Search results for: algorithm symbol recognition
257 Recommendations for Data Quality Filtering of Opportunistic Species Occurrence Data
Authors: Camille Van Eupen, Dirk Maes, Marc Herremans, Kristijn R. R. Swinnen, Ben Somers, Stijn Luca
Abstract:
In ecology, species distribution models are commonly implemented to study species-environment relationships. These models increasingly rely on opportunistic citizen science data when high-quality species records collected through standardized recording protocols are unavailable. While these opportunistic data are abundant, uncertainty is usually high, e.g., due to observer effects or a lack of metadata. Data quality filtering is often used to reduce these types of uncertainty in an attempt to increase the value of studies relying on opportunistic data. However, filtering should not be performed blindly. In this study, recommendations are built for data quality filtering of opportunistic species occurrence data that are used as input for species distribution models. Using an extensive database of 5.7 million citizen science records from 255 species in Flanders, the impact on model performance was quantified by applying three data quality filters, and these results were linked to species traits. More specifically, presence records were filtered based on record attributes that provide information on the observation process or post-entry data validation, and changes in the area under the receiver operating characteristic (AUC), sensitivity, and specificity were analyzed using the Maxent algorithm with and without filtering. Controlling for sample size enabled us to study the combined impact of data quality filtering, i.e., the simultaneous impact of an increase in data quality and a decrease in sample size. Further, the variation among species in their response to data quality filtering was explored by clustering species based on four traits often related to data quality: commonness, popularity, difficulty, and body size. Findings show that model performance is affected by i) the quality of the filtered data, ii) the proportional reduction in sample size caused by filtering and the remaining absolute sample size, and iii) a species ‘quality profile’, resulting from a species classification based on the four traits related to data quality. The findings resulted in recommendations on when and how to filter volunteer generated and opportunistically collected data. This study confirms that correctly processed citizen science data can make a valuable contribution to ecological research and species conservation.Keywords: citizen science, data quality filtering, species distribution models, trait profiles
Procedia PDF Downloads 200256 Nurse-Led Codes: Practical Application in the Emergency Department during a Global Pandemic
Authors: F. DelGaudio, H. Gill
Abstract:
Resuscitation during cardiopulmonary (CPA) arrest is dynamic, high stress, high acuity situation, which can easily lead to communication breakdown, and errors. The care of these high acuity patients has also been shown to increase physiologic stress and task saturation of providers, which can negatively impact the care being provided. These difficulties are further complicated during a global pandemic and pose a significant safety risk to bedside providers. Nurse-led codes are a relatively new concept that may be a potential solution for alleviating some of these difficulties. An experienced nurse who has completed advanced cardiac life support (ACLS), and additional training, assumed the responsibility of directing the mechanics of the appropriate ACLS algorithm. This was done in conjunction with a physician who also acted as a physician leader. The additional nurse-led code training included a multi-disciplinary in situ simulation of a CPA on a suspected COVID-19 patient. During the CPA, the nurse leader’s responsibilities include: ensuring adequate compression depth and rate, minimizing interruptions in chest compressions, the timing of rhythm/pulse checks, and appropriate medication administration. In addition, the nurse leader also functions as a last line safety check for appropriate personal protective equipment and limiting exposure of staff. The use of nurse-led codes for CPA has shown to decrease the cognitive overload and task saturation for the physician, as well as limiting the number of staff being exposed to a potentially infectious patient. The real-world application has allowed physicians to perform and oversee high-risk procedures such as intubation, line placement, and point of care ultrasound, without sacrificing the integrity of the resuscitation. Nurse-led codes have also given the physician the bandwidth to review pertinent medical history, advanced directives, determine reversible causes, and have the end of life conversations with family. While there is a paucity of research on the effectiveness of nurse-led codes, there are many potentially significant benefits. In addition to its value during a pandemic, it may also be beneficial during complex circumstances such as extracorporeal cardiopulmonary resuscitation.Keywords: cardiopulmonary arrest, COVID-19, nurse-led code, task saturation
Procedia PDF Downloads 154255 When It Wasn’t There: Understanding the Importance of High School Sports
Authors: Karen Chad, Louise Humbert, Kenzie Friesen, Dave Sandomirsky
Abstract:
Background: The pandemic of COVID-19 presented many historical challenges to the sporting community. For organizations and individuals, sport was put on hold resulting in social, economic, physical, and mental health consequences for all involved. High school sports are seen as an effective and accessible pathway for students to receive health, social, and academic benefits. Studies examining sport cessation due to COVID-19 found substantial negative outcomes on the physical and mental well-being of participants in the high school setting. However, the pandemic afforded an opportunity to examine sport participation and the value people place upon their engagement in high school sport. Study objectives: (1) Examine the experiences of students, parents, administrators, officials, and coaches during a year without high school sports; (2) Understand why participants are involved in high school sports; and (3) Learn what supports are needed for future involvement. Methodology: A mixed method design was used, including semi-structured interviews and a survey (SurveyMonkey software), which was disseminated electronically to high school students, coaches, school administrators, parents, and officials. Results: 1222 respondents completed the survey. Findings showed: (1) 100% of students participate in high school sports to improve their mental health, with >95% said it keeps them active and healthy, helps them make friends and teaches teamwork, builds confidence and positive self-perceptions, teaches resiliency, enhances connectivity to their school, and supports academic learning; (2) Top three reasons teachers coach is their desire to make a difference in the lives of students, enjoyment, and love of the sport, and to give back. Teachers said what they enjoy most is contributing to and watching athletes develop, direct involvement with student sport success, and the competitiveatmosphere; (3) 90% of parents believe playing sports is a valuable experience for their child, 95% said it enriches student academic learning and educational experiences, and 97% encouraged their child to play school sports; (4) Officials participate because of their enjoyment and love of the sport, experience, and expertise, desire to make a difference in the lives of children, the competitive/sporting atmosphere and growing the sport. 4% of officials said it was financially motivated; (5) 100% of administrators said high school sports are important for everyone. 80% believed the pandemic will decrease teachers coaching and increase student mental health and well-being. When there was no sport, many athletes got a part-time job and tried to stay active, with limited success. Coaches, officials, and parents spent more time with family. All participants did little physical activity, were bored; and struggled with mental health and poor physical health. Respondents recommended better communication, promotion, and branding of high school sport benefits, equitable funding for all sports, athlete development, compensation and recognition for coaching, and simple processes to strengthen the high school sport model. Conclusions: High school sport is an effective vehicle for athletes, parents, coaches, administrators, and officials to derive many positive outcomes. When it is taken away, serious consequences prevail. Paying attention to important success factors will be important for the effectiveness of high school sports.Keywords: physical activity, high school, sports, pandemic
Procedia PDF Downloads 145254 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.Keywords: deep learning, long short term memory, energy, renewable energy load forecasting
Procedia PDF Downloads 263253 Smart Defect Detection in XLPE Cables Using Convolutional Neural Networks
Authors: Tesfaye Mengistu
Abstract:
Power cables play a crucial role in the transmission and distribution of electrical energy. As the electricity generation, transmission, distribution, and storage systems become smarter, there is a growing emphasis on incorporating intelligent approaches to ensure the reliability of power cables. Various types of electrical cables are employed for transmitting and distributing electrical energy, with cross-linked polyethylene (XLPE) cables being widely utilized due to their exceptional electrical and mechanical properties. However, insulation defects can occur in XLPE cables due to subpar manufacturing techniques during production and cable joint installation. To address this issue, experts have proposed different methods for monitoring XLPE cables. Some suggest the use of interdigital capacitive (IDC) technology for online monitoring, while others propose employing continuous wave (CW) terahertz (THz) imaging systems to detect internal defects in XLPE plates used for power cable insulation. In this study, we have developed models that employ a custom dataset collected locally to classify the physical safety status of individual power cables. Our models aim to replace physical inspections with computer vision and image processing techniques to classify defective power cables from non-defective ones. The implementation of our project utilized the Python programming language along with the TensorFlow package and a convolutional neural network (CNN). The CNN-based algorithm was specifically chosen for power cable defect classification. The results of our project demonstrate the effectiveness of CNNs in accurately classifying power cable defects. We recommend the utilization of similar or additional datasets to further enhance and refine our models. Additionally, we believe that our models could be used to develop methodologies for detecting power cable defects from live video feeds. We firmly believe that our work makes a significant contribution to the field of power cable inspection and maintenance. Our models offer a more efficient and cost-effective approach to detecting power cable defects, thereby improving the reliability and safety of power grids.Keywords: artificial intelligence, computer vision, defect detection, convolutional neural net
Procedia PDF Downloads 111252 Admissibility as a Property of Evidence in Modern Conditions
Authors: Iryna Teslenko
Abstract:
According to the provisions of the current criminal procedural legislation of Ukraine, the issue of admissibility of evidence is closely related to both the right to a fair trial and the presumption of innocence. The general rule is that evidence obtained improperly or illegally cannot be taken into account in a court case. Therefore, the evidence base of the prosecution, collected at the stage of the pre-trial investigation, compliance with the requirements of the law during the collection of evidence, is of crucial importance for the criminal process, the violation of which entails the recognition of the relevant evidence as inadmissible, which can nullify all the efforts of the pre-trial investigation body and the prosecution. Therefore, the issue of admissibility of evidence in criminal proceedings is fundamentally important and decisive for the entire process. Research on this issue began in December 2021. At that time, there was still no clear understanding of what needed to be conveyed to the scientific community. In February 2022, the lives of all citizens of Ukraine have totally changed. A war broke out in the country. At a time when the entire world community is on the path of humanizing society, respecting the rights and freedoms of man and citizen, a military conflict has arisen in the middle of Europe - one country attacked another, war crimes are being committed. The world still cannot believe it, but it is happening here and now, people are dying, infrastructure is being destroyed, war crimes are being committed, contrary to the signed and ratified international conventions, and contrary to all the acquisitions and development of world law. At this time, the life of the world has divided into before and after February 24, 2022, the world cannot be the same as it was before, and the approach to solving legal issues in the criminal process, in particular, issues of proving the commission of crimes and the involvement of certain persons in their commission. An international criminal has appeared in the humane European world, who disregards all norms of law and morality, and does not adhere to any principles. Until now, the practice of the European Court of Human Rights and domestic courts of Ukraine treated with certain formalism, such a property of evidence in criminal proceedings as the admissibility of evidence. Currently, we have information that the Office of the Prosecutor of the International Criminal Court in The Hague has started an investigation into war crimes in Ukraine and is documenting them. In our opinion, the world cannot allow formalism in bringing a war criminal to justice. There is a war going on in Ukraine, the cities are under round-the-clock missile fire from the aggressor country, which makes it impossible to carry out certain investigative actions. If due to formal deficiencies, the collected evidence is declared inadmissible, it may lead to the fact that the guilty people will not be punished. And this, in turn, sends a message to other terrorists in the world about the impunity of their actions, the system of deterring criminals from committing criminal offenses (crimes) will collapse due to the understanding of the inevitability of punishment, and this will affect the entire world security and European security in particular. Therefore, we believe that the world cannot allow chaos in the issue of general security, there should be a transformation of the approach in general to such a property of evidence in the criminal process as admissibility in order to ensure the inevitability of the punishment of criminals. We believe that the scientific and legal community should not allow criminals to avoid responsibility. The evil that is destroying Ukraine should be punished. We must all together prove that legal norms are not just words written on paper but rules of behavior of all members of society, their non-observance leads to mandatory responsibility. Everybody who commits crimes will be punished, which is inevitable, and this principle is the guarantor of world security in the future.Keywords: admissibility of evidence, criminal process, war, Ukraine
Procedia PDF Downloads 86251 Extracting Opinions from Big Data of Indonesian Customer Reviews Using Hadoop MapReduce
Authors: Veronica S. Moertini, Vinsensius Kevin, Gede Karya
Abstract:
Customer reviews have been collected by many kinds of e-commerce websites selling products, services, hotel rooms, tickets and so on. Each website collects its own customer reviews. The reviews can be crawled, collected from those websites and stored as big data. Text analysis techniques can be used to analyze that data to produce summarized information, such as customer opinions. Then, these opinions can be published by independent service provider websites and used to help customers in choosing the most suitable products or services. As the opinions are analyzed from big data of reviews originated from many websites, it is expected that the results are more trusted and accurate. Indonesian customers write reviews in Indonesian language, which comes with its own structures and uniqueness. We found that most of the reviews are expressed with “daily language”, which is informal, do not follow the correct grammar, have many abbreviations and slangs or non-formal words. Hadoop is an emerging platform aimed for storing and analyzing big data in distributed systems. A Hadoop cluster consists of master and slave nodes/computers operated in a network. Hadoop comes with distributed file system (HDFS) and MapReduce framework for supporting parallel computation. However, MapReduce has weakness (i.e. inefficient) for iterative computations, specifically, the cost of reading/writing data (I/O cost) is high. Given this fact, we conclude that MapReduce function is best adapted for “one-pass” computation. In this research, we develop an efficient technique for extracting or mining opinions from big data of Indonesian reviews, which is based on MapReduce with one-pass computation. In designing the algorithm, we avoid iterative computation and instead adopt a “look up table” technique. The stages of the proposed technique are: (1) Crawling the data reviews from websites; (2) cleaning and finding root words from the raw reviews; (3) computing the frequency of the meaningful opinion words; (4) analyzing customers sentiments towards defined objects. The experiments for evaluating the performance of the technique were conducted on a Hadoop cluster with 14 slave nodes. The results show that the proposed technique (stage 2 to 4) discovers useful opinions, is capable of processing big data efficiently and scalable.Keywords: big data analysis, Hadoop MapReduce, analyzing text data, mining Indonesian reviews
Procedia PDF Downloads 200250 Computer-Aided Drug Repurposing for Mycobacterium Tuberculosis by Targeting Tryptophanyl-tRNA Synthetase
Authors: Neslihan Demirci, Serdar Durdağı
Abstract:
Mycobacterium tuberculosis is still a worldwide disease-causing agent that, according to WHO, led to the death of 1.5 million people from tuberculosis (TB) in 2020. The bacteria reside in macrophages located specifically in the lung. There is a known quadruple drug therapy regimen for TB consisting of isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), and ethambutol (EMB). Over the past 60 years, there have been great contributions to treatment options, such as recently approved delamanid (OPC67683) and bedaquiline (TMC207/R207910), targeting mycolic acid and ATP synthesis, respectively. Also, there are natural compounds that can block the tryptophanyl-tRNA synthetase (TrpRS) enzyme, chuangxinmycin, and indolmycin. Yet, already the drug resistance is reported for those agents. In this study, the newly released TrpRS enzyme structure is investigated for potential inhibitor drugs from already synthesized molecules to help the treatment of resistant cases and to propose an alternative drug for the quadruple drug therapy of tuberculosis. Maestro, Schrodinger is used for docking and molecular dynamic simulations. In-house library containing ~8000 compounds among FDA-approved indole-containing compounds, a total of 57 obtained from the ChemBL were used for both ATP and tryptophan binding pocket docking. Best of indole-containing 57 compounds were subjected to hit expansion and compared later with virtual screening workflow (VSW) results. After docking, VSW was done. Glide-XP docking algorithm was chosen. When compared, VSW alone performed better than the hit expansion module. Best scored compounds were kept for ten ns molecular dynamic simulations by Desmond. Further, 100 ns molecular dynamic simulation was performed for elected molecules according to Z-score. The top three MMGBSA-scored compounds were subjected to steered molecular dynamic (SMD) simulations by Gromacs. While SMD simulations are still being conducted, ponesimod (for multiple sclerosis), vilanterol (β₂ adrenoreceptor agonist), and silodosin (for benign prostatic hyperplasia) were found to have a significant affinity for tuberculosis TrpRS, which is the propulsive force for the urge to expand the research with in vitro studies. Interestingly, top-scored ponesimod has been reported to have a side effect that makes the patient prone to upper respiratory tract infections.Keywords: drug repurposing, molecular dynamics, tryptophanyl-tRNA synthetase, tuberculosis
Procedia PDF Downloads 121249 Guard@Lis: Birdwatching Augmented Reality Mobile Application
Authors: Jose A. C. Venancio, Alexandrino J. M. Goncalves, Anabela Marto, Nuno C. S. Rodrigues, Rita M. T. Ascenso
Abstract:
Nowadays, it is common to find people who are concerned about getting away from the everyday life routine, looking forward to outcome well-being and pleasant emotions. Trying to disconnect themselves from the usual places of work and residence, they pursue different places, such as tourist destinations, aiming to have unexpected experiences. In order to make this exploration process easier, cities and tourism agencies seek new opportunities and solutions, creating routes with diverse cultural landmarks, including natural landscapes and historic buildings. These offers frequently aspire to the preservation of the local patrimony. In nature and wildlife, birdwatching is an activity that has been increasing, both in cities and in the countryside. This activity seeks to find, observe and identify the diversity of birds that live permanently or temporarily in these places, and it is usually supported by birdwatching guides. Leiria (Portugal) is a well-known city, presenting several historical and natural landmarks, like the Lis river and the castle where King D. Dinis lived in the 13th century. Along the Lis River, a conservation process was carried out and a pedestrian route was created (Polis project). This is considered an excellent spot for birdwatching, especially for the gray heron (Ardea cinerea) and for the kingfisher (Alcedo atthis). There is also a route through the city, from the riverside to the castle, which encloses a characterized variety of species, such as the barn swallow (Hirundo rustica), known for passing through different seasons of the year. Birdwatching is sometimes a difficult task since it is not always possible to see all bird species that inhabit a given place. For this reason, a need to create a technological solution was found to ease this activity. This project aims to encourage people to learn about the various species of birds that live along the Lis River and to promote the preservation of nature in a conscious way. This work is being conducted in collaboration with Leiria Municipal Council and with the Environmental Interpretation Centre. It intends to show the majesty of the Lis River, a place visited daily by several people, such as children and families, who use it for didactic and recreational activities. We are developing a mobile multi-platform application (Guard@Lis) that allows bird species to be observed along a given route, using representative digital 3D models through the integration of augmented reality technologies. Guard@Lis displays a route with points of interest for birdwatching and a list of species for each point of interest, along with scientific information, images and sounds for every species. For some birds, to ensure their observation, the user can watch them in loco, in their real and natural environment, with their mobile device by means of augmented reality, giving the sensation of presence of these birds, even if they cannot be seen in that place at that moment. The augmented reality feature is being developed with Vuforia SDK, using a hybrid approach to recognition and tracking processes, combining marks and geolocation techniques. This application proposes routes and notifies users with alerts for the possibility of viewing models of augmented reality birds. The final Guard@Lis prototype will be tested by volunteers in-situ.Keywords: augmented reality, birdwatching route, mobile application, nature tourism, watch birds using augmented reality
Procedia PDF Downloads 172248 Pivoting to Fortify our Digital Self: Revealing the Need for Personal Cyber Insurance
Authors: Richard McGregor, Carmen Reaiche, Stephen Boyle
Abstract:
Cyber threats are a relatively recent phenomenon and offer cyber insurers a dynamic and intelligent peril. As individuals en mass become increasingly digitally dependent, Personal Cyber Insurance (PCI) offers an attractive option to mitigate cyber risk at a personal level. This abstract proposes a literature review that conceptualises a framework for siting Personal Cyber Insurance (PCI) within the context of cyberspace. The lack of empirical research within this domain demonstrates an immediate need to define the scope of PCI to allow cyber insurers to understand personal cyber risk threats and vectors, customer awareness, capabilities, and their associated needs. Additionally, this will allow cyber insurers to conceptualise appropriate frameworks allowing effective management and distribution of PCI products and services within a landscape often in-congruent with risk attributes commonly associated with traditional personal line insurance products. Cyberspace has provided significant improvement to the quality of social connectivity and productivity during past decades and allowed enormous capability uplift of information sharing and communication between people and communities. Conversely, personal digital dependency furnish ample opportunities for adverse cyber events such as data breaches and cyber-attacksthus introducing a continuous and insidious threat of omnipresent cyber risk–particularly since the advent of the COVID-19 pandemic and wide-spread adoption of ‘work-from-home’ practices. Recognition of escalating inter-dependencies, vulnerabilities and inadequate personal cyber behaviours have prompted efforts by businesses and individuals alike to investigate strategies and tactics to mitigate cyber risk – of which cyber insurance is a viable, cost-effective option. It is argued that, ceteris parabus, the nature of cyberspace intrinsically provides characteristic peculiarities that pose significant and bespoke challenges to cyber insurers, often in-congruent with risk attributes commonly associated with traditional personal line insurance products. These challenges include (inter alia) a paucity of historical claim/loss data for underwriting and pricing purposes, interdependencies of cyber architecture promoting high correlation of cyber risk, difficulties in evaluating cyber risk, intangibility of risk assets (such as data, reputation), lack of standardisation across the industry, high and undetermined tail risks, and moral hazard among others. This study proposes a thematic overview of the literature deemed necessary to conceptualise the challenges to issuing personal cyber coverage. There is an evident absence of empirical research appertaining to PCI and the design of operational business models for this business domain, especially qualitative initiatives that (1) attempt to define the scope of the peril, (2) secure an understanding of the needs of both cyber insurer and customer, and (3) to identify elements pivotal to effective management and profitable distribution of PCI - leading to an argument proposed by the author that postulates that the traditional general insurance customer journey and business model are ill-suited for the lineaments of cyberspace. The findings of the review confirm significant gaps in contemporary research within the domain of personal cyber insurance.Keywords: cyberspace, personal cyber risk, personal cyber insurance, customer journey, business model
Procedia PDF Downloads 101247 Artificial Neural Network Based Parameter Prediction of Miniaturized Solid Rocket Motor
Authors: Hao Yan, Xiaobing Zhang
Abstract:
The working mechanism of miniaturized solid rocket motors (SRMs) is not yet fully understood. It is imperative to explore its unique features. However, there are many disadvantages to using common multi-objective evolutionary algorithms (MOEAs) in predicting the parameters of the miniaturized SRM during its conceptual design phase. Initially, the design variables and objectives are constrained in a lumped parameter model (LPM) of this SRM, which leads to local optima in MOEAs. In addition, MOEAs require a large number of calculations due to their population strategy. Although the calculation time for simulating an LPM just once is usually less than that of a CFD simulation, the number of function evaluations (NFEs) is usually large in MOEAs, which makes the total time cost unacceptably long. Moreover, the accuracy of the LPM is relatively low compared to that of a CFD model due to its assumptions. CFD simulations or experiments are required for comparison and verification of the optimal results obtained by MOEAs with an LPM. The conceptual design phase based on MOEAs is a lengthy process, and its results are not precise enough due to the above shortcomings. An artificial neural network (ANN) based parameter prediction is proposed as a way to reduce time costs and improve prediction accuracy. In this method, an ANN is used to build a surrogate model that is trained with a 3D numerical simulation. In design, the original LPM is replaced by a surrogate model. Each case uses the same MOEAs, in which the calculation time of the two models is compared, and their optimization results are compared with 3D simulation results. Using the surrogate model for the parameter prediction process of the miniaturized SRMs results in a significant increase in computational efficiency and an improvement in prediction accuracy. Thus, the ANN-based surrogate model does provide faster and more accurate parameter prediction for an initial design scheme. Moreover, even when the MOEAs converge to local optima, the time cost of the ANN-based surrogate model is much lower than that of the simplified physical model LPM. This means that designers can save a lot of time during code debugging and parameter tuning in a complex design process. Designers can reduce repeated calculation costs and obtain accurate optimal solutions by combining an ANN-based surrogate model with MOEAs.Keywords: artificial neural network, solid rocket motor, multi-objective evolutionary algorithm, surrogate model
Procedia PDF Downloads 89246 Early Outcomes and Lessons from the Implementation of a Geriatric Hip Fracture Protocol at a Level 1 Trauma Center
Authors: Peter Park, Alfonso Ayala, Douglas Saeks, Jordan Miller, Carmen Flores, Karen Nelson
Abstract:
Introduction Hip fractures account for more than 300,000 hospital admissions every year. Many present as fragility fractures in geriatric patients with multiple medical comorbidities. Standardized protocols for the multidisciplinary management of this patient population have been shown to improve patient outcomes. A hip fracture protocol was implemented at a Level I Trauma center with a focus on pre-operative medical optimization and early surgical care. This study evaluates the efficacy of that protocol, including the early transition period. Methods A retrospective review was performed of all patients ages 60 and older with isolated hip fractures who were managed surgically between 2020 and 2022. This included patients 1 year prior and 1 year following the implementation of a hip fracture protocol at a Level I Trauma center. Results 530 patients were identified: 249 patients were treated before, and 281 patients were treated after the protocol was instituted. There was no difference in mean age (p=0.35), gender (p=0.3), or Charlson Comorbidity Index (p=0.38) between the cohorts. Following the implementation of the protocol, there were observed increases in time to surgery (27.5h vs. 33.8h, p=0.01), hospital length of stay (6.3d vs. 9.7d, p<0.001), and ED LOS (5.1h vs. 6.2h, p<0.001). There were no differences in in-hospital mortality (2.01% pre vs. 3.20% post, p=0.39) and complication rates (25% pre vs 26% post, p=0.76). A trend towards improved outcomes was seen after the early transition period but failed to yield statistical significance. Conclusion Early medical management and surgical intervention are key determining factors affecting outcomes following fragility hip fractures. The implementation of a hip fracture protocol at this institution has not yet significantly affected these parameters. This could in part be due to the restrictions placed at this institution during the COVID-19 pandemic. Despite this, the time to OR pre-and post-implementation was quicker than figures reported elsewhere in literature. Further longitudinal data will be collected to determine the final influence of this protocol. Significance/Clinical Relevance Given the increasing number of elderly people and the high morbidity and mortality associated with hip fractures in this population finding cost effective ways to improve outcomes in the management of these injuries has the potential to have enormous positive impact for both patients and hospital systems.Keywords: hip fracture, geriatric, treatment algorithm, preoperative optimization
Procedia PDF Downloads 76245 Qualitative Evaluation of the Morris Collection Conservation Project at the Sainsbury Centre of Visual Arts in the Context of Agile, Lean and Hybrid Project Management Approaches
Authors: Maria Ledinskaya
Abstract:
This paper examines the Morris Collection Conservation Project at the Sainsbury Centre for Visual Arts in the context of Agile, Lean, and Hybrid project management. It is part case study and part literature review. To date, relatively little has been written about non-traditional project management approaches in heritage conservation. This paper seeks to introduce Agile, Lean, and Hybrid project management concepts from business, software development, and manufacturing fields to museum conservation, by referencing their practical application on a recent museum-based conservation project. The Morris Collection Conservation Project was carried out in 2019-2021 in Norwich, UK, and concerned the remedial conservation of around 150 Abstract Constructivist artworks bequeathed to the Sainsbury Centre for Visual Arts by private collectors Michael and Joyce Morris. The first part introduces the chronological timeline and key elements of the project. It describes a medium-size conservation project of moderate complexity, which was planned and delivered in an environment with multiple known unknowns – unresearched collection, unknown condition and materials, unconfirmed budget. The project was also impacted by the unknown unknowns of the COVID-19 pandemic, such as indeterminate lockdowns, and the need to accommodate social distancing and remote communications. The author, a staff conservator at the Sainsbury Centre who acted as project manager on the Morris Collection Conservation Project, presents an incremental, iterative, and value-based approach to managing a conservation project in an uncertain environment. Subsequent sections examine the project from the point of view of Traditional, Agile, Lean, and Hybrid project management. The author argues that most academic writing on project management in conservation has focussed on a Traditional plan-driven approach – also known as Waterfall project management – which has significant drawbacks in today’s museum environment, due to its over-reliance on prediction-based planning and its low tolerance to change. In the last 20 years, alternative Agile, Lean and Hybrid approaches to project management have been widely adopted in software development, manufacturing, and other industries, although their recognition in the museum sector has been slow. Using examples from the Morris Collection Conservation Project, the author introduces key principles and tools of Agile, Lean, and Hybrid project management and presents a series of arguments on the effectiveness of these alternative methodologies in museum conservation, as well as the ethical and practical challenges to their implementation. These project management approaches are discussed in the context of consequentialist, relativist, and utilitarian developments in contemporary conservation ethics, particularly with respect to change management, bespoke ethics, shared decision-making, and value-based cost-benefit conservation strategy. The author concludes that the Morris Collection Conservation Project had multiple Agile and Lean features which were instrumental to the successful delivery of the project. These key features are identified as distributed decision making, a co-located cross-disciplinary team, servant leadership, focus on value-added work, flexible planning done in shorter sprint cycles, light documentation, and emphasis on reducing procedural, financial, and logistical waste. Overall, the author’s findings point largely in favour of a Hybrid model which combines traditional and alternative project processes and tools to suit the specific needs of the project.Keywords: project management, conservation, waterfall, agile, lean, hybrid
Procedia PDF Downloads 98244 Cluster Analysis and Benchmarking for Performance Optimization of a Pyrochlore Processing Unit
Authors: Ana C. R. P. Ferreira, Adriano H. P. Pereira
Abstract:
Given the frequent variation of mineral properties throughout the Araxá pyrochlore deposit, even if a good homogenization work has been carried out before feeding the processing plants, an operation with quality and performance’s high variety standard is expected. These results could be improved and standardized if the blend composition parameters that most influence the processing route are determined, and then the types of raw materials are grouped by them, finally presenting a great reference with operational settings for each group. Associating the physical and chemical parameters of a unit operation through benchmarking or even an optimal reference of metallurgical recovery and product quality reflects in the reduction of the production costs, optimization of the mineral resource, and guarantee of greater stability in the subsequent processes of the production chain that uses the mineral of interest. Conducting a comprehensive exploratory data analysis to identify which characteristics of the ore are most relevant to the process route, associated with the use of Machine Learning algorithms for grouping the raw material (ore) and associating these with reference variables in the process’ benchmark is a reasonable alternative for the standardization and improvement of mineral processing units. Clustering methods through Decision Tree and K-Means were employed, associated with algorithms based on the theory of benchmarking, with criteria defined by the process team in order to reference the best adjustments for processing the ore piles of each cluster. A clean user interface was created to obtain the outputs of the created algorithm. The results were measured through the average time of adjustment and stabilization of the process after a new pile of homogenized ore enters the plant, as well as the average time needed to achieve the best processing result. Direct gains from the metallurgical recovery of the process were also measured. The results were promising, with a reduction in the adjustment time and stabilization when starting the processing of a new ore pile, as well as reaching the benchmark. Also noteworthy are the gains in metallurgical recovery, which reflect a significant saving in ore consumption and a consequent reduction in production costs, hence a more rational use of the tailings dams and life optimization of the mineral deposit.Keywords: mineral clustering, machine learning, process optimization, pyrochlore processing
Procedia PDF Downloads 143243 Developing Pan-University Collaborative Initiatives in Support of Diversity and Inclusive Campuses
Authors: David Philpott, Karen Kennedy
Abstract:
In recognition of an increasingly diverse student population, a Teaching and Learning Framework was developed at Memorial University of Newfoundland. This framework emphasizes work that is engaging, supportive, inclusive, responsive, committed to discovery, and is outcomes-oriented for both educators and learners. The goal of the Teaching and Learning framework was to develop a number of initiatives that builds on existing knowledge, proven programs, and existing supports in order to respond to the specific needs of identified groups of diverse learners: 1) academically vulnerable first year students; 2) students with individual learning needs associated with disorders and/or mental health issues; 3) international students and those from non-western cultures. This session provides an overview of this process. The strategies employed to develop these initiatives were drawn primarily from research on student success and retention (literature review), information on pre-existing programs (environmental scan), an analysis of in-house data on students at our institution; consultations with key informants at all of Memorial’s campuses. The first initiative that emerged from this research was a pilot project proposal for a first-year success program in support of the first-year experience of academically vulnerable students. This program offers a university experience that is enhanced by smaller classes, supplemental instruction, learning communities, and advising sessions. The second initiative that arose under the mandate of the Teaching and Learning Framework was a collaborative effort between two institutions (Memorial University and the College of the North Atlantic). Both institutions participated in a shared conversation to examine programs and services that support an accessible and inclusive environment for students with disorders and/or mental health issues. A report was prepared based on these conversations and an extensive review of research and programs across the country. Efforts are now being made to explore possible initiatives that address culturally diverse and non-traditional learners. While an expanding literature has emerged on diversity in higher education, the process of developing institutional initiatives is usually excluded from such discussions, while the focus remains on effective practice. The proposals that were developed constitute a co-ordination and strengthening of existing services and programs; a weaving of supports to engage a diverse body of students in a sense of community. This presentation will act as a guide through the process of developing projects addressing learner diversity and engage attendees in a discussion of institutional practices that have been implemented in support of overcoming challenges, as well as provide feedback on institutional and student outcomes. The focus of this session will be on effective practice, and will be of particular interest to university administrators, educational developers, and educators wishing to implement similar initiatives on their campuses; possible adaptations for practice will be addressed. A presentation of findings from this research will be followed by an open discussion where the sharing of research, initiatives, and best practices for the enhancement of teaching and learning is welcomed. There is much insight and understanding to be gained through the sharing of ideas and collaborative practice as we move forward to further develop the program and prepare other initiatives in support of diversity and inclusion.Keywords: eco-scale, green analysis, environmentally-friendly, pharmaceuticals analysis
Procedia PDF Downloads 292242 Development of a Feedback Control System for a Lab-Scale Biomass Combustion System Using Programmable Logic Controller
Authors: Samuel O. Alamu, Seong W. Lee, Blaise Kalmia, Marc J. Louise Caballes, Xuejun Qian
Abstract:
The application of combustion technologies for thermal conversion of biomass and solid wastes to energy has been a major solution to the effective handling of wastes over a long period of time. Lab-scale biomass combustion systems have been observed to be economically viable and socially acceptable, but major concerns are the environmental impacts of the process and deviation of temperature distribution within the combustion chamber. Both high and low combustion chamber temperature may affect the overall combustion efficiency and gaseous emissions. Therefore, there is an urgent need to develop a control system which measures the deviations of chamber temperature from set target values, sends these deviations (which generates disturbances in the system) in the form of feedback signal (as input), and control operating conditions for correcting the errors. In this research study, major components of the feedback control system were determined, assembled, and tested. In addition, control algorithms were developed to actuate operating conditions (e.g., air velocity, fuel feeding rate) using ladder logic functions embedded in the Programmable Logic Controller (PLC). The developed control algorithm having chamber temperature as a feedback signal is integrated into the lab-scale swirling fluidized bed combustor (SFBC) to investigate the temperature distribution at different heights of the combustion chamber based on various operating conditions. The air blower rates and the fuel feeding rates obtained from automatic control operations were correlated with manual inputs. There was no observable difference in the correlated results, thus indicating that the written PLC program functions were adequate in designing the experimental study of the lab-scale SFBC. The experimental results were analyzed to study the effect of air velocity operating at 222-273 ft/min and fuel feeding rate of 60-90 rpm on the chamber temperature. The developed temperature-based feedback control system was shown to be adequate in controlling the airflow and the fuel feeding rate for the overall biomass combustion process as it helps to minimize the steady-state error.Keywords: air flow, biomass combustion, feedback control signal, fuel feeding, ladder logic, programmable logic controller, temperature
Procedia PDF Downloads 128241 Invisible to Invaluable - How Social Media is Helping Tackle Stigma and Discrimination Against Informal Waste Pickers of Bengaluru
Authors: Varinder Kaur Gambhir, Neema Gupta, Sonal Tickoo Chaudhuri
Abstract:
Bengaluru, a rapidly growing metropolis in India, with a population of 12.5 million citizens, generates 5,757 metric tonnes of solid waste per day. Despite their invaluable contribution to waste management, society and the economy, waste pickers face significant stigma, suspicion and contempt and are left with a sense of shame about their work. In this context, BBC Media Action was funded by the H&M Foundation to develop a 3-year multi-phase social media campaign to shift perceptions of waste picking and informal waste pickers amongst the Bengaluru population. Research has been used to inform project strategy and adaptation, at all stages. Formative research to inform campaign strategy used mixed methods– 14 focused group discussions followed by 406 online surveys – to explore people’s knowledge of, and attitudes towards waste pickers, and identify potential barriers and motivators to changing perceptions. Use of qualitative techniques like metaphor maps (using bank of pictures rather than direct questions to understand mindsets) helped establish the invisibility of informal waste pickers, and the quantitative research enabled audience segmentation based on attitudes towards informal waste pickers. To pretest the campaign idea, eight I-GDs (individual interaction followed by group discussions) were conducted to allow interviewees to first freely express their feelings individually, before discussing in a group. Robert Plucthik’s ‘wheel of emotions’ was used to understand audience’s emotional response to the content. A robust monitoring and evaluation is being conducted (baseline and first phase of monitoring already completed) using a rotating longitudinal panel of 1,800 social media users (exposed and unexposed to the campaign), recruited face to face and representative of the social media universe of Bengaluru city. In addition, qualitative in-depth interviews are being conducted after each phase to better understand change drivers. The research methodology and ethical protocols for impact evaluation have been independently reviewed by an Institutional Review Board. Formative research revealed that while waste on the streets is visible and is of concern to the public, informal waste pickers are virtually ‘invisible’, for most people in Bengaluru Pretesting research revealed that the creative outputs evoked emotions like acceptance and gratitude towards waste-pickers, suggesting that the content had the potential to encourage attitudinal change. After the first phase of campaign, social media analytics show that #Invaluables content reached at least 2.6 million unique people (21% of the Bengaluru population) through Facebook and Instagram. Further, impact monitoring results show significant improvements in spontaneous awareness of different segments of informal waste pickers ( such as sorters at scrap shops or dry waste collection centres -from 10% at baseline to 16% amongst exposed and no change amongst unexposed), recognition that informal waste pickers help the environment (71% at baseline to 77% among exposed and no change among unexposed) and greater discussion about informal waste pickers among those exposed (60%) as against not exposed (49%). Using the insights from this research, the planned social media intervention is designed to increase the visibility of and appreciation for the work of waste pickers in Bengaluru, supporting a more inclusive society.Keywords: awareness, discussion, discrimination, informal waste pickers, invisibility, social media campaign, waste management
Procedia PDF Downloads 107240 AIR SAFE: an Internet of Things System for Air Quality Management Leveraging Artificial Intelligence Algorithms
Authors: Mariangela Viviani, Daniele Germano, Simone Colace, Agostino Forestiero, Giuseppe Papuzzo, Sara Laurita
Abstract:
Nowadays, people spend most of their time in closed environments, in offices, or at home. Therefore, secure and highly livable environmental conditions are needed to reduce the probability of aerial viruses spreading. Also, to lower the human impact on the planet, it is important to reduce energy consumption. Heating, Ventilation, and Air Conditioning (HVAC) systems account for the major part of energy consumption in buildings [1]. Devising systems to control and regulate the airflow is, therefore, essential for energy efficiency. Moreover, an optimal setting for thermal comfort and air quality is essential for people’s well-being, at home or in offices, and increases productivity. Thanks to the features of Artificial Intelligence (AI) tools and techniques, it is possible to design innovative systems with: (i) Improved monitoring and prediction accuracy; (ii) Enhanced decision-making and mitigation strategies; (iii) Real-time air quality information; (iv) Increased efficiency in data analysis and processing; (v) Advanced early warning systems for air pollution events; (vi) Automated and cost-effective m onitoring network; and (vii) A better understanding of air quality patterns and trends. We propose AIR SAFE, an IoT-based infrastructure designed to optimize air quality and thermal comfort in indoor environments leveraging AI tools. AIR SAFE employs a network of smart sensors collecting indoor and outdoor data to be analyzed in order to take any corrective measures to ensure the occupants’ wellness. The data are analyzed through AI algorithms able to predict the future levels of temperature, relative humidity, and CO₂ concentration [2]. Based on these predictions, AIR SAFE takes actions, such as opening/closing the window or the air conditioner, to guarantee a high level of thermal comfort and air quality in the environment. In this contribution, we present the results from the AI algorithm we have implemented on the first s et o f d ata c ollected i n a real environment. The results were compared with other models from the literature to validate our approach.Keywords: air quality, internet of things, artificial intelligence, smart home
Procedia PDF Downloads 92239 Sustainable and Responsible Mining - Lundin Mining’s Subsidiary in Portugal, Sociedade Mineira de Neves-Corvo Case
Authors: Jose Daniel Braga Alves, Joaquim Gois, Alexandre Leite
Abstract:
This abstract presents the responsible and sustainable mining case study of a Portuguese mine operation, highlighting how mine exploitation can sustainably exist in balance with the environment, aligned with all stakeholders. The mining operation is remotely located in a United Nations (UN) biodiversity reserve, away from major industrial centers or logistical ports, and presents an interesting investigation to assess the balanced mine operation in alignment with all key stakeholders, which presents unique opportunities as well as challenges. Based on the sustainable mining framework, it is intended to detail examples of best practices from Sociedade Mineira de Neves-Corvo (SOMINCOR), demonstrating social acceptance by the local community, health, and safety at work, reduction of environmental impacts and management of mining waste, which directly influence the acceptance and recognition of a sustainable operation. The case study aims to present the SOMINCOR approach to sustainable mining, focusing on social responsibility, considering materials provided by Lundin Mining Corporation (LMC) and SOMINCOR and the socially responsible approach of the mining operations., referencing related international guidelines, UN Sustainable Development Goals. The researchers reviewed LMC's annual Sustainability Reports (2019, 2020 and 2021) and updated information regarding material topics of the most significant interest to internal and external stakeholders. These material topics formed the basis of the corporation-wide sustainability strategy. LMC's Responsible Mining Policy (RMP) was reviewed, focusing on the commitment that guides the approach to responsible operation and management of the Company's business. Social performance, compliance, environmental management, governance, human rights, and economic contribution are principles of the RMP. The Human Rights Risk Impact Assessment (HRRIA), based on frameworks including UN Guiding Principles (UNGP), Voluntary Principles on Security and Human Rights, and a community engagement program implemented (SLO index), was part of this research. The program consists of ongoing surveys and perceptions studies using behavioural science insights, data from which was not available within the timeframe of completing this research. LMC stakeholder engagement standards and grievance mechanisms were also reviewed. Stakeholder engagement and the community's perception are key to this operation to ensure social license to operate (SLO). Preliminary surveys with local communities provided input data for the local development strategy. After the implementation of several initiatives, subsequent surveys were performed to assess acceptance and trust from the local communities and changes to the SLO index. SOMINCOR's operation contributes to 12 out of 17 sustainable development goals. From the assessed and available data, local communities and social engagement are priorities to SOMINCOR. Experience to date shows that the continual engagement with local communities and the grievance mechanisms in place are respected and followed for all concerns presented by any stakeholder. It can be concluded that this underground mine in Portugal complies with applicable regulations and goes beyond them with regard to sustainable development and engagement with key stakeholders.Keywords: sustainable mining, development goals, portuguese mining, zinc copper
Procedia PDF Downloads 75238 Implementation of Chlorine Monitoring and Supply System for Drinking Water Tanks
Authors: Ugur Fidan, Naim Karasekreter
Abstract:
Healthy and clean water should not contain disease-causing micro-organisms and toxic chemicals and must contain the necessary minerals in a balanced manner. Today, water resources have a limited and strategic importance, necessitating the management of water reserves. Water tanks meet the water needs of people and should be regularly chlorinated to prevent waterborne diseases. For this purpose, automatic chlorination systems placed in water tanks for killing bacteria. However, the regular operation of automatic chlorination systems depends on refilling the chlorine tank when it is empty. For this reason, there is a need for a stock control system, in which chlorine levels are regularly monitored and supplied. It has become imperative to take urgent measures against epidemics caused by the fact that most of our country is not aware of the end of chlorine. The aim of this work is to rehabilitate existing water tanks and to provide a method for a modern water storage system in which chlorination is digitally monitored by turning the newly established water tanks into a closed system. A sensor network structure using GSM/GPRS communication infrastructure has been developed in the study. The system consists of two basic units: hardware and software. The hardware includes a chlorine level sensor, an RFID interlock system for authorized personnel entry into water tank, a motion sensor for animals and other elements, and a camera system to ensure process safety. It transmits the data from the hardware sensors to the host server software via the TCP/IP protocol. The main server software processes the incoming data through the security algorithm and informs the relevant unit responsible (Security forces, Chlorine supply unit, Public health, Local Administrator) by e-mail and SMS. Since the software is developed base on the web, authorized personnel are also able to monitor drinking water tank and report data on the internet. When the findings and user feedback obtained as a result of the study are evaluated, it is shown that closed drinking water tanks are built with GRP type material, and continuous monitoring in digital environment is vital for sustainable health water supply for people.Keywords: wireless sensor networks (WSN), monitoring, chlorine, water tank, security
Procedia PDF Downloads 159237 The Strategic Importance of Technology in the International Production: Beyond the Global Value Chains Approach
Authors: Marcelo Pereira Introini
Abstract:
The global value chains (GVC) approach contributes to a better understanding of the international production organization amid globalization’s second unbundling from the 1970s on. Mainly due to the tools that help to understand the importance of critical competences, technological capabilities, and functions performed by each player, GVC research flourished in recent years, rooted in discussing the possibilities of integration and repositioning along regional and global value chains. Regarding this context, part of the literature endorsed a more optimistic view that engaging in fragmented production networks could represent learning opportunities for developing countries’ firms, since the relationship with transnational corporations could allow them build skills and competences. Increasing recognition that GVCs are based on asymmetric power relations provided another sight about benefits, costs, and development possibilities though. Once leading companies tend to restrict the replication of their technologies and capabilities by their suppliers, alternative strategies beyond the functional specialization, seen as a way to integrate value chains, began to be broadly highlighted. This paper organizes a coherent narrative about the shortcomings of the GVC analytical framework, while recognizing its multidimensional contributions and recent developments. We adopt two different and complementary perspectives to explore the idea of integration in the international production. On one hand, we emphasize obstacles beyond production components, analyzing the role played by intangible assets and intellectual property regimes. On the other hand, we consider the importance of domestic production and innovation systems for technological development. In order to provide a deeper understanding of the restrictions on technological learning of developing countries’ firms, we firstly build from the notion of intellectual monopoly to analyze how flagship companies can prevent subordinated firms from improving their positions in fragmented production networks. Based on intellectual property protection regimes we discuss the increasing asymmetries between these players and the decreasing access of part of them to strategic intangible assets. Second, we debate the role of productive-technological ecosystems and of interactive and systemic technological development processes, as concepts of the Innovation Systems approach. Supporting the idea that not only endogenous advantages are important for international competition of developing countries’ firms, but also that the building of these advantages itself can be a source of technological learning, we focus on local efforts as a crucial element, which is not replaceable for technology imported from abroad. Finally, the paper contributes to the discussion about technological development as a two-dimensional dynamic. If GVC analysis tends to underline a company-based perspective, stressing the learning opportunities associated to GVC integration, historical involvement of national States brings up the debate about technology as a central aspect of interstate disputes. In this sense, technology is seen as part of military modernization before being also used in civil contexts, what presupposes its role for national security and productive autonomy strategies. From this outlook, it is important to consider it as an asset that, incorporated in sophisticated machinery, can be the target of state policies besides the protection provided by intellectual property regimes, such as in export controls and inward-investment restrictions.Keywords: global value chains, innovation systems, intellectual monopoly, technological development
Procedia PDF Downloads 81236 Exploiting the Potential of Fabric Phase Sorptive Extraction for Forensic Food Safety: Analysis of Food Samples in Cases of Drug Facilitated Crimes
Authors: Bharti Jain, Rajeev Jain, Abuzar Kabir, Torki Zughaibi, Shweta Sharma
Abstract:
Drug-facilitated crimes (DFCs) entail the use of a single drug or a mixture of drugs to render a victim unable. Traditionally, biological samples have been gathered from victims and conducted analysis to establish evidence of drug administration. Nevertheless, the rapid metabolism of various drugs and delays in analysis can impede the identification of such substances. For this, the present article describes a rapid, sustainable, highly efficient and miniaturized protocol for the identification and quantification of three sedative-hypnotic drugs, namely diazepam, chlordiazepoxide and ketamine in alcoholic beverages and complex food samples (cream of biscuit, flavored milk, juice, cake, tea, sweets and chocolate). The methodology involves utilizing fabric phase sorptive extraction (FPSE) to extract diazepam (DZ), chlordiazepoxide (CDP), and ketamine (KET). Subsequently, the extracted samples are subjected to analysis using gas chromatography-mass spectrometry (GC-MS). Several parameters, including the type of membrane, pH, agitation time and speed, ionic strength, sample volume, elution volume and time, and type of elution solvent, were screened and thoroughly optimized. Sol-gel Carbowax 20M (CW-20M) has demonstrated the most effective extraction efficiency for the target analytes among all evaluated membranes. Under optimal conditions, the method displayed linearity within the range of 0.3–10 µg mL–¹ (or µg g–¹), exhibiting a coefficient of determination (R2) ranging from 0.996–0.999. The limits of detection (LODs) and limits of quantification (LOQs) for liquid samples range between 0.020-0.069 µg mL-¹ and 0.066-0.22 µg mL-¹, respectively. Correspondingly, the LODs for solid samples ranged from 0.056-0.090 µg g-¹, while the LOQs ranged from 0.18-0.29 µg g-¹. Notably, the method showcased better precision, with repeatability and reproducibility both below 5% and 10%, respectively. Furthermore, the FPSE-GC-MS method proved effective in determining diazepam (DZ) in forensic food samples connected to drug-facilitated crimes (DFCs). Additionally, the proposed method underwent evaluation for its whiteness using the RGB12 algorithm.Keywords: drug facilitated crime, fabric phase sorptive extraction, food forensics, white analytical chemistry
Procedia PDF Downloads 65235 Aerosol Direct Radiative Forcing Over the Indian Subcontinent: A Comparative Analysis from the Satellite Observation and Radiative Transfer Model
Authors: Shreya Srivastava, Sagnik Dey
Abstract:
Aerosol direct radiative forcing (ADRF) refers to the alteration of the Earth's energy balance from the scattering and absorption of solar radiation by aerosol particles. India experiences substantial ADRF due to high aerosol loading from various sources. These aerosols' radiative impact depends on their physical characteristics (such as size, shape, and composition) and atmospheric distribution. Quantifying ADRF is crucial for understanding aerosols’ impact on the regional climate and the Earth's radiative budget. In this study, we have taken radiation data from Clouds and the Earth’s Radiant Energy System (CERES, spatial resolution=1ox1o) for 22 years (2000-2021) over the Indian subcontinent. Except for a few locations, the short-wave DARF exhibits aerosol cooling at the TOA (values ranging from +2.5 W/m2 to -22.5W/m2). Cooling due to aerosols is more pronounced in the absence of clouds. Being an aerosol hotspot, higher negative ADRF is observed over the Indo-Gangetic Plain (IGP). Aerosol Forcing Efficiency (AFE) shows a decreasing seasonal trend in winter (DJF) over the entire study region while an increasing trend over IGP and western south India during the post-monsoon season (SON) in clear-sky conditions. Analysing atmospheric heating and AOD trends, we found that only the aerosol loading is not governing the change in atmospheric heating but also the aerosol composition and/or their vertical profile. We used a Multi-angle Imaging Spectro-Radiometer (MISR) Level-2 Version 23 aerosol products to look into aerosol composition. MISR incorporates 74 aerosol mixtures in its retrieval algorithm based on size, shape, and absorbing properties. This aerosol mixture information was used for analysing long-term changes in aerosol composition and dominating aerosol species corresponding to the aerosol forcing value. Further, ADRF derived from this method is compared with around 35 studies across India, where a plane parallel Radiative transfer model was used, and the model inputs were taken from the OPAC (Optical Properties of Aerosols and Clouds) utilizing only limited aerosol parameter measurements. The result shows a large overestimation of TOA warming by the latter (i.e., Model-based method).Keywords: aerosol radiative forcing (ARF), aerosol composition, MISR, CERES, SBDART
Procedia PDF Downloads 51234 Unveiling the Dynamics of Preservice Teachers’ Engagement with Mathematical Modeling through Model Eliciting Activities: A Comprehensive Exploration of Acceptance and Resistance Towards Modeling and Its Pedagogy
Authors: Ozgul Kartal, Wade Tillett, Lyn D. English
Abstract:
Despite its global significance in curricula, mathematical modeling encounters persistent disparities in recognition and emphasis within regular mathematics classrooms and teacher education across countries with diverse educational and cultural traditions, including variations in the perceived role of mathematical modeling. Over the past two decades, increased attention has been given to the integration of mathematical modeling into national curriculum standards in the U.S. and other countries. Therefore, the mathematics education research community has dedicated significant efforts to investigate various aspects associated with the teaching and learning of mathematical modeling, primarily focusing on exploring the applicability of modeling in schools and assessing students', teachers', and preservice teachers' (PTs) competencies and engagement in modeling cycles and processes. However, limited attention has been directed toward examining potential resistance hindering teachers and PTs from effectively implementing mathematical modeling. This study focuses on how PTs, without prior modeling experience, resist and/or embrace mathematical modeling and its pedagogy as they learn about models and modeling perspectives, navigate the modeling process, design and implement their modeling activities and lesson plans, and experience the pedagogy enabling modeling. Model eliciting activities (MEAs) were employed due to their high potential to support the development of mathematical modeling pedagogy. The mathematical modeling module was integrated into a mathematics methods course to explore how PTs embraced or resisted mathematical modeling and its pedagogy. The module design included reading, reflecting, engaging in modeling, assessing models, creating a modeling task (MEA), and designing a modeling lesson employing an MEA. Twelve senior undergraduate students participated, and data collection involved video recordings, written prompts, lesson plans, and reflections. An open coding analysis revealed acceptance and resistance toward teaching mathematical modeling. The study identified four overarching themes, including both acceptance and resistance: pedagogy, affordance of modeling (tasks), modeling actions, and adjusting modeling. In the category of pedagogy, PTs displayed acceptance based on potential pedagogical benefits and resistance due to various concerns. The affordance of modeling (tasks) category emerged from instances when PTs showed acceptance or resistance while discussing the nature and quality of modeling tasks, often debating whether modeling is considered mathematics. PTs demonstrated both acceptance and resistance in their modeling actions, engaging in modeling cycles as students and designing/implementing MEAs as teachers. The adjusting modeling category captured instances where PTs accepted or resisted maintaining the qualities and nature of the modeling experience or converted modeling into a typical structured mathematics experience for students. While PTs displayed a mix of acceptance and resistance in their modeling actions, limitations were observed in embracing complexity and adhering to model principles. The study provides valuable insights into the challenges and opportunities of integrating mathematical modeling into teacher education, emphasizing the importance of addressing pedagogical concerns and providing support for effective implementation. In conclusion, this research offers a comprehensive understanding of PTs' engagement with modeling, advocating for a more focused discussion on the distinct nature and significance of mathematical modeling in the broader curriculum to establish a foundation for effective teacher education programs.Keywords: mathematical modeling, model eliciting activities, modeling pedagogy, secondary teacher education
Procedia PDF Downloads 63233 Multilocus Phylogenetic Approach Reveals Informative DNA Barcodes for Studying Evolution and Taxonomy of Fusarium Fungi
Authors: Alexander A. Stakheev, Larisa V. Samokhvalova, Sergey K. Zavriev
Abstract:
Fusarium fungi are among the most devastating plant pathogens distributed all over the world. Significant reduction of grain yield and quality caused by Fusarium leads to multi-billion dollar annual losses to the world agricultural production. These organisms can also cause infections in immunocompromised persons and produce the wide range of mycotoxins, such as trichothecenes, fumonisins, and zearalenone, which are hazardous to human and animal health. Identification of Fusarium fungi based on the morphology of spores and spore-forming structures, colony color and appearance on specific culture media is often very complicated due to the high similarity of these features for closely related species. Modern Fusarium taxonomy increasingly uses data of crossing experiments (biological species concept) and genetic polymorphism analysis (phylogenetic species concept). A number of novel Fusarium sibling species has been established using DNA barcoding techniques. Species recognition is best made with the combined phylogeny of intron-rich protein coding genes and ribosomal DNA sequences. However, the internal transcribed spacer of (ITS), which is considered to be universal DNA barcode for Fungi, is not suitable for genus Fusarium, because of its insufficient variability between closely related species and the presence of non-orthologous copies in the genome. Nowadays, the translation elongation factor 1 alpha (TEF1α) gene is the “gold standard” of Fusarium taxonomy, but the search for novel informative markers is still needed. In this study, we used two novel DNA markers, frataxin (FXN) and heat shock protein 90 (HSP90) to discover phylogenetic relationships between Fusarium species. Multilocus phylogenetic analysis based on partial sequences of TEF1α, FXN, HSP90, as well as intergenic spacer of ribosomal DNA (IGS), beta-tubulin (β-TUB) and phosphate permease (PHO) genes has been conducted for 120 isolates of 19 Fusarium species from different climatic zones of Russia and neighboring countries using maximum likelihood (ML) and maximum parsimony (MP) algorithms. Our analyses revealed that FXN and HSP90 genes could be considered as informative phylogenetic markers, suitable for evolutionary and taxonomic studies of Fusarium genus. It has been shown that PHO gene possesses more variable (22 %) and parsimony informative (19 %) characters than other markers, including TEF1α (12 % and 9 %, correspondingly) when used for elucidating phylogenetic relationships between F. avenaceum and its closest relatives – F. tricinctum, F. acuminatum, F. torulosum. Application of novel DNA barcodes confirmed the fact that F. arthrosporioides do not represent a separate species but only a subspecies of F. avenaceum. Phylogeny based on partial PHO and FXN sequences revealed the presence of separate cluster of four F. avenaceum strains which were closer to F. torulosum than to major F. avenaceum clade. The strain F-846 from Moldova, morphologically identified as F. poae, formed a separate lineage in all the constructed dendrograms, and could potentially be considered as a separate species, but more information is needed to confirm this conclusion. Variable sites in PHO sequences were used for the first-time development of specific qPCR-based diagnostic assays for F. acuminatum and F. torulosum. This work was supported by Russian Foundation for Basic Research (grant № 15-29-02527).Keywords: DNA barcode, fusarium, identification, phylogenetics, taxonomy
Procedia PDF Downloads 322232 Research Cooperation between of Ukraine in Terms of Food Chain Safety Control in the Frame of MICRORISK Project
Authors: Kinga Wieczorek, Elzbieta Kukier, Remigiusz Pomykala, Beata Lachtara, Renata Szewczyk, Krzysztof Kwiatek, Jacek Osek
Abstract:
The MICRORISK project (Research cooperation in assessment of microbiological hazard and risk in the food chain) was funded by the European Commission under the FP7 PEOPLE 2012 IRSES call within the International Research Staff Exchange Scheme of Marie Curie Action and realized during years from 2014 to 2015. The main aim of the project was to establish a cooperation between the European Union (EU) and the third State in the area important from the public health point of view. The following organizations have been engaged in the activity: National Veterinary Research Institute (NVRI) in Pulawy, Poland (coordinator), French Agency for Food, Environmental and Occupational Health & Safety (ANSES) in Maisons Alfort, France, National Scientific Center Institute of Experimental and Clinical Veterinary Medicine (NSC IECVM), Kharkov and State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise (SSRILDVSE) Kijev Ukraine. The results of the project showed that Ukraine used microbiological criteria in accordance with Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Compliance concerns both the criteria applicable at the stage of food safety (retail trade), as well as evaluation criteria and process hygiene in food production. In this case, the Ukrainian legislation also provides application of the criteria that do not have counterparts in the food law of the European Union, and are based on the provisions of Ukrainian law. Partial coherence of the Ukrainian and EU legal requirements in terms of microbiological criteria for food and feed concerns microbiological parameters such as total plate count, coliforms, coagulase-positive Staphylococcus spp., including S. aureus. Analysis of laboratory methods used for microbiological hazards control in food production chain has shown that most methods used in the EU are well-known by Ukrainian partners, and many of them are routinely applied as the only standards in the laboratory practice or simultaneously used with Ukrainian methods. The area without any legislation, where the EU regulation and analytical methods should be implemented is the area of Shiga toxin producing E. coli, including E. coli O157 and staphylococcal enterotoxin detection. During the project, the analysis of the existing Ukrainian and EU data concerning the prevalence of the most important food-borne pathogens on different stages of food production chain was performed. Particularly, prevalence of Salmonella spp., Campylobacter spp., L. monocytogenes as well as clostridia was examined. The analysis showed that poultry meat still appears to be the most important food-borne source of Campylobacter and Salmonella in the UE. On the other hand, L. monocytogenes were seldom detected above the legal safety limit (100 cfu/g) among the EU countries. Moreover, the analysis revealed the lack of comprehensive data regarding the prevalence of the most important food-borne pathogens in Ukraine. The results of the MICRORISK project are networking activities among researches originations participating in the tasks will help with a better recognition of each other regarding very important, from the public health point of view areas such as microbiological hazards in the food production chain and finally will help to improve food quality and safety for consumers.Keywords: cooperation, European Union, food chain safety, food law, microbiological risk, Microrisk, Poland, Ukraine
Procedia PDF Downloads 374231 Challenges to Developing a Trans-European Programme for Health Professionals to Recognize and Respond to Survivors of Domestic Violence and Abuse
Authors: June Keeling, Christina Athanasiades, Vaiva Hendrixson, Delyth Wyndham
Abstract:
Recognition and education in violence, abuse, and neglect for medical and healthcare practitioners (REVAMP) is a trans-European project aiming to introduce a training programme that has been specifically developed by partners across seven European countries to meet the needs of medical and healthcare practitioners. Amalgamating the knowledge and experience of clinicians, researchers, and educators from interdisciplinary and multi-professional backgrounds, REVAMP has tackled the under-resourced and underdeveloped area of domestic violence and abuse. The team designed an online training programme to support medical and healthcare practitioners to recognise and respond appropriately to survivors of domestic violence and abuse at their point of contact with a health provider. The REVAMP partner countries include Europe: France, Lithuania, Germany, Greece, Iceland, Norway, and the UK. The training is delivered through a series of interactive online modules, adapting evidence-based pedagogical approaches to learning. Capturing and addressing the complexities of the project impacted the methodological decisions and approaches to evaluation. The challenge was to find an evaluation methodology that captured valid data across all partner languages to demonstrate the extent of the change in knowledge and understanding. Co-development by all team members was a lengthy iterative process, challenged by a lack of consistency in terminology. A mixed methods approach enabled both qualitative and quantitative data to be collected, at the start, during, and at the conclusion of the training for the purposes of evaluation. The module content and evaluation instrument were accessible in each partner country's language. Collecting both types of data provided a high-level snapshot of attainment via the quantitative dataset and an in-depth understanding of the impact of the training from the qualitative dataset. The analysis was mixed methods, with integration at multiple interfaces. The primary focus of the analysis was to support the overall project evaluation for the funding agency. A key project outcome was identifying that the trans-European approach posed several challenges. Firstly, the project partners did not share a first language or a legal or professional approach to domestic abuse and neglect. This was negotiated through complex, systematic, and iterative interaction between team members so that consensus could be achieved. Secondly, the context of the data collection in several different cultural, educational, and healthcare systems across Europe challenged the development of a robust evaluation. The participants in the pilot evaluation shared that the training was contemporary, well-designed, and of great relevance to inform practice. Initial results from the evaluation indicated that the participants were drawn from more than eight partner countries due to the online nature of the training. The primary results indicated a high level of engagement with the content and achievement through the online assessment. The main finding was that the participants perceived the impact of domestic abuse and neglect in very different ways in their individual professional contexts. Most significantly, the participants recognised the need for the training and the gap that existed previously. It is notable that a mixed-methods evaluation of a trans-European project is unusual at this scale.Keywords: domestic violence, e-learning, health professionals, trans-European
Procedia PDF Downloads 82230 Hidro-IA: An Artificial Intelligent Tool Applied to Optimize the Operation Planning of Hydrothermal Systems with Historical Streamflow
Authors: Thiago Ribeiro de Alencar, Jacyro Gramulia Junior, Patricia Teixeira Leite
Abstract:
The area of the electricity sector that deals with energy needs by the hydroelectric in a coordinated manner is called Operation Planning of Hydrothermal Power Systems (OPHPS). The purpose of this is to find a political operative to provide electrical power to the system in a given period, with reliability and minimal cost. Therefore, it is necessary to determine an optimal schedule of generation for each hydroelectric, each range, so that the system meets the demand reliably, avoiding rationing in years of severe drought, and that minimizes the expected cost of operation during the planning, defining an appropriate strategy for thermal complementation. Several optimization algorithms specifically applied to this problem have been developed and are used. Although providing solutions to various problems encountered, these algorithms have some weaknesses, difficulties in convergence, simplification of the original formulation of the problem, or owing to the complexity of the objective function. An alternative to these challenges is the development of techniques for simulation optimization and more sophisticated and reliable, it can assist the planning of the operation. Thus, this paper presents the development of a computational tool, namely Hydro-IA for solving optimization problem identified and to provide the User an easy handling. Adopted as intelligent optimization technique is Genetic Algorithm (GA) and programming language is Java. First made the modeling of the chromosomes, then implemented the function assessment of the problem and the operators involved, and finally the drafting of the graphical interfaces for access to the User. The results with the Genetic Algorithms were compared with the optimization technique nonlinear programming (NLP). Tests were conducted with seven hydroelectric plants interconnected hydraulically with historical stream flow from 1953 to 1955. The results of comparison between the GA and NLP techniques shows that the cost of operating the GA becomes increasingly smaller than the NLP when the number of hydroelectric plants interconnected increases. The program has managed to relate a coherent performance in problem resolution without the need for simplification of the calculations together with the ease of manipulating the parameters of simulation and visualization of output results.Keywords: energy, optimization, hydrothermal power systems, artificial intelligence and genetic algorithms
Procedia PDF Downloads 419229 An Impact Assesment of Festive Events on Sustainable Cultural Heritage: İdrisyayla Village
Authors: Betül Gelengül Eki̇mci̇, Semra Günay Aktaş
Abstract:
Festive, habitual activities celebrated on the specified date by a local community, are conducive to recognition of the region. The main function of festive events is to help gathering people via an annual celebration to create an atmosphere of understanding and the opportunity to participate in the joy of life. At the same time, festive events may serve as special occasions on which immigrants return home to celebrate with their family and community, reaffirming their identity and link to the community’s traditions. Festivals also support the local economy by bringing in different visitors to the region. The tradition of “Beet Brewing-Molasses Production,” which is held in İdrisyayla Village is an intangible cultural heritage with customs, traditions, and rituals carrying impacts of cuisine culture of Rumelian immigrants in the Ottoman. After the harvest of the beet plant in the autumn season of the year, Beet Brewing Molasses syrup is made by traditional production methods with co-op of the local community. Festive occurring brewing paste made process provided transmission of knowledge and experience to the young generations. Making molasses, which is a laborious process, is accompanied by folk games such as "sayacı," which is vital element of the festive performed in İdrisyayla. Performance provides enjoyable time and supporting motivation. Like other forms of intangible cultural heritage, “Beet Brewing-Molasses Festive in İdrasyayla is threatened by rapid urbanisation, young generation migration, industrialisation and environmental change. The festive events are threatened with gradual disappearance due to changes communities undergo in modern societies because it depends on the broad participation of practitioners. Ensuring the continuity of festive events often requires the mobilization of large numbers of individuals and the social, political and legal institutions and mechanisms of society. In 2015, Intangible cultural heritage research project with the title of "İdrisyayla Molasses Process" managed by the Eskişehir Governorship, City Directorate of Culture and Tourism and Anadolu University, project members took part in the festival organization to promote sustainability, making it visible, to encourage the broadest public participation possible, to ensure public awareness on the cultural importance. To preserve the originality of and encourage participation in the festive İdrisyayla, local associations, researchers and institutions created foundation and supports festive events, such as "sayacı" folk game, which is vital element of the festive performed in İdrisyayla. Practitioners find new opportunity to market İdrisyayla Molasses production. Publicity program through the press and exhibition made it possible to stress the cultural importance of the festive in İdrisyayla Village. The research reported here used a survey analysis to evaluate an affect of the festive after the spirit of the 2015 Festive in İdrisyayla Village. Particular attention was paid to the importance of the cultural aspects of the festival. Based on a survey of more than a hundred festival attendees, several recommendations are made to festival planners. Results indicate that the variety of festive activities and products offered for sale very important to attendees. The local participants care product sales rather than cultural heritage.Keywords: agritourism, cultural tourism, festival, sustainable cultural heritage
Procedia PDF Downloads 220228 Efficient Reuse of Exome Sequencing Data for Copy Number Variation Callings
Authors: Chen Wang, Jared Evans, Yan Asmann
Abstract:
With the quick evolvement of next-generation sequencing techniques, whole-exome or exome-panel data have become a cost-effective way for detection of small exonic mutations, but there has been a growing desire to accurately detect copy number variations (CNVs) as well. In order to address this research and clinical needs, we developed a sequencing coverage pattern-based method not only for copy number detections, data integrity checks, CNV calling, and visualization reports. The developed methodologies include complete automation to increase usability, genome content-coverage bias correction, CNV segmentation, data quality reports, and publication quality images. Automatic identification and removal of poor quality outlier samples were made automatically. Multiple experimental batches were routinely detected and further reduced for a clean subset of samples before analysis. Algorithm improvements were also made to improve somatic CNV detection as well as germline CNV detection in trio family. Additionally, a set of utilities was included to facilitate users for producing CNV plots in focused genes of interest. We demonstrate the somatic CNV enhancements by accurately detecting CNVs in whole exome-wide data from the cancer genome atlas cancer samples and a lymphoma case study with paired tumor and normal samples. We also showed our efficient reuses of existing exome sequencing data, for improved germline CNV calling in a family of the trio from the phase-III study of 1000 Genome to detect CNVs with various modes of inheritance. The performance of the developed method is evaluated by comparing CNV calling results with results from other orthogonal copy number platforms. Through our case studies, reuses of exome sequencing data for calling CNVs have several noticeable functionalities, including a better quality control for exome sequencing data, improved joint analysis with single nucleotide variant calls, and novel genomic discovery of under-utilized existing whole exome and custom exome panel data.Keywords: bioinformatics, computational genetics, copy number variations, data reuse, exome sequencing, next generation sequencing
Procedia PDF Downloads 255