumption to Explain Team Identity: A Comparison between Football Fans across the Pond

Authors: G. Scremin, I. Y. Suh, S. Doukas

Abstract:

Spectators follow their favorite sports teams for different reasons. While some attend a sporting event simply for its entertainment value, others do so because of the personal sense of achievement and accomplishment their connection with a sports team creates. Moreover, the level of identity spectators feel toward their favorite sports team falls in a broad continuum. Some are mere spectators. For those spectators, their association to a sports team has little impact on their self-image. Others are die-hard fans who are proud of their association with their team and whose connection with that team is an important reflection of who they are. Several motives for sports consumption can be used to explain the level of spectator support in a variety of sports. Those motives can also be used to explain the variance in the identification, attachment, and loyalty spectators feel toward their favorite sports team. Motives for sports consumption can be used to discriminate the degree of identification spectators have with their favorite sports team. In this study, motives for sports consumption was used to discriminate the level of identity spectators feel toward their sports team. It was hypothesized that spectators with a strong level of team identity would report higher rates of interest in player, interest in sports, and interest in team than spectators with a low level of team identity. And spectators with a low level of team identity would report higher rates for entertainment value, bonding with friends or family, and wholesome environment. Football spectators in the United States and England were surveyed about their motives for football consumption and their level of identification with their favorite football team. To assess if the motives of sports fans differed by level of team identity and allegiance to an American or English football team, a Multivariate Analysis of Variance (MANOVA) under the General Linear Model (GLM) procedure found in SPSS was performed. The independent variables were level of team identity and allegiance to an American or English football team, and the dependent variables were the sport fan motives. A tripartite split (low, moderate, high) was used on a composite measure for team identity. Preliminary results show that effect of team identity is statistically significant (p < .001) for at least nine of the 17 motives for sports consumption assessed in this investigation. These results indicate that the motives of spectators with a strong level of team identity differ significantly from spectators with a low level of team identity. Those differences can be used to discriminate the degree of identification spectators have with their favorite sports team. Sports marketers can use these methods and results to develop identity profiles of spectators and create marketing strategies specifically designed to attract those spectators based on their unique motives for consumption and their level of team identification.

Keywords: fan identification, market segmentation of sports fans, motives for sports consumption, team identity

Procedia PDF Downloads 171
1766 Testing Nature Based Solutions for Air Quality Improvement: Aveiro Case Study

Authors: A. Ascenso, C. Silveira, B. Augusto, S. Rafael, S. Coelho, J. Ferreira, A. Monteiro, P. Roebeling, A. I. Miranda

Abstract:

Innovative nature-based solutions (NBSs) can provide answers to the challenges that urban areas are currently facing due to urban densification and extreme weather conditions. The effects of NBSs are recognized and include improved quality of life, mental and physical health and improvement of air quality, among others. Part of the work developed in the scope of the UNaLab project, which aims to guide cities in developing and implementing their own co-creative NBSs, intends to assess the impacts of NBSs on air quality, using Eindhoven city as a case study. The state-of-the-art online air quality modelling system WRF-CHEM was applied to simulate meteorological and concentration fields over the study area with a spatial resolution of 1 km2 for the year 2015. The baseline simulation (without NBSs) was validated by comparing the model results with monitored data retrieved from the Eindhoven air quality database, showing an adequate model performance. In addition, land use changes were applied in a set of simulations to assess the effects of different types of NBSs. Finally, these simulations were compared with the baseline scenario and the impacts of the NBSs were assessed. Reductions on pollutant concentrations, namely for NOx and PM, were found after the application of the NBSs in the Eindhoven study area. The present work is particularly important to support public planners and decision makers in understanding the effects of their actions and planning more sustainable cities for the future.

Keywords: air quality, modelling approach, nature based solutions, urban area

Procedia PDF Downloads 241
1765 US-Iran Hostage Crisis by the Metaphor of Argo in the Light of Post-Modernist Post-Colonial and Realist Theories

Authors: Hatice Idil Gorgen

Abstract:

This paper argues that discourses and textuality which is literary tool of Western ethnocentrism create aggressive foreign policy against the West by Non-West countries. Quasi-colonial experiences create an inferiority complex on officially or not colonized areas by reconstructing their identity. This reconstructed identity leads revolution and resistance movement to feel secure themselves as a psychological defense against colonial powers. Knowledge learned by successful implementation of discourses grants right to has power for authority, in addition to serving as a tool to reinforce power of authority by its cognitive traits on foreign policy decision making. The combination of these points contributes to shaping and then make predictable state policies. In the methodology of paper, secondary data was firstly reviewed through university library using a range of sources such as academic abstract, OPAC system, bibliography databases and internet search engines. The film of Argo was used to strengthen and materialize theoretical explanations as a metaphor. This paper aims to highlight the cumulative effects on the construction of the identity throughout embedded discourses by textuality. To demonstrate it by a metaphor, Argo will be used as a primary source for good story-telling about history. U.S-Iran hostage crisis is mainly applied by aiming to see foundations Iran’s behavior in the context of its revolutionary identity and major influences of actions of U.S on it.

Keywords: discourse, post colonialism, post modernism, objectivity

Procedia PDF Downloads 162
1764 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning

Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar

Abstract:

As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.

Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence

Procedia PDF Downloads 116
1763 Proposing an Improved Managerial-Based Business Process Framework

Authors: Alireza Nikravanshallmani, Jamshid Dehmeshki, Mojtaba Ahmadi

Abstract:

Modeling of business processes, based on BPMN (Business Process Modeling Notation), helps analysts and managers to understand business processes, and, identify their shortages. These models provide a context to make rational decision of organizing business processes activities in an understandable manner. The purpose of this paper is to provide a framework for better understanding of business processes and their problems by reducing the cognitive load of displayed information for their audience at different managerial levels while keeping the essential information which are needed by them. For this reason, we integrate business process diagrams across the different managerial levels to develop a framework to improve the performance of business process management (BPM) projects. The proposed framework is entitled ‘Business process improvement framework based on managerial levels (BPIML)’. This framework, determine a certain type of business process diagrams (BPD) based on BPMN with respect to the objectives and tasks of the various managerial levels of organizations and their roles in BPM projects. This framework will make us able to provide the necessary support for making decisions about business processes. The framework is evaluated with a case study in a real business process improvement project, to demonstrate its superiority over the conventional method. A questionnaire consisted of 10 questions using Likert scale was designed and given to the participants (managers of Bank Refah Kargaran three managerial levels). By examining the results of the questionnaire, it can be said that the proposed framework provide support for correct and timely decisions by increasing the clarity and transparency of the business processes which led to success in BPM projects.

Keywords: business process management (BPM), business process modeling, business process reengineering (BPR), business process optimizing, BPMN

Procedia PDF Downloads 454
1762 Promoting Public Participation in the Digital Memory Project: Experience from My Peking Memory Project(MPMP)

Authors: Xiaoshuang Jia, Huiling Feng, Li Niu, Wei Hai

Abstract:

Led by Humanistic Beijing Studies Center in Renmin University of China, My Peking Memory Project(MPMP) is a long-time digital memory project under guarantee of public participation to enable the cultural and intellectual memory of Beijing to be collected, organized, preserved and promoted for discovery and research. Taking digital memory as a new way, MPMP is an important part of Peking Memory Project(PMP) which is aimed at using digital technologies to protect and (re)present the cultural heritage in Beijing. The key outcome of MPMP is the co-building of a total digital collection of knowledge assets about Beijing. Institutional memories are central to Beijing’s collection and consist of the official published documentary content of Beijing. These have already fall under the archival collection purview. The advances in information and communication technology and the knowledge form social memory theory have allowed us to collect more comprehensively beyond institutional collections. It is now possible to engage citizens on a large scale to collect private memories through crowdsourcing in digital formats. Private memories go beyond official published content to include personal narratives, some of which are just in people’s minds until they are captured by MPMP. One aim of MPMP is to engage individuals, communities, groups or institutions who have formed memories and content about Beijing, and would like to contribute them. The project hopes to build a culture of remembering and it believes ‘Every Memory Matters’. Digital memory contribution was achieved through the development of the MPMP. In reducing barriers to digital contribution and promoting high public Participation, MPMP has taken explored the harvesting of transcribe service for digital ingestion, mobile platform and some off-line activities like holding social forum. MPMP has also cooperated with the ‘Implementation Plan of Support Plan for Growth of Talents in Renmin University of China’ to get manpower and intellectual support. After six months of operation, now MPMP have more than 2000 memories added and 7 Special Memory Collections now online. The work of MPMP has ultimately helped to highlight the important role in safeguarding the documentary heritage and intellectual memory of Beijing.

Keywords: digital memory, public participation, MPMP, cultural heritage, collection

Procedia PDF Downloads 173
1761 Examining the Behavioral, Hygienic and Expectational Changes in Adolescents and Young Women during COVID-19 Quarantine in Colombia

Authors: Rocio Murad, Marcela Sanchez, Mariana Calderon Jaramillo, Danny Rivera, Angela Cifuentes, Daniela Roldán, Juan Carlos Rivillas

Abstract:

Women and girls have specific health needs, but during health pandemics such as COVID19 they are less likely to have access to quality essential health information, commodities and services, or insurance coverage for routine and catastrophic health expenses, especially in rural and marginalized communities. This is compounded by multiple or intersecting inequalities, such as ethnicity, socioeconomic status, disability, age, geographic location, and sexual orientation, among others. Despite concerted collective action, there is a lack of information on the situation of women, adolescents and youth, including gender inequalities exacerbated by the pandemic. Much more needs to be done to amplify the lived realities of women and adolescents in global and national advocacy and policy responses. The COVID 19 pandemic reflects the need for systematic advocacy policies based on the lived experiences of women and adolescents, underpinned by human rights. This research is part of the initiative of Profamilia Association (Solidarity Study), and its objective is twofold: i) to analyze the behavioral changes and immediate expectations of Colombians during the stage of relaxation of the confinement measures decreed by the national government; and ii) to identify the needs, experiences and resilient practices of adolescents and young women during the COVID-19 crisis in Colombia. Descriptive analysis of data collected by Profamilia through the Solidaridad study, an exploratory cross-sectional descriptive study that used subnational level data from a nonprobabilistic sample survey conducted to 1735 adults, between September 01 and 11, 2020. Interviews were conducted with key stakeholders about their experiences during COVID19, under three key axes: i) main challenges for adolescents and young women; ii) examples of what has worked well in responding to the challenge; and iii) how/what services are/should be provided during COVID-19 (and beyond) to address the challenge. Interviewees were selected based on prior mapping of social groups of interest. In total, 23 adolescents and young women participated in the interviews. The results show that people adopted behavioral changes such as wearing masks, avoiding people with symptoms, and reducing mobility, but there was also a doubling of concerns for many reasons, from effects on mental health, sexual health, and unattended reproductive health to the burden of care and working at home. The favorable perception that people had at the beginning of the quarantine about the response and actions of the national and local government to control Covid-19 decreased over the course of the quarantine. The challenges and needs of adolescents and young women were highlighted during the most restrictive measures to contain the COVID-19 pandemic, which resulted in disruptions to daily activities, education and work, as well as restrictions to mobility and social interaction. Concerns raised by participants included: impact on mental health and wellbeing due to disruption of daily life; limitations in access to formal and informal education; food insecurity; migration; loss of livelihoods; lack of access to health information and services; limitations to sexual and reproductive health and rights; insecurity problems; and problems in communication and treatment among household members.

Keywords: COVID-19, changes in behavior, adolescents, women

Procedia PDF Downloads 111
1760 Self-serving Anchoring of Self-judgments

Authors: Elitza Z. Ambrus, Bjoern Hartig, Ryan McKay

Abstract:

Individuals’ self-judgments might be malleable and influenced by comparison with a random value. On the one hand, self-judgments reflect our self-image, which is typically considered to be stable in adulthood. Indeed, people also strive hard to maintain a fixed, positive moral image of themselves. On the other hand, research has shown the robustness of the so-called anchoring effect on judgments and decisions. The anchoring effect refers to the influence of a previously considered comparative value (anchor) on a consecutive absolute judgment and reveals that individuals’ estimates of various quantities are flexible and can be influenced by a salient random value. The present study extends the anchoring paradigm to the domain of the self. We also investigate whether participants are more susceptible to self-serving anchors, i.e., anchors that enhance participant’s self-image, especially their moral self-image. In a pre-reregistered study via the online platform Prolific, 249 participants (156 females, 89 males, 3 other and 1 who preferred not to specify their gender; M = 35.88, SD = 13.91) ranked themselves on eight personality characteristics. However, in the anchoring conditions, respondents were asked to first indicate whether they thought they would rank higher or lower than a given anchor value before providing their estimated rank in comparison to 100 other anonymous participants. A high and a low anchor value were employed to differentiate between anchors in a desirable (self-serving) direction and anchors in an undesirable (self-diminishing) direction. In the control treatment, there was no comparison question. Subsequently, participants provided their self-rankings on the eight personality traits with two personal characteristics for each combination of the factors desirable/undesirable and moral/non-moral. We found evidence of an anchoring effect for self-judgments. Moreover, anchoring was more efficient when people were anchored in a self-serving direction: the anchoring effect was enhanced when supporting a more favorable self-view and mitigated (even reversed) when implying a deterioration of the self-image. The self-serving anchoring was more pronounced for moral than for non-moral traits. The data also provided evidence in support of a better-than-average effect in general as well as a magnified better-than-average effect for moral traits. Taken together, these results suggest that self-judgments might not be as stable in adulthood as previously thought. In addition, considerations of constructing and maintaining a positive self-image might interact with the anchoring effect on self-judgments. Potential implications of our results concern the construction and malleability of self-judgments as well as the psychological mechanism shaping anchoring.

Keywords: anchoring, better-than-average effect, self-judgments, self-serving anchoring

Procedia PDF Downloads 183
1759 Fostering Organizational Learning across the Canadian Sport System through Leadership and Mentorship Development of Sport Science Leaders

Authors: Jennifer Walinga, Samantha Heron

Abstract:

The goal of the study was to inform the design of effective leadership and mentorship development programming for sport science leaders within the network of Canadian sport institutes and centers. The LEAD (Learn, Engage, Accelerate, Develop) program was implemented to equip sport science leaders with the leadership knowledge, skills, and practice to foster a high - performance culture, enhance the daily training environment, and contribute to optimal performance in sport. After two years of delivery, this analysis of LEAD’s effect on individual and organizational health and performance factors informs the quality of future deliveries and identifies best practice for leadership development across the Canadian sport system and beyond. A larger goal for this project was to inform the public sector more broadly and position sport as a source of best practice for human and social health, development, and performance. The objectives of this study were to review and refine the LEAD program in collaboration with Canadian Sport Institute and Centre leaders, 40-50 participants from three cohorts, and the LEAD program advisory committee, and to trace the effects of the LEAD leadership development program on key leadership mentorship and organizational health indicators across the Canadian sport institutes and centers so as to capture best practice. The study followed a participatory action research framework (PAR) using semi structured interviews with sport scientist participants, program and institute leaders inquiring into impact on specific individual and organizational health and performance factors. Findings included a strong increase in self-reported leadership knowledge, skill, language and confidence, enhancement of human and organizational health factors, and the opportunity to explore more deeply issues of diversity and inclusion, psychological safety, team dynamics, and performance management. The study was significant in building sport leadership and mentorship development strategies for managing change efforts, addressing inequalities, and building personal and operational resilience amidst challenges of uncertainty, pressure, and constraint in real time.

Keywords: sport leadership, sport science leader, leadership development, professional development, sport education, mentorship

Procedia PDF Downloads 28
1758 Airline Choice Model for Domestic Flights: The Role of Airline Flexibility

Authors: Camila Amin-Puello, Lina Vasco-Diaz, Juan Ramirez-Arias, Claudia Munoz, Carlos Gonzalez-Calderon

Abstract:

Operational flexibility is a fundamental aspect in the field of airlines because although demand is constantly changing, it is the duty of companies to provide a service to users that satisfies their needs in an efficient manner without sacrificing factors such as comfort, safety and other perception variables. The objective of this research is to understand the factors that describe and explain operational flexibility by implementing advanced analytical methods such as exploratory factor analysis and structural equation modeling, examining multiple levels of operational flexibility and understanding how these variable influences users' decision-making when choosing an airline and in turn how it affects the airlines themselves. The use of a hybrid model and latent variables improves the efficiency and accuracy of airline performance prediction in the unpredictable Colombian market. This pioneering study delves into traveler motivations and their impact on domestic flight demand, offering valuable insights to optimize resources and improve the overall traveler experience. Applying the methods, it was identified that low-cost airlines are not useful for flexibility, while users, especially women, found airlines with greater flexibility in terms of ticket costs and flight schedules to be more useful. All of this allows airlines to anticipate and adapt to their customers' needs efficiently: to plan flight capacity appropriately, adjust pricing strategies and improve the overall passenger experience.

Keywords: hybrid choice model, airline, business travelers, domestic flights

Procedia PDF Downloads 16
1757 Recognition and Counting Algorithm for Sub-Regional Objects in a Handwritten Image through Image Sets

Authors: Kothuri Sriraman, Mattupalli Komal Teja

Abstract:

In this paper, a novel algorithm is proposed for the recognition of hulls in a hand written images that might be irregular or digit or character shape. Identification of objects and internal objects is quite difficult to extract, when the structure of the image is having bulk of clusters. The estimation results are easily obtained while going through identifying the sub-regional objects by using the SASK algorithm. Focusing mainly to recognize the number of internal objects exist in a given image, so as it is shadow-free and error-free. The hard clustering and density clustering process of obtained image rough set is used to recognize the differentiated internal objects, if any. In order to find out the internal hull regions it involves three steps pre-processing, Boundary Extraction and finally, apply the Hull Detection system. By detecting the sub-regional hulls it can increase the machine learning capability in detection of characters and it can also be extend in order to get the hull recognition even in irregular shape objects like wise black holes in the space exploration with their intensities. Layered hulls are those having the structured layers inside while it is useful in the Military Services and Traffic to identify the number of vehicles or persons. This proposed SASK algorithm is helpful in making of that kind of identifying the regions and can useful in undergo for the decision process (to clear the traffic, to identify the number of persons in the opponent’s in the war).

Keywords: chain code, Hull regions, Hough transform, Hull recognition, Layered Outline Extraction, SASK algorithm

Procedia PDF Downloads 352
1756 Pull String to Stop: Public Utility Vehicle Modernization Program

Authors: Frederick Kobe O. Obar, Preity B. Quinzon, Trisha B. Tumbokon, Mario Joshua D. Marron, Kenichi Katsuo Kichiro A. Rimorin

Abstract:

The Public Utility Vehicle Modernization Program (PUVMP) is a program meant to reform the current state of the Philippines’ public transportation sector. This study determined the impact of the Public Utility Vehicle Modernization Program on San Fernando City, La Union's jeepney drivers, interviewing six individuals, three with traditional vehicles and three with modernized units. This study used a descriptive qualitative research design and employed purposive sampling to select the six participants suited for the study, who were then subjected to a semi-structured face-to-face interview. The gathered data was then analyzed through thematic analysis. The findings highlighted evidence that the jeepney drivers experienced abrupt and prevailing changes in their routine and in their everyday work. This study concludes that while the sentiment of the program was appreciated, it has changed the environment for jeepney drivers drastically, provoking many reactions. These changes have, of course, shifted the daily lives of the jeepney drivers significantly, but through adaptability, they found ways. Recommendations include flexible compliance policies, educational initiatives, and support for drivers, providing valuable insights for informed decision-making in the ongoing transportation modernization discussion. This study concluded that while the drivers are not opposed to reform, they are not entirely in approval of the current effects of the program as it is being implemented in their local area.

Keywords: transport reform, transport modernization, public transport, jeepney drivers, PUVMP, urban planning, public utility vehicles

Procedia PDF Downloads 71
1755 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics

Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo

Abstract:

Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.

Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model

Procedia PDF Downloads 159