Search results for: learning goal orientation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10839

Search results for: learning goal orientation

5919 Development of a Turbulent Boundary Layer Wall-pressure Fluctuations Power Spectrum Model Using a Stepwise Regression Algorithm

Authors: Zachary Huffman, Joana Rocha

Abstract:

Wall-pressure fluctuations induced by the turbulent boundary layer (TBL) developed over aircraft are a significant source of aircraft cabin noise. Since the power spectral density (PSD) of these pressure fluctuations is directly correlated with the amount of sound radiated into the cabin, the development of accurate empirical models that predict the PSD has been an important ongoing research topic. The sound emitted can be represented from the pressure fluctuations term in the Reynoldsaveraged Navier-Stokes equations (RANS). Therefore, early TBL empirical models (including those from Lowson, Robertson, Chase, and Howe) were primarily derived by simplifying and solving the RANS for pressure fluctuation and adding appropriate scales. Most subsequent models (including Goody, Efimtsov, Laganelli, Smol’yakov, and Rackl and Weston models) were derived by making modifications to these early models or by physical principles. Overall, these models have had varying levels of accuracy, but, in general, they are most accurate under the specific Reynolds and Mach numbers they were developed for, while being less accurate under other flow conditions. Despite this, recent research into the possibility of using alternative methods for deriving the models has been rather limited. More recent studies have demonstrated that an artificial neural network model was more accurate than traditional models and could be applied more generally, but the accuracy of other machine learning techniques has not been explored. In the current study, an original model is derived using a stepwise regression algorithm in the statistical programming language R, and TBL wall-pressure fluctuations PSD data gathered at the Carleton University wind tunnel. The theoretical advantage of a stepwise regression approach is that it will automatically filter out redundant or uncorrelated input variables (through the process of feature selection), and it is computationally faster than machine learning. The main disadvantage is the potential risk of overfitting. The accuracy of the developed model is assessed by comparing it to independently sourced datasets.

Keywords: aircraft noise, machine learning, power spectral density models, regression models, turbulent boundary layer wall-pressure fluctuations

Procedia PDF Downloads 141
5918 Multimodal Content: Fostering Students’ Language and Communication Competences

Authors: Victoria L. Malakhova

Abstract:

The research is devoted to multimodal content and its effectiveness in developing students’ linguistic and intercultural communicative competences as an indefeasible constituent of their future professional activity. Description of multimodal content both as a linguistic and didactic phenomenon makes the study relevant. The objective of the article is the analysis of creolized texts and the effect they have on fostering higher education students’ skills and their productivity. The main methods used are linguistic text analysis, qualitative and quantitative methods, deduction, generalization. The author studies texts with full and partial creolization, their features and role in composing multimodal textual space. The main verbal and non-verbal markers and paralinguistic means that enhance the linguo-pragmatic potential of creolized texts are covered. To reveal the efficiency of multimodal content application in English teaching, the author conducts an experiment among both undergraduate students and teachers. This allows specifying main functions of creolized texts in the process of language learning, detecting ways of enhancing students’ competences, and increasing their motivation. The described stages of using creolized texts can serve as an algorithm for work with multimodal content in teaching English as a foreign language. The findings contribute to improving the efficiency of the academic process.

Keywords: creolized text, English language learning, higher education, language and communication competences, multimodal content

Procedia PDF Downloads 118
5917 Academic Skills Enhancement in Secondary School Students Undertaking Tertiary Studies

Authors: Richard White, Anne Drabble, Maureen O’Neill

Abstract:

The University of the Sunshine Coast (USC) offers secondary school students in the final two years of school (Years 11 and 12, 16 – 18 years of age) an opportunity to participate in a program which provides an accelerated pathway to tertiary studies. Whilst still at secondary school, the students undertake two first year university subjects that are required subjects in USC undergraduate degree programs. The program is called Integrated Learning Pathway (ILP) and offers a range of disciplines, including business, design, drama, education, and engineering. Between 2010 and 2014, 38% of secondary students who participated in an ILP program commenced undergraduate studies at USC following completion of secondary school studies. The research reported here considers “before and after” literacy and numeracy competencies of students to determine what impact participation in the ILP program has had on their academic skills. Qualitative and quantitative data has been gathered via numeracy and literacy testing of the students, and a survey asking the students to self-evaluate their numeracy and literacy skills, and reflect on their views of these academic skills. The research will enable improved targeting of teaching strategies so that students will acquire not only course-specific learning outcomes but also collateral academic skills. This enhancement of academic skills will improve undergraduate experience and improve student retention.

Keywords: academic skills enhancement, accelerated pathways, improved teaching, student retention

Procedia PDF Downloads 313
5916 Innovative Techniques of Teaching Henrik Ibsen’s a Doll’s House

Authors: Shilpagauri Prasad Ganpule

Abstract:

The teaching of drama is considered as the most significant and noteworthy area in an ESL classroom. Diverse innovative techniques can be used to make the teaching of drama worthwhile and interesting. The paper presents the different innovative techniques that can be used while teaching Henrik Ibsen’s A Doll’s House [2007]. The innovative techniques facilitate students’ understanding and comprehension of the text. The use of the innovative techniques makes them explore the dramatic text and uncover a multihued arena of meanings hidden in it. They arouse the students’ interest and assist them overcome the difficulties created by the second language. The diverse innovative techniques appeal to the imagination of the students and increase their participation in the classroom. They help the students in the appreciation of the dramatic text and make the teaching learning situation a fruitful experience for both the teacher and students. The students successfully overcome the problem of L2 comprehension and grasp the theme, story line and plot-structure of the play effectively. The innovative techniques encourage a strong sense of participation on the part of the students and persuade them to learn through active participation. In brief, the innovative techniques promote the students to perform various tasks and expedite their learning process. Thus the present paper makes an attempt to present varied innovative techniques that can be used while teaching drama. It strives to demonstrate how the use of innovative techniques improve and enhance the students’ understanding and appreciation of Ibsen’s A Doll’s House [2007].

Keywords: ESL classroom, innovative techniques, students’ participation, teaching of drama

Procedia PDF Downloads 629
5915 Analyzing Façade Scenarios and Daylight Levels in the Reid Building: A Reflective Case Study on the Designed Daylight under Overcast Sky

Authors: Eman Mayah, Raid Hanna

Abstract:

This study presents the use of daylight in the case study of the Reid building at the Glasgow School of Art in the city of Glasgow, UK. In Nordic countries, daylight is one of the main considerations within building design, especially in the face of long, lightless winters. A shortage of daylight, contributing to dark and gloomy conditions, necessitates that designs incorporate strong daylight performance. As such, the building in question is designed to capture natural light for varying needs, where studios are located on the North and South façades. The study’s approach presents an analysis of different façade scenarios, where daylight from the North is observed, analyzed and compared with the daylight from the South façade for various design studios in the building. The findings then are correlated with the results of daylight levels from the daylight simulation program (Autodesk Ecotect Analysis) for the investigated studios. The study finds there to be a dramatic difference in daylight nature and levels between the North and South façades, where orientation, obstructions and designed façade fenestrations have major effects on the findings. The study concludes that some of the studios positioned on the North façade do not have a desirable quality of diffused northern light, due to the outside building’s obstructions, area and volume of the studio and the shadow effect of the designed mezzanine floor in the studios.

Keywords: daylight levels, educational building, Façade fenestration, overcast weather

Procedia PDF Downloads 413
5914 Evaluating Alternative Structures for Prefix Trees

Authors: Feras Hanandeh, Izzat Alsmadi, Muhammad M. Kwafha

Abstract:

Prefix trees or tries are data structures that are used to store data or index of data. The goal is to be able to store and retrieve data by executing queries in quick and reliable manners. In principle, the structure of the trie depends on having letters in nodes at the different levels to point to the actual words in the leafs. However, the exact structure of the trie may vary based on several aspects. In this paper, we evaluated different structures for building tries. Using datasets of words of different sizes, we evaluated the different forms of trie structures. Results showed that some characteristics may impact significantly, positively or negatively, the size and the performance of the trie. We investigated different forms and structures for the trie. Results showed that using an array of pointers in each level to represent the different alphabet letters is the best choice.

Keywords: data structures, indexing, tree structure, trie, information retrieval

Procedia PDF Downloads 455
5913 Integrated Machine Learning Framework for At-Home Patients Personalized Risk Prediction Using Activities, Biometric, and Demographic Features

Authors: Claire Xu, Welton Wang, Manasvi Pinnaka, Anqi Pan, Michael Han

Abstract:

Hospitalizations account for one-third of the total health care spending in the US. Early risk detection and intervention can reduce this high cost and increase the satisfaction of both patients and physicians. Due to the lack of awareness of the potential arising risks in home environment, the opportunities for patients to seek early actions of clinical visits are dramatically reduced. This research aims to offer a highly personalized remote patients monitoring and risk assessment AI framework to identify the potentially preventable hospitalization for both acute as well as chronic diseases. A hybrid-AI framework is trained with data from clinical setting, patients surveys, as well as online databases. 20+ risk factors are analyzed ranging from activities, biometric info, demographic info, socio-economic info, hospitalization history, medication info, lifestyle info, etc. The AI model yields high performance of 87% accuracy and 88 sensitivity with 20+ features. This hybrid-AI framework is proven to be effective in identifying the potentially preventable hospitalization. Further, the high indicative features are identified by the models which guide us to a healthy lifestyle and early intervention suggestions.

Keywords: hospitalization prevention, machine learning, remote patient monitoring, risk prediction

Procedia PDF Downloads 245
5912 Experimental and Computational Analysis of Glass Fiber Reinforced Plastic Beams with Piezoelectric Fibers

Authors: Selin Kunc, Srinivas Koushik Gundimeda, John A. Gallagher, Roselita Fragoudakis

Abstract:

This study investigates the behavior of Glass Fiber Reinforced Plastic (GFRP) laminated beams additionally reinforced with piezoelectric fibers. The electromechanical behavior of piezoelectric materials coupled with high strength/low weight GFRP laminated beams can have significant application in a wide range of industries. Energy scavenging through mechanical vibrations is the focus of this study, and possible applications can be seen in the automotive industry. This study examines the behavior of such composite laminates using Classical Lamination Theory (CLT) under three-point bending conditions. Fiber orientation is optimized for the desired stiffness and deflection that yield maximum energy output. Finite element models using ABAQUS/CAE are verified through experimental testing. The optimum stacking sequences examined are [0o]s, [ 0/45o]s, and [45/-45o]s. Results show the superiority of the stacking sequence [0/45o]s, providing higher strength at a lower weight, and maximum energy output. Furthermore, laminated GFRP beams additionally reinforced with piezoelectric fibers can be used under bending to not only replace metallic component while providing similar strength at a lower weight but also provide an energy output.

Keywords: classical lamination theory (CLT), energy scavenging, glass fiber reinforced plastics (GFRP), piezoelectric fibers

Procedia PDF Downloads 313
5911 Spatial Cognition and 3-Dimensional Vertical Urban Design Guidelines

Authors: Hee Sun (Sunny) Choi, Gerhard Bruyns, Wang Zhang, Sky Cheng, Saijal Sharma

Abstract:

The main focus of this paper is to propose a comprehensive framework for the cognitive measurement and modelling of the built environment. This will involve exploring and measuring neural mechanisms. The aim is to create a foundation for further studies in this field that are consistent and rigorous. Additionally, this framework will facilitate collaboration with cognitive neuroscientists by establishing a shared conceptual basis. The goal of this research is to develop a human-centric approach for urban design that is scientific and measurable, producing a set of urban design guidelines that incorporate cognitive measurement and modelling. By doing so, the broader intention is to design urban spaces that prioritize human needs and well-being, making them more liveable.

Keywords: vertical urbanism, human centric design, spatial cognition and psychology, vertical urban design guidelines

Procedia PDF Downloads 87
5910 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home

Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.

Keywords: situation-awareness, smart home, IoT, machine learning, classifier

Procedia PDF Downloads 424
5909 Current Cosmetic Treatments in Pregnancy

Authors: Daniela F. Maluf, Fernanda Roters, Luma C. F. Silva

Abstract:

The goal of this work is to report the main dermatological alterations occurring during pregnancy and actual cosmetic protocols available and recommended for safe use. Throughout pregnancy, woman's body undergoes many transformations such as hormonal changes and weight gain. These alterations can result in undesirable skin aspects that end up affecting the future mother's life. The main complaints of pregnant women involve melasma advent, varicose veins, edema, and natural skin aging. Even if most of the time is recommended to wait for the birth to use cosmetics, there are some alternatives to prevent and to treat these alterations during pregnancy. For all these cases, there is a need to update information about safety and efficacy of new actives and technologies in cosmetic products. The purpose of this study was to conduct a literature review about the main skin alterations during pregnancy and actual recommended treatments, according to the current legislation.

Keywords: pregnancy, cosmetic, treatment, physiological changes

Procedia PDF Downloads 372
5908 A Machine Learning Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

There has been a need in recent years to predict student academic achievement prior to graduation. This is to assist them in improving their grades, especially for those who have struggled in the past. The purpose of this research is to use supervised learning techniques to create a model that predicts student academic progress. Many scholars have developed models that predict student academic achievement based on characteristics including smoking, demography, culture, social media, parent educational background, parent finances, and family background, to mention a few. This element, as well as the model used, could have misclassified the kids in terms of their academic achievement. As a prerequisite to predicting if the student will perform well in the future on related courses, this model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester. With a 96.7 percent accuracy, the model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost. This model is offered as a desktop application with user-friendly interfaces for forecasting student academic progress for both teachers and students. As a result, both students and professors are encouraged to use this technique to predict outcomes better.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 113
5907 System of Linear Equations, Gaussian Elimination

Authors: Rabia Khan, Nargis Munir, Suriya Gharib, Syeda Roshana Ali

Abstract:

In this paper linear equations are discussed in detail along with elimination method. Gaussian elimination and Gauss Jordan schemes are carried out to solve the linear system of equation. This paper comprises of matrix introduction, and the direct methods for linear equations. The goal of this research was to analyze different elimination techniques of linear equations and measure the performance of Gaussian elimination and Gauss Jordan method, in order to find their relative importance and advantage in the field of symbolic and numeric computation. The purpose of this research is to revise an introductory concept of linear equations, matrix theory and forms of Gaussian elimination through which the performance of Gauss Jordan and Gaussian elimination can be measured.

Keywords: direct, indirect, backward stage, forward stage

Procedia PDF Downloads 602
5906 Rewashing for Gold: Optimizing Mine Plan for Effective Closure

Authors: O. D. Eniowo

Abstract:

“Rewashing” as it is commonly called, involves the process of scooping out and washing chunks of mud from a closed alluvial gold mine site with the purpose of extracting any leftover gold deposits in the site. It is usually carried out by illegal miners who infiltrate closed mine sites with the goal of scavenging for any leftover gold deposits. Expectedly, the practice gives little or no regard for environmental protection. This paper examines the process of “rewashing” in a mining community in Nigeria. It then discusses the looming danger it portends for health, safety, and the environment. The study draws lessons from these occurrences to examine and discuss fit-for-purpose mine closure plans that could be adopted by gold mines in Nigeria and other sub-Saharan African countries.

Keywords: mine planning, mine closure, illegal mining, artisanal mining, environmental sustainability

Procedia PDF Downloads 38
5905 Major Depressive Disorder: Diagnosis based on Electroencephalogram Analysis

Authors: Wajid Mumtaz, Aamir Saeed Malik, Syed Saad Azhar Ali, Mohd Azhar Mohd Yasin

Abstract:

In this paper, a technique based on electroencephalogram (EEG) analysis is presented, aiming for diagnosing major depressive disorder (MDD) among a potential population of MDD patients and healthy controls. EEG is recognized as a clinical modality during applications such as seizure diagnosis, index for anesthesia, detection of brain death or stroke. However, its usability for psychiatric illnesses such as MDD is less studied. Therefore, in this study, for the sake of diagnosis, 2 groups of study participants were recruited, 1) MDD patients, 2) healthy people as controls. EEG data acquired from both groups were analyzed involving inter-hemispheric asymmetry and composite permutation entropy index (CPEI). To automate the process, derived quantities from EEG were utilized as inputs to classifier such as logistic regression (LR) and support vector machine (SVM). The learning of these classification models was tested with a test dataset. Their learning efficiency is provided as accuracy of classifying MDD patients from controls, their sensitivities and specificities were reported, accordingly (LR =81.7 % and SVM =81.5 %). Based on the results, it is concluded that the derived measures are indicators for diagnosing MDD from a potential population of normal controls. In addition, the results motivate further exploring other measures for the same purpose.

Keywords: major depressive disorder, diagnosis based on EEG, EEG derived features, CPEI, inter-hemispheric asymmetry

Procedia PDF Downloads 549
5904 Andragogical Approach in Learning Animation to Promote Social, Cultural and Ethical Awareness While Enhancing Aesthetic Values

Authors: Juhanita Jiman

Abstract:

This paper aims to demonstrate how androgogical approach can help educators to facilitate animation students with better understanding of their acquired technical knowledge and skills while introducing them to crucial content and ethical values. In this borderless world, it is important for the educators to know that they are dealing with young adults who are heavily influenced by their surroundings. Naturally, educators are not only handling academic issues, they are also burdened with social obligations. Appropriate androgogical approach can be beneficial for both educators and students to tackle these problems. We used to think that teaching pedagogy is important at all level of age. Unfortunately, pedagogical approach is not entirely applicable to university students because they are no longer children. Pedagogy is a teaching approach focusing on children, whereas andragogy is specifically focussing on teaching adults and helping them to learn better. As adults mature, they become increasingly independent and responsible for their own actions. In many ways, the pedagogical model is not really suitable for such developmental changes, and therefore, produces tension, dissatisfaction, and resistance in individual student. The ever-changing technology has resulted in animation students to be very competitive in acquiring their technical skills, making them forget and neglecting the importance of the core values of a story. As educators, we have to guide them not only to excel in achieving knowledge, skills and technical expertise but at the same time, show them what is right or wrong and encourage them to inculcate moral values in their work.

Keywords: andragogy, animation, artistic contents, productive learning environment

Procedia PDF Downloads 283
5903 Disabled Graduate Students’ Experiences and Vision of Change for Higher Education: A Participatory Action Research Study

Authors: Emily Simone Doffing, Danielle Kohfeldt

Abstract:

Disabled students are underrepresented in graduate-level degree enrollment and completion. There is limited research on disabled students' progression during the pandemic. Disabled graduate students (DGS) face unique interpersonal and institutional barriers, yet, limited research explores these barriers, buffering facilitators, and aids to academic persistence. This study adopts an asset-based, embodied disability approach using the critical pedagogy theoretical framework instead of the deficit research approach. The Participatory Action Research (PAR) paradigm, the critical pedagogy theoretical framework, and emancipatory disability research share the same purpose -creating a socially just world through reciprocal learning. This study is one of few, if not the first, to center solely on DGS’ lived understanding using a Participatory Action Research (PAR) epistemology. With a PAR paradigm, participants and investigators work as a research team democratically at every stage of the research process. PAR has individual and systemic outcomes. PAR lessens the researcher-participant power gap and elevates a marginalized community’s knowledge as expertise for local change. PAR and critical pedagogy work toward enriching everyone involved with empowerment, civic engagement, knowledge proliferation, socio-cultural reflection, skills development, and active meaning-making. The PAR process unveils the tensions between disability and graduate school in policy and practice during the pandemic. Likewise, institutional and ideological tensions influence the PAR process. This project is recruiting 10 DGS until September through purposive and snowball sampling. DGS will collectively practice praxis during four monthly focus groups in the fall 2023 semester. Participant researchers can attend a focus group or an interview, both with field notes. September will be our orientation and first monthly meeting. It will include access needs check-ins, ice breakers, consent form review, a group agreement, PAR introduction, research ethics discussion, research goals, and potential research topics. October and November will be available for meetings for dialogues about lived experiences during our collaborative data collection. Our sessions can be semi-structured with “framing questions,” which would be revised together. Field notes include observations that cannot be captured through audio. December will focus on local social action planning and dissemination. Finally, in January, there will be a post-study focus group for students' reflections on their experiences of PAR. Iterative analysis methods include transcribed audio, reflexivity, memos, thematic coding, analytic triangulation, and member checking. This research follows qualitative rigor and quality criteria: credibility, transferability, confirmability, and psychopolitical validity. Results include potential tension points, social action, individual outcomes, and recommendations for conducting PAR. Tension points have three components: dubious practices, contestable knowledge, and conflict. The dissemination of PAR recommendations will aid and encourage researchers to conduct future PAR projects with the disabled community. Identified stakeholders will be informed of DGS’ insider knowledge to drive social sustainability.

Keywords: participatory action research, graduate school, disability, higher education

Procedia PDF Downloads 65
5902 Cross Attention Fusion for Dual-Stream Speech Emotion Recognition

Authors: Shaode Yu, Jiajian Meng, Bing Zhu, Hang Yu, Qiurui Sun

Abstract:

Speech emotion recognition (SER) is for recognizing human subjective emotions through audio data in-depth analysis. From speech audios, how to comprehensively extract emotional information and how to effectively fuse extracted features remain challenging. This paper presents a dual-stream SER framework that embraces both full training and transfer learning of different networks for thorough feature encoding. Besides, a plug-and-play cross-attention fusion (CAF) module is implemented for the valid integration of the dual-stream encoder output. The effectiveness of the proposed CAF module is compared to the other three fusion modules (feature summation, feature concatenation, and feature-wise linear modulation) on two databases (RAVDESS and IEMO-CAP) using different dual-stream encoders (full training network, DPCNN or TextRCNN; transfer learning network, HuBERT or Wav2Vec2). Experimental results suggest that the CAF module can effectively reconcile conflicts between features from different encoders and outperform the other three feature fusion modules on the SER task. In the future, the plug-and-play CAF module can be extended for multi-branch feature fusion, and the dual-stream SER framework can be widened for multi-stream data representation to improve the recognition performance and generalization capacity.

Keywords: speech emotion recognition, cross-attention fusion, dual-stream, pre-trained

Procedia PDF Downloads 85
5901 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network

Procedia PDF Downloads 143
5900 Web Development in Information Technology with Javascript, Machine Learning and Artificial Intelligence

Authors: Abdul Basit Kiani, Maryam Kiani

Abstract:

Online developers now have the tools necessary to create online apps that are not only reliable but also highly interactive, thanks to the introduction of JavaScript frameworks and APIs. The objective is to give a broad overview of the recent advances in the area. The fusion of machine learning (ML) and artificial intelligence (AI) has expanded the possibilities for web development. Modern websites now include chatbots, clever recommendation systems, and customization algorithms built in. In the rapidly evolving landscape of modern websites, it has become increasingly apparent that user engagement and personalization are key factors for success. To meet these demands, websites now incorporate a range of innovative technologies. One such technology is chatbots, which provide users with instant assistance and support, enhancing their overall browsing experience. These intelligent bots are capable of understanding natural language and can answer frequently asked questions, offer product recommendations, and even help with troubleshooting. Moreover, clever recommendation systems have emerged as a powerful tool on modern websites. By analyzing user behavior, preferences, and historical data, these systems can intelligently suggest relevant products, articles, or services tailored to each user's unique interests. This not only saves users valuable time but also increases the chances of conversions and customer satisfaction. Additionally, customization algorithms have revolutionized the way websites interact with users. By leveraging user preferences, browsing history, and demographic information, these algorithms can dynamically adjust the website's layout, content, and functionalities to suit individual user needs. This level of personalization enhances user engagement, boosts conversion rates, and ultimately leads to a more satisfying online experience. In summary, the integration of chatbots, clever recommendation systems, and customization algorithms into modern websites is transforming the way users interact with online platforms. These advanced technologies not only streamline user experiences but also contribute to increased customer satisfaction, improved conversions, and overall website success.

Keywords: Javascript, machine learning, artificial intelligence, web development

Procedia PDF Downloads 86
5899 Learners’ Preferences in Selecting Language Learning Institute (A Study in Iran)

Authors: Hoora Dehghani, Meisam Shahbazi, Reza Zare

Abstract:

During the previous decade, a significant evolution has occurred in the number of private educational centers and, accordingly, the increase in the number of providers and students of these centers around the world. The number of language teaching institutes in Iran that are considered private educational sectors is also growing exponentially as the request for learning foreign languages has extremely increased in recent years. This fact caused competition among the institutions in improving better services tailored to the students’ demands to win the competition. Along with the growth in the industry of education, higher education institutes should apply the marketing-related concepts and view students as customers because students’ outlooks are similar to consumers with education. Studying the influential factors in the selection of an institute has multiple benefits. Firstly, it acknowledges the institutions of the students’ choice factors. Secondly, the institutions use the obtained information to improve their marketing methods. It also helps institutions know students’ outlooks that can be applied to expand the student know-how. Moreover, it provides practical evidence for educational centers to plan useful amenities and programs, and use efficient policies to cater to the market, and also helps them execute the methods that increase students’ feeling of contentment and assurance. Thus, this study explored the influencing factors in the selection of a language learning institute by language learners and examined and compared the importance among the varying age groups and genders. In the first phase of the study, the researchers selected 15 language learners as representative cases within the specified age ranges and genders purposefully and interviewed them to explore the comprising elements in their language institute selection process and analyzed the results qualitatively. In the second phase, the researchers identified elements as specified items of a questionnaire, and 1000 English learners across varying educational contexts rated them. The TOPSIS method was used to analyze the data quantitatively by representing the level of importance of the items for the participants generally and specifically in each subcategory; genders and age groups. The results indicated that the educational quality, teaching method, duration of training course, establishing need-oriented courses, and easy access were the most important elements. On the other hand, offering training in different languages, the specialized education of only one language, the uniform and appropriate appearance of office staff, having native professors to the language of instruction, applying Computer or online tests instead of the usual paper tests respectively as the least important choice factors in selecting a language institute. Besides, some comparisons among different groups’ ratings of choice factors were made, which revealed the differences among different groups' priorities in choosing a language institute.

Keywords: choice factors, EFL institute selection, english learning, need analysis, TOPSIS

Procedia PDF Downloads 168
5898 Morphological Analysis of English L1-Persian L2 Adult Learners’ Interlanguage: From the Perspective of SLA Variation

Authors: Maassoumeh Bemani Naeini

Abstract:

Studies on interlanguage have long been engaged in describing the phenomenon of variation in SLA. Pursuing the same goal and particularly addressing the role of linguistic features, this study describes the use of Persian morphology in the interlanguage of two adult English-speaking learners of Persian L2. Taking the general approach of a combination of contrastive analysis, error analysis and interlanguage analysis, this study focuses on the identification and prediction of some possible instances of transfer from English L1 to Persian L2 across six elicitation tasks aiming to investigate whether any of contextual features may variably influence the learners’ order of morpheme accuracy in the areas of copula, possessives, articles, demonstratives, plural form, personal pronouns, and genitive cases.  Results describe the existence of task variation in the interlanguage system of Persian L2 learners.

Keywords: English L1, Interlanguage Analysis, Persian L2, SLA variation

Procedia PDF Downloads 320
5897 Using Smartphone Instant Messaging (IM) App for Academic Discussion in an Undergraduate Chemistry Course

Authors: Mei Xuan Tan, Eng Ying Bong

Abstract:

Academic discussion during and after instructional teaching is an integral part of learning. Such discussion between the instructor and student or peer-to-peer discussion can be in several different forms. It could be face-to-face discussion, via email and use of online discussion forum. In this study, the effectiveness of using WhatsApp for academic discussion for a first year half-credit Chemistry course was examined. This study was run over two years with two different batches of students. Participation in the study was voluntary and student volunteers were recruited within the first week of the term. The activity in the WhatsApp group was monitored by two instructors teaching the course. At the end of the course, the students participated in an online survey to evaluate their experience of using WhatsApp for academic discussion. There were a total of 26 questions. The survey had a total of 4 sections with regards to the use of WhatsApp for academic discussion: 1) Familiarity with WhatsApp, 2) Effectiveness of using WhatsApp for discussion, 3) Challenges and 4) Overall experience. The main purpose of using an IM platform for academic discussion was to encourage after-class discussion amongst the students. 32% of the participants had used other online platform, such as Piazza and forums in Learning Management System (LMS), for after-class academic discussion with their instructors and peers. This was a low percentage considering that some courses use such online platform as their main forum amongst instructors and students. At the end of our study, over 83% of the participants felt that WhatsApp was a more effective platform compared to other online forum. One interesting finding was the effect of WhatsApp discussion on face-to-face interaction with instructors. 28% of the students agreed that the use of WhatsApp as a discussion forum had encouraged them to approach their instructors during or after class. 51% of students answered neutral. This could be interpreted that the use of WhatsApp had not affected the frequent (or lack of) face-to-face interaction with their instructors. A second survey question, similar but phrased differently from the first, was also asked to evaluate the aspect of face-to-face interaction with instructors. 34% disagreed that the use of WhatsApp had reduced the frequency of face-to-face interaction. This could imply that the frequency remained the same or might have increased. The 38% who agreed to a decrease in face-to-face interaction have either asked the questions in WhatsApp or had their questions answered by a query from another student in the group chat. These outcomes suggested that the use of technology aided and complemented face-to-face interaction between instructors and students. The study also looked at the challenges of using WhatsApp for academic discussion. Some challenges included difficulty in referring back to previous discussion and students finding some discussions irrelevant to them. In conclusion, the use of IM platform for academic discussion was desirable for the students, but it should not be the only channel as face-to-face consultation and online forum for lengthy discussion are still important for after-class learning of students.

Keywords: chemistry, pedogogy, technological tools, undergraduate

Procedia PDF Downloads 142
5896 Improving the Quality of Higher Education for Students with Disability in Universities of Pakistan

Authors: Nasir Sulman

Abstract:

In Pakistan, the inclusion of persons with disabilities in higher education institutions has significantly been increased with every passing year and anyone can observe a sizeable number of these students in each faculty. The study executes to conduct a baseline survey for measuring faculty understanding about the special needs, experiences of students with disabilities and support provided by university administration in order to teach these students effectively. The researcher has used mixed methods and the University of Karachi was selected through non-probability-based sampling method. This university is one of the largest universities in Pakistan where more than 40,000 students have been enrolled. Data was gathered through a questionnaire and focused group discussion from three stakeholders including students with disabilities, faculty members and members of the university administration. The key findings show that students with disabilities experience a number of problems related to accommodating their special needs. However, the most encouraging factors identified are the attitude, support, and motivation they received from various faculty members and university administration. On the basis of the findings of the study the researcher has prepared a faculty guidebook and established a ‘Model Learning Assistance Centre for Students with Disabilities’ in the Department of Special Education, University of Karachi. Both these efforts will be helpful for improving the support services for students with disabilities to strengthen the existing laws, policies, and practices in institutions of higher education.

Keywords: persons with disabilities, higher education, learning assistance center, faculty guidebook

Procedia PDF Downloads 153
5895 Ion Beam Induced 2D Mesophase Patterning of Nanocrystallites in Polymer

Authors: Srutirekha Giri, Manoranjan Sahoo, Anuradha Das, Pravanjan Mallick, Biswajit Mallick

Abstract:

Ion Beam (IB) technique is a very powerful experimental technique for both material synthesis and material modifications. In this work, 3MeV proton beam was generated using the 3MV Tandem machine of the Institute of Physics, Bhubaneswar and extracted into air for the irradiation-induced modification purpose[1]. The polymeric material can be modeled for a three-phase system viz. crystalline(I), amorphous(II) and mesomorphic(III). So far, our knowledge is concerned. There are only few techniques reported for the synthesis of this third-phase(III) of polymer. The IB induced technique is one of them and has been reported very recently [2-4]. It was observed that by irradiating polyethylene terephthalate (PET) fiber at very low proton fluence, 10¹⁰ - 10¹² p/s, possess 2D mesophase structure. This was confirmed using X-ray diffraction technique. A low-intensity broad peak was observed at small angle of about 2θ =6º, when the fiber axis was mounted parallel to the X-ray direction. Such peak vanished in the diffraction spectrum when the fiber axis was mounted perpendicular to the beam direction. The appearance of this extra peak in a particular orientation confirms that the phase is 2-dimensionally oriented (mesophase). It is well known that the mesophase is a 2-dimensionally ordered structure but 3-dimensionally disordered. Again, the crystallite of the mesophase peak particle was measured about 3nm. The MeV proton-induced 2D mesophase patterning of nanocrystallites (3nm) of PET due to irradiation was observed within the above low fluence range and failed in high proton fluence. This is mainly due to the breaking of crystallites, radiation-induced thermal degradation, etc.

Keywords: Ion irradiation, mesophase, nanocrystallites, polymer

Procedia PDF Downloads 207
5894 Understanding Trauma Informed Pedagogy in On-Line Education during Turbulent Times: A Mixed Methods Study in a Canadian Social Work Context

Authors: Colleen McMillan, Alice Schmidt-Hanbidge, Beth Archer-Kuhn, Heather Boynton, Judith Hughes

Abstract:

It is well known that social work students enter the profession with higher scores of adverse childhood experiences (ACE). Add to that the fact that COVID-19 has forced higher education institutions to shift to online teaching and learning, where students, faculty and field educators in social work education have reported increased stressors as well as posing challenges in developing relationships with students and being able to identify mental health challenges including those related to trauma. This multi-institutional project included three Canadian post-secondary institutions at five sites (the University of Waterloo, the University of Calgary and the University of Manitoba) and partners; Desire To Learn (D2L), The Centre for Teaching Excellence at the University of Waterloo and the Taylor Institute for Teaching and Learning. A sequential mixed method research design was used. Survey data was collected from students, faculty and field education staff from the 3 universities using the Qualtrics Insight Platform, followed by virtual focus group data with students to provide greater clarity to the quantitative data. Survey data was analyzed using SPSS software, while focus group data was transcribed verbatim and organized with N-Vivo 12. Thematic analysis used line-by-line coding and constant comparative methods within and across focus groups. The following three objectives of the study were achieved: 1) Establish a Canadian baseline on trauma informed pedagogy and student experiences of trauma informed teaching in the online higher education environment during a pandemic; 2) Identify and document educator and student experiences of online learning regarding the ability to process trauma experiences; and, 3) Transfer the findings into a trauma informed pedagogical model for Social Work as a first step toward developing a universal trauma informed teaching model. The trauma informed pedagogy model would be presented in relation to the study findings.

Keywords: trauma informed pedagogy, higher education, social work, mental health

Procedia PDF Downloads 93
5893 The Size Effects of Keyboards (Keycaps) on Computer Typing Tasks

Authors: Chih-Chun Lai, Jun-Yu Wang

Abstract:

The keyboard is the most important equipment for computer tasks. However, improper design of keyboard would cause some symptoms like ulnar and/or radial deviations. The research goal of this study was to investigate the optimal size(s) of keycaps to increase efficiency. As shown in the questionnaire pre-study with 49 participants aged from 20 to 44, the most commonly used keyboards were 101-key standard keyboards. Most of the keycap sizes (W × L) were 1.3 × 1.5 cm and 1.5 × 1.5 cm. The fingertip breadths of most participants were 1.2 cm. Therefore, in the main study with 18 participants, a standard keyboard with each set of the 3-sized (1.2 × 1.4 cm, 1.3 × 1.5 cm, and 1.5 × 1.5 cm) keycaps was used to investigate their typing efficiency, respectively. The results revealed that the differences between the operating times for using 1.3 × 1.5 cm and 1.2 × 1.4 cm keycaps were insignificant while operating times for using 1.5 × 1.5 cm keycaps were significantly longer than for using 1.2 × 1.4 cm or 1.3 × 1.5 cm, respectively. As for the typing error rate, there was no significant difference.

Keywords: keyboard, keycap size, typing efficiency, computer tasks

Procedia PDF Downloads 385
5892 Experimental Evaluation of Most Sustainable Companies: Impact on Economic Growth, Return on Equity (ROE) and Methodological Comparison

Authors: Milena Serzante, Viktoriia Stankevich, Yousre Badir

Abstract:

Companies have a significant impact on the environment and society, and sustainability is important not only for ethical concerns but also for financial and economic reasons. The aim of the study is to analyze how the sustainable performance of the company impacts the economy and the business's economic performance. To achieve this goal, such methods as the Pearson correlation, Multiple Linear Regression, Cook's distance method, K-nearest neighbor and COPRAS technique were implemented. The results revealed that there is no significant correlation between different indicators of sustainable development of the company and both GDP and Return on Equity. It indicates that the methodology of evaluating sustainability causes the difference in ranking companies based on sustainable performance.

Keywords: economic impact, sustainability evaluation, sustainable companies, economic indicators, sustainability, GDP, return on equity

Procedia PDF Downloads 96
5891 Integrating Microcontroller-Based Projects in a Human-Computer Interaction Course

Authors: Miguel Angel Garcia-Ruiz, Pedro Cesar Santana-Mancilla, Laura Sanely Gaytan-Lugo

Abstract:

This paper describes the design and application of a short in-class project conducted in Algoma University’s Human-Computer Interaction (HCI) course taught at the Bachelor of Computer Science. The project was based on the Maker Movement (people using and reusing electronic components and everyday materials to tinker with technology and make interactive applications), where students applied low-cost and easy-to-use electronic components, the Arduino Uno microcontroller board, software tools, and everyday objects. Students collaborated in small teams by completing hands-on activities with them, making an interactive walking cane for blind people. At the end of the course, students filled out a Technology Acceptance Model version 2 (TAM2) questionnaire where they evaluated microcontroller boards’ applications in HCI classes. We also asked them about applying the Maker Movement in HCI classes. Results showed overall students’ positive opinions and response about using microcontroller boards in HCI classes. We strongly suggest that every HCI course should include practical activities related to tinkering with technology such as applying microcontroller boards, where students actively and constructively participate in teams for achieving learning objectives.

Keywords: maker movement, microcontrollers, learning, projects, course, technology acceptance

Procedia PDF Downloads 178
5890 Life Cycle Assessment of Todays and Future Electricity Grid Mixes of EU27

Authors: Johannes Gantner, Michael Held, Rafael Horn, Matthias Fischer

Abstract:

At the United Nations Climate Change Conference 2015 a global agreement on the reduction of climate change was achieved stating CO₂ reduction targets for all countries. For instance, the EU targets a reduction of 40 percent in emissions by 2030 compared to 1990. In order to achieve this ambitious goal, the environmental performance of the different European electricity grid mixes is crucial. First, the electricity directly needed for everyone’s daily life (e.g. heating, plug load, mobility) and therefore a reduction of the environmental impacts of the electricity grid mix reduces the overall environmental impacts of a country. Secondly, the manufacturing of every product depends on electricity. Thereby a reduction of the environmental impacts of the electricity mix results in a further decrease of environmental impacts of every product. As a result, the implementation of the two-degree goal highly depends on the decarbonization of the European electricity mixes. Currently the production of electricity in the EU27 is based on fossil fuels and therefore bears a high GWP impact per kWh. Due to the importance of the environmental impacts of the electricity mix, not only today but also in future, within the European research projects, CommONEnergy and Senskin, time-dynamic Life Cycle Assessment models for all EU27 countries were set up. As a methodology, a combination of scenario modeling and life cycle assessment according to ISO14040 and ISO14044 was conducted. Based on EU27 trends regarding energy, transport, and buildings, the different national electricity mixes were investigated taking into account future changes such as amount of electricity generated in the country, change in electricity carriers, COP of the power plants and distribution losses, imports and exports. As results, time-dynamic environmental profiles for the electricity mixes of each country and for Europe overall were set up. Thereby for each European country, the decarbonization strategies of the electricity mix are critically investigated in order to identify decisions, that can lead to negative environmental effects, for instance on the reduction of the global warming of the electricity mix. For example, the withdrawal of the nuclear energy program in Germany and at the same time compensation of the missing energy by non-renewable energy carriers like lignite and natural gas is resulting in an increase in global warming potential of electricity grid mix. Just after two years this increase countervailed by the higher share of renewable energy carriers such as wind power and photovoltaic. Finally, as an outlook a first qualitative picture is provided, illustrating from environmental perspective, which country has the highest potential for low-carbon electricity production and therefore how investments in a connected European electricity grid could decrease the environmental impacts of the electricity mix in Europe.

Keywords: electricity grid mixes, EU27 countries, environmental impacts, future trends, life cycle assessment, scenario analysis

Procedia PDF Downloads 187