Search results for: computational fluid dynamics "CFD"
792 Characterization and Modelling of Aerosol Droplet in Absorption Columns
Authors: Hammad Majeed, Hanna Knuutila, Magne Hillestad, Hallvard F. Svendsen
Abstract:
Formation of aerosols can cause serious complications in industrial exhaust gas CO2 capture processes. SO3 present in the flue gas can cause aerosol formation in an absorption based capture process. Small mist droplets and fog formed can normally not be removed in conventional demisting equipment because their submicron size allows the particles or droplets to follow the gas flow. As a consequence of this aerosol based emissions in the order of grams per Nm3 have been identified from PCCC plants. In absorption processes aerosols are generated by spontaneous condensation or desublimation processes in supersaturated gas phases. Undesired aerosol development may lead to amine emissions many times larger than what would be encountered in a mist free gas phase in PCCC development. It is thus of crucial importance to understand the formation and build-up of these aerosols in order to mitigate the problem. Rigorous modelling of aerosol dynamics leads to a system of partial differential equations. In order to understand mechanics of a particle entering an absorber an implementation of the model is created in Matlab. The model predicts the droplet size, the droplet internal variable profiles and the mass transfer fluxes as function of position in the absorber. The Matlab model is based on a subclass method of weighted residuals for boundary value problems named, orthogonal collocation method. The model comprises a set of mass transfer equations for transferring components and the essential diffusion reaction equations to describe the droplet internal profiles for all relevant constituents. Also included is heat transfer across the interface and inside the droplet. This paper presents results describing the basic simulation tool for the characterization of aerosols formed in CO2 absorption columns and gives examples as to how various entering droplets grow or shrink through an absorber and how their composition changes with respect to time. Below are given some preliminary simulation results for an aerosol droplet composition and temperature profiles.Keywords: absorption columns, aerosol formation, amine emissions, internal droplet profiles, monoethanolamine (MEA), post combustion CO2 capture, simulation
Procedia PDF Downloads 246791 Long-Term Resilience Performance Assessment of Dual and Singular Water Distribution Infrastructures Using a Complex Systems Approach
Authors: Kambiz Rasoulkhani, Jeanne Cole, Sybil Sharvelle, Ali Mostafavi
Abstract:
Dual water distribution systems have been proposed as solutions to enhance the sustainability and resilience of urban water systems by improving performance and decreasing energy consumption. The objective of this study was to evaluate the long-term resilience and robustness of dual water distribution systems versus singular water distribution systems under various stressors such as demand fluctuation, aging infrastructure, and funding constraints. To this end, the long-term dynamics of these infrastructure systems was captured using a simulation model that integrates institutional agency decision-making processes with physical infrastructure degradation to evaluate the long-term transformation of water infrastructure. A set of model parameters that varies for dual and singular distribution infrastructure based on the system attributes, such as pipes length and material, energy intensity, water demand, water price, average pressure and flow rate, as well as operational expenditures, were considered and input in the simulation model. Accordingly, the model was used to simulate various scenarios of demand changes, funding levels, water price growth, and renewal strategies. The long-term resilience and robustness of each distribution infrastructure were evaluated based on various performance measures including network average condition, break frequency, network leakage, and energy use. An ecologically-based resilience approach was used to examine regime shifts and tipping points in the long-term performance of the systems under different stressors. Also, Classification and Regression Tree analysis was adopted to assess the robustness of each system under various scenarios. Using data from the City of Fort Collins, the long-term resilience and robustness of the dual and singular water distribution systems were evaluated over a 100-year analysis horizon for various scenarios. The results of the analysis enabled: (i) comparison between dual and singular water distribution systems in terms of long-term performance, resilience, and robustness; (ii) identification of renewal strategies and decision factors that enhance the long-term resiliency and robustness of dual and singular water distribution systems under different stressors.Keywords: complex systems, dual water distribution systems, long-term resilience performance, multi-agent modeling, sustainable and resilient water systems
Procedia PDF Downloads 292790 Graphical Theoretical Construction of Discrete time Share Price Paths from Matroid
Authors: Min Wang, Sergey Utev
Abstract:
The lessons from the 2007-09 global financial crisis have driven scientific research, which considers the design of new methodologies and financial models in the global market. The quantum mechanics approach was introduced in the unpredictable stock market modeling. One famous quantum tool is Feynman path integral method, which was used to model insurance risk by Tamturk and Utev and adapted to formalize the path-dependent option pricing by Hao and Utev. The research is based on the path-dependent calculation method, which is motivated by the Feynman path integral method. The path calculation can be studied in two ways, one way is to label, and the other is computational. Labeling is a part of the representation of objects, and generating functions can provide many different ways of representing share price paths. In this paper, the recent works on graphical theoretical construction of individual share price path via matroid is presented. Firstly, a study is done on the knowledge of matroid, relationship between lattice path matroid and Tutte polynomials and ways to connect points in the lattice path matroid and Tutte polynomials is suggested. Secondly, It is found that a general binary tree can be validly constructed from a connected lattice path matroid rather than general lattice path matroid. Lastly, it is suggested that there is a way to represent share price paths via a general binary tree, and an algorithm is developed to construct share price paths from general binary trees. A relationship is also provided between lattice integer points and Tutte polynomials of a transversal matroid. Use this way of connection together with the algorithm, a share price path can be constructed from a given connected lattice path matroid.Keywords: combinatorial construction, graphical representation, matroid, path calculation, share price, Tutte polynomial
Procedia PDF Downloads 138789 A Novel Epitope Prediction for Vaccine Designing against Ebola Viral Envelope Proteins
Authors: Manju Kanu, Subrata Sinha, Surabhi Johari
Abstract:
Viral proteins of Ebola viruses belong to one of the best studied viruses; however no effective prevention against EBOV has been developed. Epitope-based vaccines provide a new strategy for prophylactic and therapeutic application of pathogen-specific immunity. A critical requirement of this strategy is the identification and selection of T-cell epitopes that act as vaccine targets. This study describes current methodologies for the selection process, with Ebola virus as a model system. Hence great challenge in the field of ebola virus research is to design universal vaccine. A combination of publicly available bioinformatics algorithms and computational tools are used to screen and select antigen sequences as potential T-cell epitopes of supertypes Human Leukocyte Antigen (HLA) alleles. MUSCLE and MOTIF tools were used to find out most conserved peptide sequences of viral proteins. Immunoinformatics tools were used for prediction of immunogenic peptides of viral proteins in zaire strains of Ebola virus. Putative epitopes for viral proteins (VP) were predicted from conserved peptide sequences of VP. Three tools NetCTL 1.2, BIMAS and Syfpeithi were used to predict the Class I putative epitopes while three tools, ProPred, IEDB-SMM-align and NetMHCII 2.2 were used to predict the Class II putative epitopes. B cell epitopes were predicted by BCPREDS 1.0. Immunogenic peptides were identified and selected manually by putative epitopes predicted from online tools individually for both MHC classes. Finally sequences of predicted peptides for both MHC classes were looked for common region which was selected as common immunogenic peptide. The immunogenic peptides were found for viral proteins of Ebola virus: epitopes FLESGAVKY, SSLAKHGEY. These predicted peptides could be promising candidates to be used as target for vaccine design.Keywords: epitope, b cell, immunogenicity, ebola
Procedia PDF Downloads 314788 Evaluating Structural Crack Propagation Induced by Soundless Chemical Demolition Agent Using an Energy Release Rate Approach
Authors: Shyaka Eugene
Abstract:
The efficient and safe demolition of structures is a critical challenge in civil engineering and construction. This study focuses on the development of optimal demolition strategies by investigating the crack propagation behavior in beams induced by soundless cracking agents. It is commonly used in controlled demolition and has gained prominence due to its non-explosive and environmentally friendly nature. This research employs a comprehensive experimental and computational approach to analyze the crack initiation, propagation, and eventual failure in beams subjected to soundless cracking agents. Experimental testing involves the application of various cracking agents under controlled conditions to understand their effects on the structural integrity of beams. High-resolution imaging and strain measurements are used to capture the crack propagation process. In parallel, numerical simulations are conducted using advanced finite element analysis (FEA) techniques to model crack propagation in beams, considering various parameters such as cracking agent composition, loading conditions, and beam properties. The FEA models are validated against experimental results, ensuring their accuracy in predicting crack propagation patterns. The findings of this study provide valuable insights into optimizing demolition strategies, allowing engineers and demolition experts to make informed decisions regarding the selection of cracking agents, their application techniques, and structural reinforcement methods. Ultimately, this research contributes to enhancing the safety, efficiency, and sustainability of demolition practices in the construction industry, reducing environmental impact and ensuring the protection of adjacent structures and the surrounding environment.Keywords: expansion pressure, energy release rate, soundless chemical demolition agent, crack propagation
Procedia PDF Downloads 63787 Practical Modelling of RC Structural Walls under Monotonic and Cyclic Loading
Authors: Reza E. Sedgh, Rajesh P. Dhakal
Abstract:
Shear walls have been used extensively as the main lateral force resisting systems in multi-storey buildings. The recent development in performance based design urges practicing engineers to conduct nonlinear static or dynamic analysis to evaluate seismic performance of multi-storey shear wall buildings by employing distinct analytical models suggested in the literature. For practical purpose, application of macroscopic models to simulate the global and local nonlinear behavior of structural walls outweighs the microscopic models. The skill level, computational time and limited access to RC specialized finite element packages prevents the general application of this method in performance based design or assessment of multi-storey shear wall buildings in design offices. Hence, this paper organized to verify capability of nonlinear shell element in commercially available package (Sap2000) in simulating results of some specimens under monotonic and cyclic loads with very oversimplified available cyclic material laws in the analytical tool. The selection of constitutive models, the determination of related parameters of the constituent material and appropriate nonlinear shear model are presented in detail. Adoption of proposed simple model demonstrated that the predicted results follow the overall trend of experimental force-displacement curve. Although, prediction of ultimate strength and the overall shape of hysteresis model agreed to some extent with experiment, the ultimate displacement(significant strength degradation point) prediction remains challenging in some cases.Keywords: analytical model, nonlinear shell element, structural wall, shear behavior
Procedia PDF Downloads 404786 Development of Positron Emission Tomography (PET) Tracers for the in-Vivo Imaging of α-Synuclein Aggregates in α-Synucleinopathies
Authors: Bright Chukwunwike Uzuegbunam, Wojciech Paslawski, Hans Agren, Christer Halldin, Wolfgang Weber, Markus Luster, Thomas Arzberger, Behrooz Hooshyar Yousefi
Abstract:
There is a need to develop a PET tracer that will enable to diagnosis and track the progression of Alpha-synucleinopathies (Parkinson’s disease [PD], dementia with Lewy bodies [DLB], multiple system atrophy [MSA]) in living subjects over time. Alpha-synuclein aggregates (a-syn), which are present in all the stages of disease progression, for instance, in PD, are a suitable target for in vivo PET imaging. For this reason, we have developed some promising a-syn tracers based on a disarylbisthiazole (DABTA) scaffold. The precursors are synthesized via a modified Hantzsch thiazole synthesis. The precursors were then radiolabeled via one- or two-step radiofluorination methods. The ligands were initially screened using a combination of molecular dynamics and quantum/molecular mechanics approaches in order to calculate the binding affinity to a-syn (in silico binding experiments). Experimental in vitro binding assays were also performed. The ligands were further screened in other experiments such as log D, in vitro plasma protein binding & plasma stability, biodistribution & brain metabolite analyses in healthy mice. Radiochemical yields were up to 30% - 72% in some cases. Molecular docking revealed possible binding sites in a-syn and also the free energy of binding to those sites (-28.9 - -66.9 kcal/mol), which correlated to the high binding affinity of the DABTAs to a-syn (Ki as low as 0.5 nM) and selectivity (> 100-fold) over Aβ and tau, which usually co-exist with a-synin some pathologies. The log D values range from 2.88 - 2.34, which correlated with free-protein fraction of 0.28% - 0.5%. Biodistribution experiments revealed that the tracers are taken up (5.6 %ID/g - 7.3 %ID/g) in the brain at 5 min (post-injection) p.i., and cleared out (values as low as 0.39 %ID/g were obtained at 120 min p.i. Analyses of the mice brain 20 min p.i. Revealed almost no radiometabolites in the brain in most cases. It can be concluded that in silico study presents a new venue for the rational development of radioligands with suitable features. The results obtained so far are promising and encourage us to further validate the DABTAs in autoradiography, immunohistochemistry, and in vivo imaging in non-human primates and humans.Keywords: alpha-synuclein aggregates, alpha-synucleinopathies, PET imaging, tracer development
Procedia PDF Downloads 235785 Macroeconomic Implications of Artificial Intelligence on Unemployment in Europe
Authors: Ahmad Haidar
Abstract:
Modern economic systems are characterized by growing complexity, and addressing their challenges requires innovative approaches. This study examines the implications of artificial intelligence (AI) on unemployment in Europe from a macroeconomic perspective, employing data modeling techniques to understand the relationship between AI integration and labor market dynamics. To understand the AI-unemployment nexus comprehensively, this research considers factors such as sector-specific AI adoption, skill requirements, workforce demographics, and geographical disparities. The study utilizes a panel data model, incorporating data from European countries over the last two decades, to explore the potential short-term and long-term effects of AI implementation on unemployment rates. In addition to investigating the direct impact of AI on unemployment, the study also delves into the potential indirect effects and spillover consequences. It considers how AI-driven productivity improvements and cost reductions might influence economic growth and, in turn, labor market outcomes. Furthermore, it assesses the potential for AI-induced changes in industrial structures to affect job displacement and creation. The research also highlights the importance of policy responses in mitigating potential negative consequences of AI adoption on unemployment. It emphasizes the need for targeted interventions such as skill development programs, labor market regulations, and social safety nets to enable a smooth transition for workers affected by AI-related job displacement. Additionally, the study explores the potential role of AI in informing and transforming policy-making to ensure more effective and agile responses to labor market challenges. In conclusion, this study provides a comprehensive analysis of the macroeconomic implications of AI on unemployment in Europe, highlighting the importance of understanding the nuanced relationships between AI adoption, economic growth, and labor market outcomes. By shedding light on these relationships, the study contributes valuable insights for policymakers, educators, and researchers, enabling them to make informed decisions in navigating the complex landscape of AI-driven economic transformation.Keywords: artificial intelligence, unemployment, macroeconomic analysis, european labor market
Procedia PDF Downloads 77784 Tumor Cell Detection, Isolation and Monitoring Using Bi-Layer Magnetic Microfluidic Chip
Authors: Amir Seyfoori, Ehsan Samiei, Mohsen Akbari
Abstract:
The use of microtechnology for detection and high yield isolation of circulating tumor cells (CTCs) has shown enormous promise as an indication of clinical metastasis prognosis and cancer treatment monitoring. The Immunomagnetic assay has been also coupled to microtechnology to improve the selectivity and efficiency of the current methods of cancer biomarker isolation. In this way, generation and configuration of the local high gradient magnetic field play essential roles in such assay. Additionally, considering the intrinsic heterogeneity of cancer cells, real-time analysis of isolated cells is necessary to characterize their responses to therapy. Totally, on-chip isolation and monitoring of the specific tumor cells is considered as a pressing need in the way of modified cancer therapy. To address these challenges, we have developed a bi-layer magnetic-based microfluidic chip for enhanced CTC detection and capturing. Micromagnet arrays at the bottom layer of the chip were fabricated using a new method of magnetic nanoparticle paste deposition so that they were arranged at the center of the chain microchannel with the lowest fluid velocity zone. Breast cancer cells labelled with EPCAM-conjugated smart microgels were immobilized on the tip of the micromagnets with greater localized magnetic field and stronger cell-micromagnet interaction. Considering different magnetic nano-powder usage (MnFe2O4 & gamma-Fe2O3) and micromagnet shapes (ellipsoidal & arrow), the capture efficiency of the systems was adjusted while the higher CTC capture efficiency was acquired for MnFe2O4 arrow micromagnet as around 95.5%. As a proof of concept of on-chip tumor cell monitoring, magnetic smart microgels made of thermo-responsive poly N-isopropylacrylamide-co-acrylic acid (PNIPAM-AA) composition were used for both purposes of targeted cell capturing as well as cell monitoring using antibody conjugation and fluorescent dye loading at the same time. In this regard, magnetic microgels were successfully used as cell tracker after isolation process so that by raising the temperature up to 37⁰ C, they released the contained dye and stained the targeted cell just after capturing. This microfluidic device was able to provide a platform for detection, isolation and efficient real-time analysis of specific CTCs in the liquid biopsy of breast cancer patients.Keywords: circulating tumor cells, microfluidic, immunomagnetic, cell isolation
Procedia PDF Downloads 143783 The Effects of Native Forests Conservation and Preservation Scenarios on Two Chilean Basins Water Cycle, under Climate Change Conditions
Authors: Hernández Marieta, Aguayo Mauricio, Pedreros María, Llompart Ovidio
Abstract:
The hydrological cycle is influenced by multiple factors, including climate change, land use changes, and anthropogenic activities, all of which threaten water availability and quality worldwide. In recent decades, numerous investigations have used landscape metrics and hydrological modeling to demonstrate the influence of landscape patterns on the hydrological cycle components' natural dynamics. Many of these investigations have determined the repercussions on the quality and availability of water, sedimentation, and erosion regime, mainly in Asian basins. In fact, there is progress in this branch of science, but there are still unanswered questions for our region. This study examines the hydrological response in Chilean basins under various land use change scenarios (LUCC) and the influence of climate change. The components of the water cycle were modeled using a physically distributed type hydrological and hydraulic simulation model based on and oriented to mountain basins TETIS model. Future climate data were derived from Chilean regional simulations using the WRF-MIROC5 model, forced with the RCP 8.5 scenario, at a 25 km resolution for the periods 2030-2060 and 2061-2091. LUCC scenarios were designed based on nature-based solutions, landscape pattern influences, current national and international water conservation legislation, and extreme scenarios of non-preservation and conservation of native forests. The scenarios that demonstrate greater water availability, even under climate change, are those promoting the restoration of native forests in over 30% of the basins, even alongside agricultural activities. Current legislation promoting the restoration of native forests only in riparian zones (30-60 m or 200 m in steeper areas) will not be resilient enough to address future water shortages. Evapotranspiration, direct runoff, and water availability at basin outlets showed the greatest variations due to LUCC. The relationship between hydrological modeling and landscape configuration is an effective tool for establishing future territorial planning that prioritizes water resource protection.Keywords: TETIS, landscape pattern, hydrological process, water availability, Chilean basins
Procedia PDF Downloads 36782 Computer-Aided Drug Repurposing for Mycobacterium Tuberculosis by Targeting Tryptophanyl-tRNA Synthetase
Authors: Neslihan Demirci, Serdar Durdağı
Abstract:
Mycobacterium tuberculosis is still a worldwide disease-causing agent that, according to WHO, led to the death of 1.5 million people from tuberculosis (TB) in 2020. The bacteria reside in macrophages located specifically in the lung. There is a known quadruple drug therapy regimen for TB consisting of isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), and ethambutol (EMB). Over the past 60 years, there have been great contributions to treatment options, such as recently approved delamanid (OPC67683) and bedaquiline (TMC207/R207910), targeting mycolic acid and ATP synthesis, respectively. Also, there are natural compounds that can block the tryptophanyl-tRNA synthetase (TrpRS) enzyme, chuangxinmycin, and indolmycin. Yet, already the drug resistance is reported for those agents. In this study, the newly released TrpRS enzyme structure is investigated for potential inhibitor drugs from already synthesized molecules to help the treatment of resistant cases and to propose an alternative drug for the quadruple drug therapy of tuberculosis. Maestro, Schrodinger is used for docking and molecular dynamic simulations. In-house library containing ~8000 compounds among FDA-approved indole-containing compounds, a total of 57 obtained from the ChemBL were used for both ATP and tryptophan binding pocket docking. Best of indole-containing 57 compounds were subjected to hit expansion and compared later with virtual screening workflow (VSW) results. After docking, VSW was done. Glide-XP docking algorithm was chosen. When compared, VSW alone performed better than the hit expansion module. Best scored compounds were kept for ten ns molecular dynamic simulations by Desmond. Further, 100 ns molecular dynamic simulation was performed for elected molecules according to Z-score. The top three MMGBSA-scored compounds were subjected to steered molecular dynamic (SMD) simulations by Gromacs. While SMD simulations are still being conducted, ponesimod (for multiple sclerosis), vilanterol (β₂ adrenoreceptor agonist), and silodosin (for benign prostatic hyperplasia) were found to have a significant affinity for tuberculosis TrpRS, which is the propulsive force for the urge to expand the research with in vitro studies. Interestingly, top-scored ponesimod has been reported to have a side effect that makes the patient prone to upper respiratory tract infections.Keywords: drug repurposing, molecular dynamics, tryptophanyl-tRNA synthetase, tuberculosis
Procedia PDF Downloads 123781 Functionally Modified Melt-Electrospun Thermoplastic Polyurethane (TPU) Mats for Wound-Dressing Applications
Authors: Christoph Hacker, Zeynep Karahaliloglu, Gunnar Seide, Emir Baki Denkbas, Thomas Gries
Abstract:
A wound dressing material is designed to facilitate wound healing and minimize scarring. An ideal wound dressing material should protect the wound from any contaminations of exogeneous microorganism. In addition, the dressing material should provide a moist environment through extraction of body fluid from the wound area. Recently, wound dressing electrospun nanofibrous membranes are produced by electrospinning from a polymer solution or a polymer melt. These materials have a great potential as dressing materials for wound healing because of superior properties such as high surface-to-volume ratio, high porosity with excellent pore interconnectivity. Melt electrospinning is an attractive tissue engineering scaffold manufacturing process which eliminated the health risk posed by organic solvents used in electrospinning process and reduced the production costs. In this study, antibacterial wound dressing materials were prepared from TPU (Elastollan 1185A) by a melt-electrospinning technique. The electrospinning parameters for an efficient melt-electrospinning process of TPU were optimized. The surface of the fibers was modified with poly(ethylene glycol) (PEG) by radio-frequency glow discharge plasma deposition method and with silver nanoparticles (nAg) to improve their wettability and antimicrobial properties. TPU melt-electrospun mats were characterized using SEM, DSC, TGA and XPS. The cell viability and proliferation on modified melt-electrospun TPU mats were evaluated using a mouse fibroblast cell line (L929). Antibacterial effects of theirs against both Staphylococcus aureus strain and Escherichia coli were investigated by disk-diffusion method. TPU was successfully processed into a porous, fibrous network of beadless fibers in the micrometer range (4.896±0.94 µm) with a voltage of 50 kV, a working distance of 6 cm, a temperature of the thermocouple and hot coil of 225–230ºC, and a flow rate of 0.1 mL/h. The antibacterial test indicated that PEG-modified nAg-loaded TPU melt-electrospun structure had excellent antibacterial effects and cell study results demonstrated that nAg-loaded TPU mats had no cytotoxic effect on the fibroblast cells. In this work, the surface of a melt-electrospun TPU mats was modified via PEG monomer and then nAg. Results showed melt-electrospun TPU mats modified with PEG and nAg have a great potential for use as an antibacterial wound dressing material and thus, requires further investigation.Keywords: melt electrospinning, nanofiber, silver nanoparticles, wound dressing
Procedia PDF Downloads 462780 Modelling and Control of Milk Fermentation Process in Biochemical Reactor
Authors: Jožef Ritonja
Abstract:
The biochemical industry is one of the most important modern industries. Biochemical reactors are crucial devices of the biochemical industry. The essential bioprocess carried out in bioreactors is the fermentation process. A thorough insight into the fermentation process and the knowledge how to control it are essential for effective use of bioreactors to produce high quality and quantitatively enough products. The development of the control system starts with the determination of a mathematical model that describes the steady state and dynamic properties of the controlled plant satisfactorily, and is suitable for the development of the control system. The paper analyses the fermentation process in bioreactors thoroughly, using existing mathematical models. Most existing mathematical models do not allow the design of a control system for controlling the fermentation process in batch bioreactors. Due to this, a mathematical model was developed and presented that allows the development of a control system for batch bioreactors. Based on the developed mathematical model, a control system was designed to ensure optimal response of the biochemical quantities in the fermentation process. Due to the time-varying and non-linear nature of the controlled plant, the conventional control system with a proportional-integral-differential controller with constant parameters does not provide the desired transient response. The improved adaptive control system was proposed to improve the dynamics of the fermentation. The use of the adaptive control is suggested because the parameters’ variations of the fermentation process are very slow. The developed control system was tested to produce dairy products in the laboratory bioreactor. A carbon dioxide concentration was chosen as the controlled variable. The carbon dioxide concentration correlates well with the other, for the quality of the fermentation process in significant quantities. The level of the carbon dioxide concentration gives important information about the fermentation process. The obtained results showed that the designed control system provides minimum error between reference and actual values of carbon dioxide concentration during a transient response and in a steady state. The recommended control system makes reference signal tracking much more efficient than the currently used conventional control systems which are based on linear control theory. The proposed control system represents a very effective solution for the improvement of the milk fermentation process.Keywords: biochemical reactor, fermentation process, modelling, adaptive control
Procedia PDF Downloads 129779 Synthesis of Deformed Nuclei 260Rf, 261Rf and 262Rf in the Decay of 266Rf*Formed via Different Fusion Reactions: Entrance Channel Effects
Authors: Niyti, Aman Deep, Rajesh Kharab, Sahila Chopra, Raj. K. Gupta
Abstract:
Relatively long-lived transactinide elements (i.e., elements with atomic number Z≥104) up to Z = 108 have been produced in nuclear reactions between low Z projectiles (C to Al) and actinide targets. Cross sections have been observed to decrease steeply with increasing Z. Recently, production cross sections of several picobarns have been reported for comparatively neutron-rich nuclides of 112 through 118 produced via hot fusion reactions with 48Ca and actinide targets. Some of those heavy nuclides are reported to have lifetimes on the order of seconds or longer. The relatively high cross sections in these hot fusion reactions are not fully understood and this has renewed interest in systematic studies of heavy-ion reactions with actinide targets. The main aim of this work is to understand the dynamics hot fusion reactions 18O+ 248Cm and 22Ne+244Pu (carried out at RIKEN and TASCA respectively) using the collective clusterization technique, carried out by undertaking the decay of the compound nucleus 266Rf∗ into 4n, 5n and 6n neutron evaporation channels. Here we extend our earlier study of the excitation functions (EFs) of 266Rf∗, formed in fusion reaction 18O+248Cm, based on Dynamical Cluster-decay Model (DCM) using the pocket formula for nuclear proximity potential, to the use of other nuclear interaction potentials derived from Skyrme energy density formalism (SEDF) based on semiclassical extended Thomas Fermi (ETF) approach and also study entrance channel effects by considering the synthesis of 266Rf* in 22Ne+244Pu reaction. The Skyrme forces used are the old force SIII, and new forces GSkI and KDE0(v1). Here, the EFs for the production of 260Rf, 261Rf and 262Rf isotope via 6n, 5n and 4n decay channel from the 266Rf∗ compound nucleus are studied at Elab = 88.2 to 125 MeV, including quadrupole deformations β2i and ‘hot-optimum’ orientations θi. The calculations are made within the DCM where the neck-length ∆R is the only parameter representing the relative separation distance between two fragments and/or clusters Ai which assimilates the neck formation effects.Keywords: entrance channel effects, fusion reactions, skyrme force, superheavy nucleus
Procedia PDF Downloads 253778 Compact, Lightweight, Low Cost, Rectangular Core Power Transformers
Authors: Abidin Tortum, Kubra Kocabey
Abstract:
One of the sectors where the competition is experienced at the highest level in the world is the transformer sector, and sales can be made with a limited profit margin. For this reason, manufacturers must develop cost-cutting designs to achieve higher profits. The use of rectangular cores and coils in transformer design is one of the methods that can be used to reduce costs. According to the best knowledge we have obtained, we think that we are the first company producing rectangular core power transformers in our country. BETA, to reduce the cost of this project, more compact products to reveal, as we know it to increase the alleviate and competitiveness of the product, will perform cored coil design and production rectangle for the first-time power transformers in Turkey. The transformer to be designed shall be 16 MVA, 33/11 kV voltage level. With the rectangular design of the transformer core and windings, no-load losses can be reduced. Also, the least costly transformer type is rectangular. However, short-circuit forces on rectangular windings do not affect every point of the windings in the same way. Whereas more force is applied inwards to the mid-points of the low-voltage winding, the opposite occurs in the high-voltage winding. Therefore, the windings tend to deteriorate in the event of a short circuit. While trying to reach the project objectives, the difficulties in the design should be overcome. Rectangular core transformers to be produced in our country offer a more compact structure than conventional transformers. In other words, both height and width were smaller. Thus, the reducer takes up less space in the center. Because the transformer boiler is smaller, less oil is used, and its weight is lower. Biotemp natural ester fluid is used in rectangular transformer and the cooling performance of this oil is analyzed. The cost was also reduced with the reduction of dimensions. The decrease in the amount of oil used has also increased the environmental friendliness of the developed product. Transportation costs have been reduced by reducing the total weight. The amount of carbon emissions generated during the transportation process is reduced. Since the low-voltage winding is wound with a foil winding technique, a more resistant structure is obtained against short circuit forces. No-load losses were lower due to the use of a rectangular core. The project was handled in three phases. In the first stage, preliminary research and designs were carried out. In the second stage, the prototype manufacturing of the transformer whose designs have been completed has been started. The prototype developed in the last stage has been subjected to routine, type and special tests.Keywords: rectangular core, power transformer, transformer, productivity
Procedia PDF Downloads 121777 Transformer-Driven Multi-Category Classification for an Automated Academic Strand Recommendation Framework
Authors: Ma Cecilia Siva
Abstract:
This study introduces a Bidirectional Encoder Representations from Transformers (BERT)-based machine learning model aimed at improving educational counseling by automating the process of recommending academic strands for students. The framework is designed to streamline and enhance the strand selection process by analyzing students' profiles and suggesting suitable academic paths based on their interests, strengths, and goals. Data was gathered from a sample of 200 grade 10 students, which included personal essays and survey responses relevant to strand alignment. After thorough preprocessing, the text data was tokenized, label-encoded, and input into a fine-tuned BERT model set up for multi-label classification. The model was optimized for balanced accuracy and computational efficiency, featuring a multi-category classification layer with sigmoid activation for independent strand predictions. Performance metrics showed an F1 score of 88%, indicating a well-balanced model with precision at 80% and recall at 100%, demonstrating its effectiveness in providing reliable recommendations while reducing irrelevant strand suggestions. To facilitate practical use, the final deployment phase created a recommendation framework that processes new student data through the trained model and generates personalized academic strand suggestions. This automated recommendation system presents a scalable solution for academic guidance, potentially enhancing student satisfaction and alignment with educational objectives. The study's findings indicate that expanding the data set, integrating additional features, and refining the model iteratively could improve the framework's accuracy and broaden its applicability in various educational contexts.Keywords: tokenized, sigmoid activation, transformer, multi category classification
Procedia PDF Downloads 8776 Septin 11, Cytoskeletal Protein Involved in the Regulation of Lipid Metabolism in Adipocytes
Authors: Natalia Moreno-Castellanos, Amaia Rodriguez, Gema Frühbeck
Abstract:
Introduction: In adipocytes, the cytoskeleton undergoes important expression and distribution in adipocytes rearrangements during adipogenesis and in obesity. Indeed, a role for these proteins in the regulation of adipocyte differentiation and response to insulin has been demonstrated. Recently, septins have been considered as new components of the cytoskeletal network that interact with other cytoskeletal elements (actin and tubulin) profoundly modifying their dynamics. However, these proteins have not been characterized as yet in adipose tissue. In this work, were examined the cellular, molecular and functional features of a member of this family, septin 11 (SEPT11), in adipocytes and evaluated the impact of obesity on the expression of this protein in human adipose tissue. Methods: Adipose gene and protein expression levels of SEPT11 were analysed in human samples. SEPT11 distribution was evaluated by immunocytochemistry, electronic microscopy, and subcellular fractionation techniques. GST-pull down, immunoprecipitation and a Yeast-Two Hybrid (Y2H) screening were used to identify the SEPT11 interactome. Gene silencing was employed to assess the role of SEPT11 in the regulation of insulin signaling and lipid metabolism in adipocytes. Results: SEPT11 is expressed in human adipocytes, and its levels increased in both omental and subcutaneous adipose tissue in obesity, with SEPT11 mRNA content positively correlating with parameters of insulin resistance in subcutaneous fat. In non-stimulated adipocytes, SEPT11 immunoreactivity showed a ring-like distribution at the cell surface and associated to caveolae. Biochemical analyses showed that SEPT11 interacted with the main component of caveolae, caveolin-1 (CAV1) as well as with the fatty acid-binding protein, FABP5. Notably, the three proteins redistributed and co-localized at the surface of lipid droplets upon exposure of adipocytes to oleate. In this line, SEPT11 silencing in 3T3-L1 adipocytes impaired insulin signaling and decreased insulin-induced lipogenesis. Conclusions: Those findings demonstrate that SEPT11 is a novel component of the adipocyte cytoskeleton that plays an important role in the regulation of lipid traffic, metabolism and can thus represent a potential biomarker of insulin resistance in obesity in adipocytes through its interaction with both CAV1 and FABP5.Keywords: caveolae, lipid metabolism, obesity, septins
Procedia PDF Downloads 213775 Modelling of Damage as Hinges in Segmented Tunnels
Authors: Gelacio JuáRez-Luna, Daniel Enrique GonzáLez-RamíRez, Enrique Tenorio-Montero
Abstract:
Frame elements coupled with springs elements are used for modelling the development of hinges in segmented tunnels, the spring elements modelled the rotational, transversal and axial failure. These spring elements are equipped with constitutive models to include independently the moment, shear force and axial force, respectively. These constitutive models are formulated based on damage mechanics and experimental test reported in the literature review. The mesh of the segmented tunnels was discretized in the software GID, and the nonlinear analyses were carried out in the finite element software ANSYS. These analyses provide the capacity curve of the primary and secondary lining of a segmented tunnel. Two numerical examples of segmented tunnels show the capability of the spring elements to release energy by the development of hinges. The first example is a segmental concrete lining discretized with frame elements loaded until hinges occurred in the lining. The second example is a tunnel with primary and secondary lining, discretized with a double ring frame model. The outer ring simulates the segmental concrete lining and the inner ring simulates the secondary cast-in-place concrete lining. Spring elements also modelled the joints between the segments in the circumferential direction and the ring joints, which connect parallel adjacent rings. The computed load vs displacement curves are congruent with numerical and experimental results reported in the literature review. It is shown that the modelling of a tunnel with primary and secondary lining with frame elements and springs provides reasonable results and save computational cost, comparing with 2D or 3D models equipped with smeared crack models.Keywords: damage, hinges, lining, tunnel
Procedia PDF Downloads 390774 21st Century Biotechnological Research and Development Advancements for Industrial Development in India
Authors: Monisha Isaac
Abstract:
Biotechnology is a discipline which explains the use of living organisms and systems to construct a product, or we can define it as an application or technology developed to use biological systems and organisms processes for a specific use. Particularly, it includes cells and its components use for new technologies and inventions. The tools developed can be further used in diverse fields such as agriculture, industry, research and hospitals etc. The 21st century has seen a drastic development and advancement in biotechnology in India. Significant increase in Government of India’s outlays for biotechnology over the past decade has been observed. A sectoral break up of biotechnology-based companies in India shows that most of the companies are agriculture-based companies having interests ranging from tissue culture to biopesticides. Major attention has been given by the companies in health related activities and in environmental biotechnology. The biopharmaceutical, which comprises of vaccines, diagnostic, and recombinant products is the most reliable and largest segment of the Indian Biotech industry. India has developed its vaccine markets and supplies them to various countries. Then there are the bio-services, which mainly comprise of contract researches and manufacturing services. India has made noticeable developments in the field of bio industries including manufacturing of enzymes, biofuels and biopolymers. Biotechnology is also playing a crucial and significant role in the field of agriculture. Traditional methods have been replaced by new technologies that mainly focus on GM crops, marker assisted technologies and the use of biotechnological tools to improve the quality of fertilizers and soil. It may only be a small contributor but has shown to have huge potential for growth. Bioinformatics is a computational method which helps to store, manage, arrange and design tools to interpret the extensive data gathered through experimental trials, making it important in the design of drugs.Keywords: biotechnology, advancement, agriculture, bio-services, bio-industries, bio-pharmaceuticals
Procedia PDF Downloads 237773 Rethinking Confucianism and Democracy
Authors: He Li
Abstract:
Around the mid-1980s, Confucianism was reintroduced into China from Taiwan and Hong Kong as a result of China’s policies of reform and openness. Since then, the revival of neo-Confucianism in mainland China has accelerated and become a crucial component of the public intellectual sphere. The term xinrujia or xinruxue, loosely translated as “neo-Confucianism,” is increasingly understood as an intellectual and cultural phenomenon of the last four decades. The Confucian scholarship is in the process of restoration. This paper examines the Chinese intellectual discourse on Confucianism and democracy and places it in comparative and theoretical perspectives. With China’s rise and surge of populism in the West, particularly in the US, the leading political values of Confucianism could increasingly shape both China and the world at large. This state of affairs points to the need for more systematic efforts to assess the discourse on neo-Confucianism and its implications for China’s transformation. A number of scholars in the camp of neo-Confucianism maintain that some elements of Confucianism are not only compatible with democratic values and institutions but actually promote liberal democracy. They refer to it as Confucian democracy. By contrast, others either view Confucianism as a roadblock to democracy or envision that a convergence of democracy with Confucian values could result in a new hybrid system. The paper traces the complex interplay between Confucianism and democracy. It explores ideological differences between neo-Confucianism and liberal democracy and ascertains whether certain features of neo-Confucianism possess an affinity for the authoritarian political system. In addition to printed materials such as books and journal articles, a selection of articles from the website entitled Confucianism in China will be analyzed. The selection of this website is due to the fact that it is the leading website run by Chinese scholars focusing on neo-Confucianism. Another reason for selecting this website is its accessibility and availability. In the past few years, quite a few websites, left or right, were shut down by the authorities, but this website remains open. This paper explores the core components, dynamics, and implications of neo-Confucianism. My paper is divided into three parts. The first one discusses the origins of neo-Confucianism. The second section reviews the intellectual discourse among Chinese scholars on Confucian democracy. The third one explores the implications of the Chinese intellectual discourse on neo-Confucianism. Recently, liberal democracy has entered more conflict with official ideology. This paper, which is based on my extensive interviews in China prior to the pandemic and analysis of the primary sources in Chinese, will lay the foundation for a chapter on neo-Confucianism and democracy in my next book-length manuscript, tentatively entitled Chinese Intellectual Discourse on Democracy.Keywords: China, confucius, confucianism, neo-confucianism, democracy
Procedia PDF Downloads 81772 A Segmentation Method for Grayscale Images Based on the Firefly Algorithm and the Gaussian Mixture Model
Authors: Donatella Giuliani
Abstract:
In this research, we propose an unsupervised grayscale image segmentation method based on a combination of the Firefly Algorithm and the Gaussian Mixture Model. Firstly, the Firefly Algorithm has been applied in a histogram-based research of cluster means. The Firefly Algorithm is a stochastic global optimization technique, centered on the flashing characteristics of fireflies. In this context it has been performed to determine the number of clusters and the related cluster means in a histogram-based segmentation approach. Successively these means are used in the initialization step for the parameter estimation of a Gaussian Mixture Model. The parametric probability density function of a Gaussian Mixture Model is represented as a weighted sum of Gaussian component densities, whose parameters are evaluated applying the iterative Expectation-Maximization technique. The coefficients of the linear super-position of Gaussians can be thought as prior probabilities of each component. Applying the Bayes rule, the posterior probabilities of the grayscale intensities have been evaluated, therefore their maxima are used to assign each pixel to the clusters, according to their gray-level values. The proposed approach appears fairly solid and reliable when applied even to complex grayscale images. The validation has been performed by using different standard measures, more precisely: the Root Mean Square Error (RMSE), the Structural Content (SC), the Normalized Correlation Coefficient (NK) and the Davies-Bouldin (DB) index. The achieved results have strongly confirmed the robustness of this gray scale segmentation method based on a metaheuristic algorithm. Another noteworthy advantage of this methodology is due to the use of maxima of responsibilities for the pixel assignment that implies a consistent reduction of the computational costs.Keywords: clustering images, firefly algorithm, Gaussian mixture model, meta heuristic algorithm, image segmentation
Procedia PDF Downloads 217771 The Effects of Damping Devices on Displacements, Velocities and Accelerations of Structures
Authors: Radhwane Boudjelthia
Abstract:
The most recent earthquakes occurred in the world have killed thousands of people and severe damage. For all the actors involved in the building process, the earthquake is the litmus test for construction. The goal we set ourselves is to contribute to the implementation of a thoughtful approach to the seismic protection of structures. For many engineers, the most conventional approach to protection works (buildings and bridges) the effects of earthquakes is to increase rigidity. This approach is not always effective, especially when there is a context that favors the phenomenon of resonance and amplification of seismic forces. Therefore, the field of earthquake engineering has made significant inroads, among others catalyzed by the development of computational techniques in computer form and the use of powerful test facilities. This has led to the emergence of several innovative technologies, such as the introduction of special devices insulation between infrastructure and superstructure. This approach, commonly known as "seismic isolation," to absorb the significant efforts without the structure is damaged and thus ensuring the protection of lives and property. In addition, the restraints to the construction by the ground shaking are located mainly at the supports. With these moves, the natural period of construction is increasing, and seismic loads are reduced. Thus, there is an attenuation of the seismic movement. Likewise, the insulation of the base mechanism may be used in combination with earthquake dampers in order to control the deformation of the insulation system and the absolute displacement of the superstructure located above the isolation interface. On the other hand, only can use these earthquake dampers to reduce the oscillation amplitudes and thus reduce seismic loads. The use of damping devices represents an effective solution for the rehabilitation of existing structures. Given all these acceleration reducing means considered passive, much research has been conducted for several years to develop an active control system of the response of buildings to earthquakes.Keywords: earthquake, building, seismic forces, displacement, resonance, response.
Procedia PDF Downloads 69770 Poetics of Labor: A Study of Selected Contemporary Australian Aboriginal and Immigrant Poets
Authors: Nabeel Mohammed Ali
Abstract:
Background and significance of the study: This study focuses on the experiences, perspectives, and issues of the working-class Aboriginals and immigrants in Australia. In addition to dealing with their lives, struggles, and aspirations of working-class people, poetry of labor presents an insight into a neglected literary writing that goes beyond the social discourse of class distinction. In this contemporary context, it explores a broader spectrum of challenges and experiences, such as the complexities of modern labor, immigration, indigenous rights, social justice, multiculturalism, economic inequality, advocating for workers' rights and labor movements, the impact of globalization on local industries, and the evolution of labor in the digital age. Aims of the Study: The study will try to answer the following questions: What insights does poetics of labor provide to affect the literary creation of poetry at the time, as well as whether it can create a change in the social fabric of Australian diversity? What are the main themes and issues that Aboriginal and immigrant poets address in their works? How do they reflect the realities and challenges of working-class people in Australia? How do they use language, form, and style to convey their messages and emotions? How do the poets engage with and critique the dominant narratives and ideologies of Australian society and culture? How do they challenge or resist the stereotypes, prejudices, and discrimination that they face? And how do they show solidarity or empathy with others who share similar struggles or aspirations? Methodology: The study will utilize traditional Marxist paradigms to analyze the poetry of the selected poets in the context of the evolving sociopolitical landscape of the 21st century. The Neo-Marxist literary criticism is used as a theoretical tool to analyze the texts. The concept of Power dynamics to analyze the intersectionality of race, labor and class. Findings: The poetry of contemporary Australian Aboriginal and immigrant poets labor, represents a critical, yet under-explored, discussion of the intersection of labor, class, and a multicultural identity. The study will deal with the poetry of the Aboriginal poet Ali Cobby Eckermann (1963- ) and the immigrant Chinese poet Ouyang Yu ( 1955- ).Keywords: aboriginals, immigrants, Australia, working-class, Ali eckermann, ouyang Yu
Procedia PDF Downloads 35769 Dynamic Two-Way FSI Simulation for a Blade of a Small Wind Turbine
Authors: Alberto Jiménez-Vargas, Manuel de Jesús Palacios-Gallegos, Miguel Ángel Hernández-López, Rafael Campos-Amezcua, Julio Cesar Solís-Sanchez
Abstract:
An optimal wind turbine blade design must be able of capturing as much energy as possible from the wind source available at the area of interest. Many times, an optimal design means the use of large quantities of material and complicated processes that make the wind turbine more expensive, and therefore, less cost-effective. For the construction and installation of a wind turbine, the blades may cost up to 20% of the outline pricing, and become more important due to they are part of the rotor system that is in charge of transmitting the energy from the wind to the power train, and where the static and dynamic design loads for the whole wind turbine are produced. The aim of this work is the develop of a blade fluid-structure interaction (FSI) simulation that allows the identification of the major damage zones during the normal production situation, and thus better decisions for design and optimization can be taken. The simulation is a dynamic case, since we have a time-history wind velocity as inlet condition instead of a constant wind velocity. The process begins with the free-use software NuMAD (NREL), to model the blade and assign material properties to the blade, then the 3D model is exported to ANSYS Workbench platform where before setting the FSI system, a modal analysis is made for identification of natural frequencies and modal shapes. FSI analysis is carried out with the two-way technic which begins with a CFD simulation to obtain the pressure distribution on the blade surface, then these results are used as boundary condition for the FEA simulation to obtain the deformation levels for the first time-step. For the second time-step, CFD simulation is reconfigured automatically with the next time-step inlet wind velocity and the deformation results from the previous time-step. The analysis continues the iterative cycle solving time-step by time-step until the entire load case is completed. This work is part of a set of projects that are managed by a national consortium called “CEMIE-Eólico” (Mexican Center in Wind Energy Research), created for strengthen technological and scientific capacities, the promotion of creation of specialized human resources, and to link the academic with private sector in national territory. The analysis belongs to the design of a rotor system for a 5 kW wind turbine design thought to be installed at the Isthmus of Tehuantepec, Oaxaca, Mexico.Keywords: blade, dynamic, fsi, wind turbine
Procedia PDF Downloads 482768 Distribution of Dynamical and Energy Parameters in Axisymmetric Air Plasma Jet
Authors: Vitas Valinčius, Rolandas Uscila, Viktorija Grigaitienė, Žydrūnas Kavaliauskas, Romualdas Kėželis
Abstract:
Determination of integral dynamical and energy characteristics of high-temperature gas flows is a very important task of gas-dynamic for hazardous substances destruction systems. They are also always necessary for the investigation of high-temperature turbulent flow dynamics, heat and mass transfer. It is well known that distribution of dynamical and thermal characteristics of high-temperature flows and jets is strongly related to heat flux variation over an imposed area of heating. As is visible from numerous experiments and theoretical considerations, the fundamental properties of an isothermal jet are well investigated. However, the establishment of regularities in high-temperature conditions meets certain specific behavior comparing with moderate-temperature jets and flows. Their structures have not been thoroughly studied yet, especially in the cases of plasma ambient. It is well known that the distribution of local plasma jet parameters in high temperature and isothermal jets and flows may significantly differ. High temperature axisymmetric air jet generated by atmospheric pressure DC arc plasma torch was investigated employing enthalpy probe 3.8∙10-3 m of diameter. Distribution of velocities and temperatures were established in different cross-sections of the plasma jet outflowing from 42∙10-3 m diameter pipe at the average mean velocity of 700 m∙s-1, and averaged temperature of 4000 K. It has been found that gas heating fractionally influences shape and values of a dimensionless profile of velocity and temperature in the main zone of plasma jet and has a significant influence in the initial zone of the plasma jet. The width of the initial zone of the plasma jet has been found to be lesser than in the case of isothermal flow. The relation between dynamical thickness and turbulent number of Prandtl has been established along jet axis. Experimental results were generalized in dimensionless form. The presence of convective heating shows that heat transfer in a moving high-temperature jet also occurs due to heat transfer by moving particles of the jet. In this case, the intensity of convective heat transfer is proportional to the instantaneous value of the flow velocity at a given point in space. Consequently, the configuration of the temperature field in moving jets and flows essentially depends on the configuration of the velocity field.Keywords: plasma jet, plasma torch, heat transfer, enthalpy probe, turbulent number of Prandtl
Procedia PDF Downloads 182767 Territorialisation and Elections: Land and Politics in Benin
Authors: Kamal Donko
Abstract:
In the frontier zone of Benin Republic, land seems to be a fundamental political resource as it is used as a tool for socio-political mobilization, blackmail, inclusion and exclusion, conquest and political control. This paper seeks to examine the complex and intriguing interlinks between land, identity and politics in central Benin. It aims to investigate what roles territorialisation and land ownership are playing in the electioneering process in central Benin. It employs ethnographic multi-sited approach to data collections including observations, interviews and focused group discussions. Research findings reveal a complex and intriguing relationship between land ownership and politics in central Benin. Land is found to be playing a key role in the electioneering process in the region. The study has also discovered many emerging socio-spatial patterns of controlling and maintaining political power in the zone which are tied to land politics. These include identity reconstruction and integration mechanism through intermarriages, socio-political initiatives and construction of infrastructure of sovereignty. It was also found that ‘Diaspora organizations’ and identity issues; strategic creation of administrative units; alliance building strategy; gerrymandering local political field, etc. These emerging socio-spatial patterns of territorialisation for maintaining political power affect migrant and native communities’ relationships. It was also found that ‘Diaspora organizations’ and identity issues; strategic creation of administrative units; alliance building strategy; gerrymandering local political field, etc. are currently affecting migrant’s and natives’ relationships. The study argues that territorialisation is not only about national boundaries and the demarcation between different nation states, but more importantly, it serves as a powerful tool of domination and political control at the grass root level. Furthermore, this study seems to provide another perspective from which the political situation in Africa can be studied. Investigating how the dynamics of land ownership is influencing politics at the grass root or micro level, this study is fundamental to understanding spatial issues in the frontier zone.Keywords: land, migration, politics, territorialisation
Procedia PDF Downloads 360766 Hybridization of Manually Extracted and Convolutional Features for Classification of Chest X-Ray of COVID-19
Authors: M. Bilal Ishfaq, Adnan N. Qureshi
Abstract:
COVID-19 is the most infectious disease these days, it was first reported in Wuhan, the capital city of Hubei in China then it spread rapidly throughout the whole world. Later on 11 March 2020, the World Health Organisation (WHO) declared it a pandemic. Since COVID-19 is highly contagious, it has affected approximately 219M people worldwide and caused 4.55M deaths. It has brought the importance of accurate diagnosis of respiratory diseases such as pneumonia and COVID-19 to the forefront. In this paper, we propose a hybrid approach for the automated detection of COVID-19 using medical imaging. We have presented the hybridization of manually extracted and convolutional features. Our approach combines Haralick texture features and convolutional features extracted from chest X-rays and CT scans. We also employ a minimum redundancy maximum relevance (MRMR) feature selection algorithm to reduce computational complexity and enhance classification performance. The proposed model is evaluated on four publicly available datasets, including Chest X-ray Pneumonia, COVID-19 Pneumonia, COVID-19 CTMaster, and VinBig data. The results demonstrate high accuracy and effectiveness, with 0.9925 on the Chest X-ray pneumonia dataset, 0.9895 on the COVID-19, Pneumonia and Normal Chest X-ray dataset, 0.9806 on the Covid CTMaster dataset, and 0.9398 on the VinBig dataset. We further evaluate the effectiveness of the proposed model using ROC curves, where the AUC for the best-performing model reaches 0.96. Our proposed model provides a promising tool for the early detection and accurate diagnosis of COVID-19, which can assist healthcare professionals in making informed treatment decisions and improving patient outcomes. The results of the proposed model are quite plausible and the system can be deployed in a clinical or research setting to assist in the diagnosis of COVID-19.Keywords: COVID-19, feature engineering, artificial neural networks, radiology images
Procedia PDF Downloads 75765 Energy-Efficient Storage of Methane Using Biosurfactant in the Form of Clathrate Hydrate
Authors: Abdolreza Farhadian, Anh Phan, Zahra Taheri Rizi, Elaheh Sadeh
Abstract:
The utilization of solidified gas technology based on hydrates exhibits considerable promise for carbon capture, storage, and natural gas transportation applications. The pivotal factor impeding the industrial implementation of hydrates lies in the need for efficient and non-foaming promoters. In this study, a biosurfactant with sulfonate, amide, and carboxyl groups (BS) was synthesized as a methane hydrate formation promoter, replicating the chemical characteristics of amino acids and sodium dodecyl sulfate (SDS). The synthesis of BS follows a simple, three-step process that is amenable to industrial scale production. The first two steps of the process are solvent-free, which helps reduce potential environmental impacts and makes scaling up more feasible. Additionally, the final step utilizes a water-isopropanol mixture, which is an easily accessible and cost-effective solvent system for large-scale production. High-pressure autoclave experiments demonstrated a significant enhancement in methane hydrate formation kinetics with low BS concentrations. 50 ppm of BS yielded a maximum water-to-hydrate conversion of 66.9%, equivalent to a storage capacity of 119.9 v/v in distilled water. With increasing BS concentration to 500 ppm, the conversion degree and storage capacity reached 97% and 162.6 v/v, respectively. Molecular dynamic simulation revealed that BS molecules acted as collectors for methane molecules, augmenting hydrate growth rate and increasing the number of hydrate cavities. Additionally, BS demonstrated a biodegradability exceeding 60% within 28 days.Keywords: solidified methane, gas storage, gas hydrates, green surfactant, gas hydrate promoter, computational simulation, sustainability
Procedia PDF Downloads 2764 Fem Models of Glued Laminated Timber Beams Enhanced by Bayesian Updating of Elastic Moduli
Authors: L. Melzerová, T. Janda, M. Šejnoha, J. Šejnoha
Abstract:
Two finite element (FEM) models are presented in this paper to address the random nature of the response of glued timber structures made of wood segments with variable elastic moduli evaluated from 3600 indentation measurements. This total database served to create the same number of ensembles as was the number of segments in the tested beam. Statistics of these ensembles were then assigned to given segments of beams and the Latin Hypercube Sampling (LHS) method was called to perform 100 simulations resulting into the ensemble of 100 deflections subjected to statistical evaluation. Here, a detailed geometrical arrangement of individual segments in the laminated beam was considered in the construction of two-dimensional FEM model subjected to in four-point bending to comply with the laboratory tests. Since laboratory measurements of local elastic moduli may in general suffer from a significant experimental error, it appears advantageous to exploit the full scale measurements of timber beams, i.e. deflections, to improve their prior distributions with the help of the Bayesian statistical method. This, however, requires an efficient computational model when simulating the laboratory tests numerically. To this end, a simplified model based on Mindlin’s beam theory was established. The improved posterior distributions show that the most significant change of the Young’s modulus distribution takes place in laminae in the most strained zones, i.e. in the top and bottom layers within the beam center region. Posterior distributions of moduli of elasticity were subsequently utilized in the 2D FEM model and compared with the original simulations.Keywords: Bayesian inference, FEM, four point bending test, laminated timber, parameter estimation, prior and posterior distribution, Young’s modulus
Procedia PDF Downloads 283763 Nursing-Related Barriers to Children’s Pain Management at Selected Hospitals in Ghana: A Descriptive Qualitative Study
Authors: Abigail Kusi Amponsah, Evans Frimpong Kyei, John Bright Agyemang, Hanson Boakye, Joana Kyei-Dompim, Collins Kwadwo Ahoto, Evans Oduro
Abstract:
Staff shortages, deficient knowledge, inappropriate attitudes, demanding workloads, analgesic shortages, and low prioritization of pain management have been identified in earlier studies as the nursing-related barriers to optimal children’s pain management. These studies have mainly been undertaken in developed countries, which have different healthcare dynamics than those in developing countries. The current study, therefore, sought to identify and understand the nursing-related barriers to children’s pain management in the Ghanaian context. A descriptive qualitative study was conducted among 28 purposively sampled nurses working in the pediatric units of five hospitals in the Ashanti region of Ghana. Over the course of three months, participants were interviewed on the barriers which prevented them from optimally managing children’s pain in practice. Recorded interviews were transcribed verbatim and deductively analysed based on a conceptual interest in pain assessment and management-related barriers. NVivo 12 plus software guided data management and analyses. The mean age of participating nurses was 30 years, with majority being females (n =24). Participants had worked in the nursing profession for an average of five years and in the pediatric care settings for an average of two years. The nursing-related barriers identified in the present study included communication difficulties in assessing and evaluating pain management interventions with children who have nonfunctional speech, insufficient training, misconceptions on the experience of pain in children, lack of assessment tools, and insufficient number of nurses to manage the workload and nurses’ inability to prescribe analgesics. The present study revealed some barriers which prevented Ghanaian nurses from optimally managing children’s pain. Nurses should be educated, empowered, and supported with the requisite material resources to effectively manage children’s pain and improve outcomes for families, healthcare systems, and the nation. Future studies should explore the facilitators and barriers from other stakeholders involved in pediatric pain managementKeywords: Nursing-Related Barriers, Children, Pain Management, Ghana
Procedia PDF Downloads 183