Search results for: time domain analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 40035

Search results for: time domain analysis

35205 Using a Character’s Inner Monologue for Song Analysis

Authors: Robert Roznowski

Abstract:

The thought process of the character is never more evident than when singing alone onstage. The composer scores the emotional state and the lyricist voices the inner conflict as the character shares with an audience her or his deepest feelings. It is at these moments that a character may be thought of as voicing her or his inner monologue. Using examples from several musical theatre songs, this presentation will look at a codified approach to analyze a song from a more psychological perspective. Using the clues from the score, traditional character analysis and a psychological-based scoring method an actor may explore more fully inhabit and express the sung and unsung thoughts of the character. The approach yields a richer and more complex approach to acting the song.

Keywords: acting, analysis, musical theatre, psychology

Procedia PDF Downloads 464
35204 Evaluating Emission Reduction Due to a Proposed Light Rail Service: A Micro-Level Analysis

Authors: Saeid Eshghi, Neeraj Saxena, Abdulmajeed Alsultan

Abstract:

Carbon dioxide (CO2) alongside other gas emissions in the atmosphere cause a greenhouse effect, resulting in an increase of the average temperature of the planet. Transportation vehicles are among the main contributors of CO2 emission. Stationary vehicles with initiated motors produce more emissions than mobile ones. Intersections with traffic lights that force the vehicles to become stationary for a period of time produce more CO2 pollution than other parts of the road. This paper focuses on analyzing the CO2 produced by the traffic flow at Anzac Parade Road - Barker Street intersection in Sydney, Australia, before and after the implementation of Light rail transport (LRT). The data are gathered during the construction phase of the LRT by collecting the number of vehicles on each path of the intersection for 15 minutes during the evening rush hour of 1 week (6-7 pm, July 04-31, 2018) and then multiplied by 4 to calculate the flow of vehicles in 1 hour. For analyzing the data, the microscopic simulation software “VISSIM” has been used. Through the analysis, the traffic flow was processed in three stages: before and after implementation of light rail train, and one during the construction phase. Finally, the traffic results were input into another software called “EnViVer”, to calculate the amount of CO2 during 1 h. The results showed that after the implementation of the light rail, CO2 will drop by a minimum of 13%. This finding provides an evidence that light rail is a sustainable mode of transport.

Keywords: carbon dioxide, emission modeling, light rail, microscopic model, traffic flow

Procedia PDF Downloads 129
35203 Differentiation between Different Rangeland Sites Using Principal Component Analysis in Semi-Arid Areas of Sudan

Authors: Nancy Ibrahim Abdalla, Abdelaziz Karamalla Gaiballa

Abstract:

Rangelands in semi-arid areas provide a good source for feeding huge numbers of animals and serving environmental, economic and social importance; therefore, these areas are considered economically very important for the pastoral sector in Sudan. This paper investigates the means of differentiating between different rangelands sites according to soil types using principal component analysis to assist in monitoring and assessment purposes. Three rangeland sites were identified in the study area as flat sandy sites, sand dune site, and hard clay site. Principal component analysis (PCA) was used to reduce the number of factors needed to distinguish between rangeland sites and produce a new set of data including the most useful spectral information to run satellite image processing. It was performed using selected types of data (two vegetation indices, topographic data and vegetation surface reflectance within the three bands of MODIS data). Analysis with PCA indicated that there is a relatively high correspondence between vegetation and soil of the total variance in the data set. The results showed that the use of the principal component analysis (PCA) with the selected variables showed a high difference, reflected in the variance and eigenvalues and it can be used for differentiation between different range sites.

Keywords: principal component analysis, PCA, rangeland sites, semi-arid areas, soil types

Procedia PDF Downloads 165
35202 Automatic and High Precise Modeling for System Optimization

Authors: Stephanie Chen, Mitja Echim, Christof Büskens

Abstract:

To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.

Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization

Procedia PDF Downloads 389
35201 The Effectiveness of Conflict Management of Factories' Employee in Thailand

Authors: Pacharaporn Lekyan

Abstract:

The purpose of this study is to explore the conflict management affecting the workplace and analyze the ability of the prediction of leadership of the headman and the methods to handle the conflict in an organization. The quantitative research and developed the questionnaire in order to collect information from the respondents from 200 samples from leader or manager who worked in frozen food factories in Thailand. The result analysis shows about the problem of the relationship between conflict management factors, leadership, and the confliction in organization. The emotion of the leader in the organization is not the only factor that can affect conflict management but also the emotion of surrounding people which this factor can happen all the time and shows that four out of five factors of interpersonal conflict management have affected on emotion intelligence and also shows that the behaviors of leadership have an influence on conflict management.

Keywords: conflict management, emotional intelligence, leadership, factories' employee

Procedia PDF Downloads 352
35200 Analysis on Urban Form and Evolution Mechanism of High-Density City: Case Study of Hong Kong

Authors: Yuan Zhang

Abstract:

Along with large population and great demands for urban development, Hong Kong serves as a typical high-density city with multiple altitudes, advanced three-dimensional traffic system, rich city open space, etc. This paper contributes to analyzing its complex urban form and evolution mechanism from three aspects of view, separately as time, space and buildings. Taking both horizontal and vertical dimension into consideration, this paper provides a perspective to explore the fascinating process of growing and space folding in the urban form of high-density city, also as a research reference for related high-density urban design.

Keywords: evolution mechanism, high-density city, Hong Kong, urban form

Procedia PDF Downloads 387
35199 Two Degree of Freedom Spherical Mechanism Design for Exact Sun Tracking

Authors: Osman Acar

Abstract:

Sun tracking systems are the systems following the sun ray by a right angle or by predetermined certain angle. In this study, we used theoretical trajectory of sun for latitude of central Anatolia in Turkey. A two degree of freedom spherical mechanism was designed to have a large workspace able to follow the sun's theoretical motion by the right angle during the whole year. An inverse kinematic analysis was generated to find the positions of mechanism links for the predicted trajectory. Force and torque analysis were shown for the first day of the year.

Keywords: sun tracking, theoretical sun trajectory, spherical mechanism, inverse kinematic analysis

Procedia PDF Downloads 406
35198 The Correspondence between Self-regulated Learning, Learning Efficiency and Frequency of ICT Use

Authors: Maria David, Tunde A. Tasko, Katalin Hejja-Nagy, Laszlo Dorner

Abstract:

The authors have been concerned with research on learning since 1998. Recently, the focus of our interest is how prevalent use of information and communication technology (ICT) influences students' learning abilities, skills of self-regulated learning and learning efficiency. Nowadays, there are three dominant theories about the psychic effects of ICT use: According to social optimists, modern ICT devices have a positive effect on thinking. As to social pessimists, this effect is rather negative. And, regarding the views of biological optimists, the change is obvious, but these changes can fit into the mankind's evolved neurological system as did writing long ago. Mentality of 'digital natives' differ from that of elder people. They process information coming from the outside world in an other way, and different experiences result in different cerebral conformation. In this regard, researchers report about both positive and negative effects of ICT use. According to several studies, it has a positive effect on cognitive skills, intelligence, school efficiency, development of self-regulated learning, and self-esteem regarding learning. It is also proven, that computers improve skills of visual intelligence such as spacial orientation, iconic skills and visual attention. Among negative effects of frequent ICT use, researchers mention the decrease of critical thinking, as permanent flow of information does not give scope for deeper cognitive processing. Aims of our present study were to uncover developmental characteristics of self-regulated learning in different age groups and to study correlations of learning efficiency, the level of self-regulated learning and frequency of use of computers. Our subjects (N=1600) were primary and secondary school students and university students. We studied four age groups (age 10, 14, 18, 22), 400 subjects of each. We used the following methods: the research team developed a questionnaire for measuring level of self-regulated learning and a questionnaire for measuring ICT use, and we used documentary analysis to gain information about grade point average (GPA) and results of competence-measures. Finally, we used computer tasks to measure cognitive abilities. Data is currently under analysis, but as to our preliminary results, frequent use of computers results in shorter response time regarding every age groups. Our results show that an ordinary extent of ICT use tend to increase reading competence, and had a positive effect on students' abilities, though it didn't show relationship with school marks (GPA). As time passes, GPA gets worse along with the learning material getting more and more difficult. This phenomenon draws attention to the fact that students are unable to switch from guided to independent learning, so it is important to consciously develop skills of self-regulated learning.

Keywords: digital natives, ICT, learning efficiency, reading competence, self-regulated learning

Procedia PDF Downloads 349
35197 Optimization Analysis of a Concentric Tube Heat Exchanger with Field Synergy Principle

Authors: M. C. Lin, C. W. Su

Abstract:

The paper investigates the optimization analysis to the heat exchanger design, mainly with response surface method and genetic algorithm to explore the relationship between optimal fluid flow velocity and temperature of the heat exchanger using field synergy principle. First, finite volume method is proposed to calculate the flow temperature and flow rate distribution for numerical analysis. We identify the most suitable simulation equations by response surface methodology. Furthermore, a genetic algorithm approach is applied to optimize the relationship between fluid flow velocity and flow temperature of the heat exchanger. The results show that the field synergy angle plays vital role in the performance of a true heat exchanger.

Keywords: optimization analysis, field synergy, heat exchanger, genetic algorithm

Procedia PDF Downloads 291
35196 Numerical Simulation of Supersonic Gas Jet Flows and Acoustics Fields

Authors: Lei Zhang, Wen-jun Ruan, Hao Wang, Peng-Xin Wang

Abstract:

The source of the jet noise is generated by rocket exhaust plume during rocket engine testing. A domain decomposition approach is applied to the jet noise prediction in this paper. The aerodynamic noise coupling is based on the splitting into acoustic sources generation and sound propagation in separate physical domains. Large Eddy Simulation (LES) is used to simulate the supersonic jet flow. Based on the simulation results of the flow-fields, the jet noise distribution of the sound pressure level is obtained by applying the Ffowcs Williams-Hawkings (FW-H) acoustics equation and Fourier transform. The calculation results show that the complex structures of expansion waves, compression waves and the turbulent boundary layer could occur due to the strong interaction between the gas jet and the ambient air. In addition, the jet core region, the shock cell and the sound pressure level of the gas jet increase with the nozzle size increasing. Importantly, the numerical simulation results of the far-field sound are in good agreement with the experimental measurements in directivity.

Keywords: supersonic gas jet, Large Eddy Simulation(LES), acoustic noise, Ffowcs Williams-Hawkings(FW-H) equations, nozzle size

Procedia PDF Downloads 398
35195 Evaluation of the Analytic for Hemodynamic Instability as a Prediction Tool for Early Identification of Patient Deterioration

Authors: Bryce Benson, Sooin Lee, Ashwin Belle

Abstract:

Unrecognized or delayed identification of patient deterioration is a key cause of in-hospitals adverse events. Clinicians rely on vital signs monitoring to recognize patient deterioration. However, due to ever increasing nursing workloads and the manual effort required, vital signs tend to be measured and recorded intermittently, and inconsistently causing large gaps during patient monitoring. Additionally, during deterioration, the body’s autonomic nervous system activates compensatory mechanisms causing the vital signs to be lagging indicators of underlying hemodynamic decline. This study analyzes the predictive efficacy of the Analytic for Hemodynamic Instability (AHI) system, an automated tool that was designed to help clinicians in early identification of deteriorating patients. The lead time analysis in this retrospective observational study assesses how far in advance AHI predicted deterioration prior to the start of an episode of hemodynamic instability (HI) becoming evident through vital signs? Results indicate that of the 362 episodes of HI in this study, 308 episodes (85%) were correctly predicted by the AHI system with a median lead time of 57 minutes and an average of 4 hours (240.5 minutes). Of the 54 episodes not predicted, AHI detected 45 of them while the episode of HI was ongoing. Of the 9 undetected, 5 were not detected by AHI due to either missing or noisy input ECG data during the episode of HI. In total, AHI was able to either predict or detect 98.9% of all episodes of HI in this study. These results suggest that AHI could provide an additional ‘pair of eyes’ on patients, continuously filling the monitoring gaps and consequently giving the patient care team the ability to be far more proactive in patient monitoring and adverse event management.

Keywords: clinical deterioration prediction, decision support system, early warning system, hemodynamic status, physiologic monitoring

Procedia PDF Downloads 173
35194 Buildings Founded on Thermal Insulation Layer Subjected to Earthquake Load

Authors: David Koren, Vojko Kilar

Abstract:

The modern energy-efficient houses are often founded on a thermal insulation (TI) layer placed under the building’s RC foundation slab. The purpose of the paper is to identify the potential problems of the buildings founded on TI layer from the seismic point of view. The two main goals of the study were to assess the seismic behavior of such buildings, and to search for the critical structural parameters affecting the response of the superstructure as well as of the extruded polystyrene (XPS) layer. As a test building a multi-storeyed RC frame structure with and without the XPS layer under the foundation slab has been investigated utilizing nonlinear dynamic (time-history) and static (pushover) analyses. The structural response has been investigated with reference to the following performance parameters: i) Building’s lateral roof displacements, ii) Edge compressive and shear strains of the XPS, iii) Horizontal accelerations of the superstructure, iv) Plastic hinge patterns of the superstructure, v) Part of the foundation in compression, and vi) Deformations of the underlying soil and vertical displacements of the foundation slab (i.e. identifying the potential uplift). The results have shown that in the case of higher and stiff structures lying on firm soil the use of XPS under the foundation slab might induce amplified structural peak responses compared to the building models without XPS under the foundation slab. The analysis has revealed that the superstructure as well as the XPS response is substantially affected by the stiffness of the foundation slab.

Keywords: extruded polystyrene (XPS), foundation on thermal insulation, energy-efficient buildings, nonlinear seismic analysis, seismic response, soil–structure interaction

Procedia PDF Downloads 283
35193 Techno-Economic Analysis of Solar Energy for Cathodic Protection of Oil and Gas Buried Pipelines in Southwestern of Iran

Authors: M. Goodarzi, M. Mohammadi, A. Gharib

Abstract:

Solar energy is a renewable energy which has attracted special attention in many countries. Solar cathodic protectionsystems harness the sun’senergy to protect underground pipelinesand tanks from galvanic corrosion. The object of this study is to design and the economic analysis a cathodic protection system by impressed current supplied with solar energy panels applied to underground pipelines. In the present study, the technical and economic analysis of using solar energy for cathodic protection system in southwestern of Iran (Khuzestan province) is investigated. For this purpose, the ecological conditions such as the weather data, air clearness and sunshine hours are analyzed. The economic analyses were done using computer code to investigate the feasibility analysis from the using of various energy sources in order to cathodic protection system. The overall research methodology is divided into four components: Data collection, design of elements, techno economical evaluation, and output analysis. According to the results, solar renewable energy systems can supply adequate power for cathodic protection system purposes.

Keywords: renewable energy, solar energy, solar cathodic protection station, lifecycle cost method

Procedia PDF Downloads 521
35192 Design of Parity-Preserving Reversible Logic Signed Array Multipliers

Authors: Mojtaba Valinataj

Abstract:

Reversible logic as a new favorable design domain can be used for various fields especially creating quantum computers because of its speed and intangible power consumption. However, its susceptibility to a variety of environmental effects may lead to yield the incorrect results. In this paper, because of the importance of multiplication operation in various computing systems, some novel reversible logic array multipliers are proposed with error detection capability by incorporating the parity-preserving gates. The new designs are presented for two main parts of array multipliers, partial product generation and multi-operand addition, by exploiting the new arrangements of existing gates, which results in two signed parity-preserving array multipliers. The experimental results reveal that the best proposed 4×4 multiplier in this paper reaches 12%, 24%, and 26% enhancements in the number of constant inputs, number of required gates, and quantum cost, respectively, compared to previous design. Moreover, the best proposed design is generalized for n×n multipliers with general formulations to estimate the main reversible logic criteria as the functions of the multiplier size.

Keywords: array multipliers, Baugh-Wooley method, error detection, parity-preserving gates, quantum computers, reversible logic

Procedia PDF Downloads 246
35191 Dynamic Analysis of Double Deck Tunnel

Authors: C. W. Kwak, I. J. Park, D. I. Jang

Abstract:

The importance of cost-wise effective application and construction is getting increase due to the surge of traffic volume in the metropolitan cities. Accordingly, the necessity of the tunnel has large section becomes more critical. Double deck tunnel can be one of the most appropriate solutions to the necessity. The dynamic stability of double deck tunnel is essential against seismic load since it has large section and connection between perimeter lining and interim slab. In this study, 3-dimensional dynamic numerical analysis was conducted based on the Finite Difference Method to investigate the seismic behavior of double deck tunnel. Seismic joint for dynamic stability and the mitigation of seismic impact on the lining was considered in the modeling and analysis. Consequently, the mitigation of acceleration, lining displacement and stress were verified successfully.

Keywords: double deck tunnel, interim slab, 3-dimensional dynamic numerical analysis, seismic joint

Procedia PDF Downloads 372
35190 A Dynamical Approach for Relating Energy Consumption to Hybrid Inventory Level in the Supply Chain

Authors: Benga Ebouele, Thomas Tengen

Abstract:

Due to long lead time, work in process (WIP) inventory can manifest within the supply chain of most manufacturing system. It implies that there are lesser finished good on hand and more in the process because the work remains in the factory too long and cannot be sold to either customers The supply chain of most manufacturing system is then considered as inefficient as it take so much time to produce the finished good. Time consumed in each operation of the supply chain has an associated energy costs. Such phenomena can be harmful for a hybrid inventory system because a lot of space to store these semi-finished goods may be needed and one is not sure about the final energy cost of producing, holding and delivering the good to customers. The principle that reduces waste of energy within the supply chain of most manufacturing firms should therefore be available to all inventory managers in pursuit of profitability. Decision making by inventory managers in this condition is a modeling process, whereby a dynamical approach is used to depict, examine, specify and even operationalize the relationship between energy consumption and hybrid inventory level. The relationship between energy consumption and inventory level is established, which indicates a poor level of control and hence a potential for energy savings.

Keywords: dynamic modelling, energy used, hybrid inventory, supply chain

Procedia PDF Downloads 249
35189 Optimal Allocation of Multiple Emergency Resources for a Single Potential Accident Node: A Mixed Integer Linear Program

Authors: Yongjian Du, Jinhua Sun, Kim M. Liew, Huahua Xiao

Abstract:

Optimal allocation of emergency resources before a disaster is of great importance for emergency response. In reality, the pre-protection for a single critical node where accidents may occur is common. In this study, a model is developed to determine location and inventory decisions of multiple emergency resources among a set of candidate stations to minimize the total cost based on the constraints of budgetary and capacity. The total cost includes the economic accident loss which is accorded with probability distribution of time and the warehousing cost of resources which is increasing over time. A ratio is set to measure the degree of a storage station only serving the target node that becomes larger with the decrease of the distance between them. For the application of linear program, it is assumed that the length of travel time to the accident scene of emergency resources has a linear relationship with the economic accident loss. A computational experiment is conducted to illustrate how the proposed model works, and the results indicate its effectiveness and practicability.

Keywords: emergency response, integer linear program, multiple emergency resources, pre-allocation decisions, single potential accident node

Procedia PDF Downloads 140
35188 USBware: A Trusted and Multidisciplinary Framework for Enhanced Detection of USB-Based Attacks

Authors: Nir Nissim, Ran Yahalom, Tomer Lancewiki, Yuval Elovici, Boaz Lerner

Abstract:

Background: Attackers increasingly take advantage of innocent users who tend to use USB devices casually, assuming these devices benign when in fact they may carry an embedded malicious behavior or hidden malware. USB devices have many properties and capabilities that have become the subject of malicious operations. Many of the recent attacks targeting individuals, and especially organizations, utilize popular and widely used USB devices, such as mice, keyboards, flash drives, printers, and smartphones. However, current detection tools, techniques, and solutions generally fail to detect both the known and unknown attacks launched via USB devices. Significance: We propose USBWARE, a project that focuses on the vulnerabilities of USB devices and centers on the development of a comprehensive detection framework that relies upon a crucial attack repository. USBWARE will allow researchers and companies to better understand the vulnerabilities and attacks associated with USB devices as well as providing a comprehensive platform for developing detection solutions. Methodology: The framework of USBWARE is aimed at accurate detection of both known and unknown USB-based attacks by a process that efficiently enhances the framework's detection capabilities over time. The framework will integrate two main security approaches in order to enhance the detection of USB-based attacks associated with a variety of USB devices. The first approach is aimed at the detection of known attacks and their variants, whereas the second approach focuses on the detection of unknown attacks. USBWARE will consist of six independent but complimentary detection modules, each detecting attacks based on a different approach or discipline. These modules include novel ideas and algorithms inspired from or already developed within our team's domains of expertise, including cyber security, electrical and signal processing, machine learning, and computational biology. The establishment and maintenance of the USBWARE’s dynamic and up-to-date attack repository will strengthen the capabilities of the USBWARE detection framework. The attack repository’s infrastructure will enable researchers to record, document, create, and simulate existing and new USB-based attacks. This data will be used to maintain the detection framework’s updatability by incorporating knowledge regarding new attacks. Based on our experience in the cyber security domain, we aim to design the USBWARE framework so that it will have several characteristics that are crucial for this type of cyber-security detection solution. Specifically, the USBWARE framework should be: Novel, Multidisciplinary, Trusted, Lightweight, Extendable, Modular and Updatable and Adaptable. Major Findings: Based on our initial survey, we have already found more than 23 types of USB-based attacks, divided into six major categories. Our preliminary evaluation and proof of concepts showed that our detection modules can be used for efficient detection of several basic known USB attacks. Further research, development, and enhancements are required so that USBWARE will be capable to cover all of the major known USB attacks and to detect unknown attacks. Conclusion: USBWARE is a crucial detection framework that must be further enhanced and developed.

Keywords: USB, device, cyber security, attack, detection

Procedia PDF Downloads 379
35187 Multimodal Integration of EEG, fMRI and Positron Emission Tomography Data Using Principal Component Analysis for Prognosis in Coma Patients

Authors: Denis Jordan, Daniel Golkowski, Mathias Lukas, Katharina Merz, Caroline Mlynarcik, Max Maurer, Valentin Riedl, Stefan Foerster, Eberhard F. Kochs, Andreas Bender, Ruediger Ilg

Abstract:

Introduction: So far, clinical assessments that rely on behavioral responses to differentiate coma states or even predict outcome in coma patients are unreliable, e.g. because of some patients’ motor disabilities. The present study was aimed to provide prognosis in coma patients using markers from electroencephalogram (EEG), blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) and [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET). Unsuperwised principal component analysis (PCA) was used for multimodal integration of markers. Methods: Approved by the local ethics committee of the Technical University of Munich (Germany) 20 patients (aged 18-89) with severe brain damage were acquired through intensive care units at the Klinikum rechts der Isar in Munich and at the Therapiezentrum Burgau (Germany). At the day of EEG/fMRI/PET measurement (date I) patients (<3.5 month in coma) were grouped in the minimal conscious state (MCS) or vegetative state (VS) on the basis of their clinical presentation (coma recovery scale-revised, CRS-R). Follow-up assessment (date II) was also based on CRS-R in a period of 8 to 24 month after date I. At date I, 63 channel EEG (Brain Products, Gilching, Germany) was recorded outside the scanner, and subsequently simultaneous FDG-PET/fMRI was acquired on an integrated Siemens Biograph mMR 3T scanner (Siemens Healthineers, Erlangen Germany). Power spectral densities, permutation entropy (PE) and symbolic transfer entropy (STE) were calculated in/between frontal, temporal, parietal and occipital EEG channels. PE and STE are based on symbolic time series analysis and were already introduced as robust markers separating wakefulness from unconsciousness in EEG during general anesthesia. While PE quantifies the regularity structure of the neighboring order of signal values (a surrogate of cortical information processing), STE reflects information transfer between two signals (a surrogate of directed connectivity in cortical networks). fMRI was carried out using SPM12 (Wellcome Trust Center for Neuroimaging, University of London, UK). Functional images were realigned, segmented, normalized and smoothed. PET was acquired for 45 minutes in list-mode. For absolute quantification of brain’s glucose consumption rate in FDG-PET, kinetic modelling was performed with Patlak’s plot method. BOLD signal intensity in fMRI and glucose uptake in PET was calculated in 8 distinct cortical areas. PCA was performed over all markers from EEG/fMRI/PET. Prognosis (persistent VS and deceased patients vs. recovery to MCS/awake from date I to date II) was evaluated using the area under the curve (AUC) including bootstrap confidence intervals (CI, *: p<0.05). Results: Prognosis was reliably indicated by the first component of PCA (AUC=0.99*, CI=0.92-1.00) showing a higher AUC when compared to the best single markers (EEG: AUC<0.96*, fMRI: AUC<0.86*, PET: AUC<0.60). CRS-R did not show prediction (AUC=0.51, CI=0.29-0.78). Conclusion: In a multimodal analysis of EEG/fMRI/PET in coma patients, PCA lead to a reliable prognosis. The impact of this result is evident, as clinical estimates of prognosis are inapt at time and could be supported by quantitative biomarkers from EEG, fMRI and PET. Due to the small sample size, further investigations are required, in particular allowing superwised learning instead of the basic approach of unsuperwised PCA.

Keywords: coma states and prognosis, electroencephalogram, entropy, functional magnetic resonance imaging, machine learning, positron emission tomography, principal component analysis

Procedia PDF Downloads 326
35186 Seismic Assessment of Flat Slab and Conventional Slab System for Irregular Building Equipped with Shear Wall

Authors: Muhammad Aji Fajari, Ririt Aprilin Sumarsono

Abstract:

Particular instability of structural building under lateral load (e.g earthquake) will rise due to irregularity in vertical and horizontal direction as stated in SNI 03-1762-2012. The conventional slab has been considered for its less contribution in increasing the stability of the structure, except special slab system such as flat slab turned into account. In this paper, the analysis of flat slab system at Sequis Tower located in South Jakarta will be assessed its performance under earthquake. It consists of 6 floors of the basement where the flat slab system is applied. The flat slab system will be the main focus in this paper to be compared for its performance with conventional slab system under earthquake. Regarding the floor plan of Sequis Tower basement, re-entrant corner signed for this building is 43.21% which exceeded the allowable re-entrant corner is 15% as stated in ASCE 7-05 Based on that, the horizontal irregularity will be another concern for analysis, otherwise vertical irregularity does not exist for this building. Flat slab system is a system where the slabs use drop panel with shear head as their support instead of using beams. Major advantages of flat slab application are decreasing dead load of structure, removing beams so that the clear height can be maximized, and providing lateral resistance due to lateral load. Whilst, deflection at middle strip and punching shear are problems to be detail considered. Torsion usually appears when the structural member under flexure such as beam or column dimension is improper in ratio. Considering flat slab as alternative slab system will keep the collapse due to torsion down. Common seismic load resisting system applied in the building is a shear wall. Installation of shear wall will keep the structural system stronger and stiffer affecting in reduced displacement under earthquake. Eccentricity of shear wall location of this building resolved the instability due to horizontal irregularity so that the earthquake load can be absorbed. Performing linear dynamic analysis such as response spectrum and time history analysis due to earthquake load is suitable as the irregularity arise so that the performance of structure can be significantly observed. Utilization of response spectrum data for South Jakarta which PGA 0.389g is basic for the earthquake load idealization to be involved in several load combinations stated on SNI 03-1726-2012. The analysis will result in some basic seismic parameters such as period, displacement, and base shear of the system; besides the internal forces of the critical member will be presented. Predicted period of a structure under earthquake load is 0.45 second, but as different slab system applied in the analysis then the period will show a different value. Flat slab system will probably result in better performance for the displacement parameter compare to conventional slab system due to higher contribution of stiffness to the whole system of the building. In line with displacement, the deflection of the slab will result smaller for flat slab than a conventional slab. Henceforth, shear wall will be effective to strengthen the conventional slab system than flat slab system.

Keywords: conventional slab, flat slab, horizontal irregularity, response spectrum, shear wall

Procedia PDF Downloads 178
35185 Injury Prediction for Soccer Players Using Machine Learning

Authors: Amiel Satvedi, Richard Pyne

Abstract:

Injuries in professional sports occur on a regular basis. Some may be minor, while others can cause huge impact on a player's career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player's number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.

Keywords: injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer

Procedia PDF Downloads 162
35184 A Bibliometric Analysis of Research on E-learning in Physics Education: Trends, Patterns, and Future Directions

Authors: Siti Nurjanah, Supahar

Abstract:

E-learning has become an increasingly popular mode of instruction, particularly in the field of physics education, where it offers opportunities for interactive and engaging learning experiences. This research aims to analyze the trends of research that investigated e-learning in physics education. Data was extracted from Scopus's database using the keywords "physics" and "e-learning". Of the 380 articles obtained based on the search criteria, a trend analysis of the research was carried out with the help of RStudio using the biblioshiny package and VosViewer software. Analysis showed that publications on this topic have increased significantly from 2014 to 2021. The publication was dominated by researchers from the United States. The main journal that publishes articles on this topic is Proceedings Frontiers in Education Conference fie. The most widely cited articles generally focus on the effectiveness of Moodle for physics learning. Overall, this research provides an in-depth understanding of the trends and key findings of research related to e-learning in physics.

Keywords: bibliometric analysis, physics education, biblioshiny, E-learning

Procedia PDF Downloads 27
35183 Application of Two Stages Adaptive Neuro-Fuzzy Inference System to Improve Dissolved Gas Analysis Interpretation Techniques

Authors: Kharisma Utomo Mulyodinoto, Suwarno, A. Abu-Siada

Abstract:

Dissolved Gas Analysis is one of impressive technique to detect and predict internal fault of transformers by using gas generated by transformer oil sample. A number of methods are used to interpret the dissolved gas from transformer oil sample: Doernenberg Ratio Method, IEC (International Electrotechnical Commission) Ratio Method, and Duval Triangle Method. While the assessment of dissolved gas within transformer oil samples has been standardized over the past two decades, analysis of the results is not always straight forward as it depends on personnel expertise more than mathematical formulas. To get over this limitation, this paper is aimed at improving the interpretation of Doernenberg Ratio Method, IEC Ratio Method, and Duval Triangle Method using Two Stages Adaptive Neuro-Fuzzy Inference System (ANFIS). Dissolved gas analysis data from 520 faulty transformers was analyzed to establish the proposed ANFIS model. Results show that the developed ANFIS model is accurate and can standardize the dissolved gas interpretation process with accuracy higher than 90%.

Keywords: ANFIS, dissolved gas analysis, Doernenberg ratio method, Duval triangular method, IEC ratio method, transformer

Procedia PDF Downloads 135
35182 One-Step Time Series Predictions with Recurrent Neural Networks

Authors: Vaidehi Iyer, Konstantin Borozdin

Abstract:

Time series prediction problems have many important practical applications, but are notoriously difficult for statistical modeling. Recently, machine learning methods have been attracted significant interest as a practical tool applied to a variety of problems, even though developments in this field tend to be semi-empirical. This paper explores application of Long Short Term Memory based Recurrent Neural Networks to the one-step prediction of time series for both trend and stochastic components. Two types of data are analyzed - daily stock prices, that are often considered to be a typical example of a random walk, - and weather patterns dominated by seasonal variations. Results from both analyses are compared, and reinforced learning framework is used to select more efficient between Recurrent Neural Networks and more traditional auto regression methods. It is shown that both methods are able to follow long-term trends and seasonal variations closely, but have difficulties with reproducing day-to-day variability. Future research directions and potential real world applications are briefly discussed.

Keywords: long short term memory, prediction methods, recurrent neural networks, reinforcement learning

Procedia PDF Downloads 210
35181 Control of the Sustainability of Fresh Cheese in Order to Extend the Shelf-Life of the Product

Authors: Radovan Čobanović, Milica Rankov Šicar

Abstract:

The fresh cheese is in the group of perishable food which cannot be kept a long period of time. The study of sustainability have been done in order to extend the shelf-life of the product which was 15 days. According to the plan of sustainability it was defined that 35 samples had to be stored for 30 days at 2°C−6°C and analyzed every 7th day from the day of reception until 30th day. Shelf life of the cheese has expired during the study of sustainability in the period between 15th and 30th day of analyses. Cheese samples were subjected to sensory analysis (appearance, odor, taste, color, aroma) and bacteriological analyzes (Listeria monocytogenes, Salmonella spp., Bacillus cereus, Staphylococcus aureus and total plate count) according to Serbian state regulation. All analyses were tested according to ISO methodology: sensory analysis ISO 6658, Listeria monocytogenes ISO 11 290-1, Salmonella spp ISO 6579, Bacillus cereus ISO 7932, Staphylococcus aureus ISO 6888-1, and total plate count ISO 4833. Analyses showed that after fifteen days of storage at a temperature defined by the manufacturers and within the product's shelf life, the cheese did not have any noticeable changes in sensory characteristics. Smell and taste are unaffected there was no separation of whey and there was not presence of strange smell or taste. As far as microbiological analyses are concerned neither one pathogen was detected and total plate count was at level of 103 cfu/g. After expiry of shelf life in a period of 15th and 30th day of storage, the analysis showed that there was a separation of whey on the surface. Along the edge of the container was present a dried part of cheese and sour-milky smell and taste were very weakly expressed. Concerning the microbiological analyses there still were not positive results for pathogen microorganisms but the total plate count was at a level of 106cfu/g. Based on the obtained results it can be concluded that this product cannot have longer shelf life than shelf life which is already defined because there are a sensory changes that would certainly have influence on decision of customers when purchase of this product is concerned.

Keywords: sustainability, fresh cheese, shelf-life, product

Procedia PDF Downloads 365
35180 Other-Generated Disclosure: A Challenge to Privacy on Social Network Sites

Authors: Tharntip Tawnie Chutikulrungsee, Oliver Kisalay Burmeister, Maumita Bhattacharya, Dragana Calic

Abstract:

Sharing on social network sites (SNSs) has rapidly emerged as a new social norm and has become a global phenomenon. Billions of users reveal not only their own information (self disclosure) but also information about others (other-generated disclosure), resulting in a risk and a serious threat to either personal or informational privacy. Self-disclosure (SD) has been extensively researched in the literature, particularly regarding control of individual and existing privacy management. However, far too little attention has been paid to other-generated disclosure (OGD), especially by insiders. OGD has a strong influence on self-presentation, self-image, and electronic word of mouth (eWOM). Moreover, OGD is more credible and less likely manipulated than SD, but lacks privacy control and legal protection to some extent. This article examines OGD in depth, ranging from motivation to both online and offline impacts, based upon lived experiences from both ‘the disclosed’ and ‘the discloser’. Using purposive sampling, this phenomenological study involves an online survey and in-depth interviews. The findings report the influence of peer disclosure as well as users’ strategies to mitigate privacy issues. This article also calls attention to the challenge of OGD privacy and inadequacies in the law related to privacy protection in the digital domain.

Keywords: facebook, online privacy, other-generated disclosure, social networks sites (SNSs)

Procedia PDF Downloads 233
35179 Relating Symptoms with Protein Production Abnormality in Patients with Down Syndrome

Authors: Ruolan Zhou

Abstract:

Trisomy of human chromosome 21 is the primary cause of Down Syndrome (DS), and this genetic disease has significantly burdened families and countries, causing great controversy. To address this problem, the research takes an approach in exploring the relationship between genetic abnormality and this disease's symptoms, adopting several techniques, including data analysis and enrichment analysis. It also explores open-source websites, such as NCBI, DAVID, SOURCE, STRING, as well as UCSC, to complement its result. This research has analyzed the variety of genes on human chromosome 21 with simple coding, and by using analysis, it has specified the protein-coding genes, their function, and their location. By using enrichment analysis, this paper has found the abundance of keratin production-related coding-proteins on human chromosome 21. By adopting past researches, this research has attempted to disclose the relationship between trisomy of human chromosome 21 and keratin production abnormality, which might be the reason for common diseases in patients with Down Syndrome. At last, by addressing the advantage and insufficiency of this research, the discussion has provided specific directions for future research.

Keywords: Down Syndrome, protein production, genome, enrichment analysis

Procedia PDF Downloads 106
35178 Automation of Finite Element Simulations for the Design Space Exploration and Optimization of Type IV Pressure Vessel

Authors: Weili Jiang, Simon Cadavid Lopera, Klaus Drechsler

Abstract:

Fuel cell vehicle has become the most competitive solution for the transportation sector in the hydrogen economy. Type IV pressure vessel is currently the most popular and widely developed technology for the on-board storage, based on their high reliability and relatively low cost. Due to the stringent requirement on mechanical performance, the pressure vessel is subject to great amount of composite material, a major cost driver for the hydrogen tanks. Evidently, the optimization of composite layup design shows great potential in reducing the overall material usage, yet requires comprehensive understanding on underlying mechanisms as well as the influence of different design parameters on mechanical performance. Given the type of materials and manufacturing processes by which the type IV pressure vessels are manufactured, the design and optimization are a nuanced subject. The manifold of stacking sequence and fiber orientation variation possibilities have an out-standing effect on vessel strength due to the anisotropic property of carbon fiber composites, which make the design space high dimensional. Each variation of design parameters requires computational resources. Using finite element analysis to evaluate different designs is the most common method, however, the model-ing, setup and simulation process can be very time consuming and result in high computational cost. For this reason, it is necessary to build a reliable automation scheme to set up and analyze the di-verse composite layups. In this research, the simulation process of different tank designs regarding various parameters is conducted and automatized in a commercial finite element analysis framework Abaqus. Worth mentioning, the modeling of the composite overwrap is automatically generated using an Abaqus-Python scripting interface. The prediction of the winding angle of each layer and corresponding thickness variation on dome region is the most crucial step of the modeling, which is calculated and implemented using analytical methods. Subsequently, these different composites layups are simulated as axisymmetric models to facilitate the computational complexity and reduce the calculation time. Finally, the results are evaluated and compared regarding the ultimate tank strength. By automatically modeling, evaluating and comparing various composites layups, this system is applicable for the optimization of the tanks structures. As mentioned above, the mechanical property of the pressure vessel is highly dependent on composites layup, which requires big amount of simulations. Consequently, to automatize the simulation process gains a rapid way to compare the various designs and provide an indication of the optimum one. Moreover, this automation process can also be operated for creating a data bank of layups and corresponding mechanical properties with few preliminary configuration steps for the further case analysis. Subsequently, using e.g. machine learning to gather the optimum by the data pool directly without the simulation process.

Keywords: type IV pressure vessels, carbon composites, finite element analy-sis, automation of simulation process

Procedia PDF Downloads 113
35177 Multiple Linear Regression for Rapid Estimation of Subsurface Resistivity from Apparent Resistivity Measurements

Authors: Sabiu Bala Muhammad, Rosli Saad

Abstract:

Multiple linear regression (MLR) models for fast estimation of true subsurface resistivity from apparent resistivity field measurements are developed and assessed in this study. The parameters investigated were apparent resistivity (ρₐ), horizontal location (X) and depth (Z) of measurement as the independent variables; and true resistivity (ρₜ) as the dependent variable. To achieve linearity in both resistivity variables, datasets were first transformed into logarithmic domain following diagnostic checks of normality of the dependent variable and heteroscedasticity to ensure accurate models. Four MLR models were developed based on hierarchical combination of the independent variables. The generated MLR coefficients were applied to another data set to estimate ρₜ values for validation. Contours of the estimated ρₜ values were plotted and compared to the observed data plots at the colour scale and blanking for visual assessment. The accuracy of the models was assessed using coefficient of determination (R²), standard error (SE) and weighted mean absolute percentage error (wMAPE). It is concluded that the MLR models can estimate ρₜ for with high level of accuracy.

Keywords: apparent resistivity, depth, horizontal location, multiple linear regression, true resistivity

Procedia PDF Downloads 260
35176 Thermo-Mechanical Behavior of Steel-Wood Connections of Wooden Structures Under the Effect of a Fire

Authors: Ahmed Alagha, Belkacem Lamri, Abdelhak Kada.

Abstract:

Steel-wood assemblies often have complex geometric configurations whose overall behavior under the effect of a fire is conditioned by the thermal response, by combining the two materials steel and wood, whose thermal characteristics are greatly influenced by high temperatures. The objective of this work is to study the thermal behavior of a steel-wood connection, with or without insulating material, subjected to an ISO834 standard fire model. The analysis is developed by the analytical approach using the Eurocode, and numerically, by the finite element method, through the ANSYS calculation code. The design of the connections is evaluated at room temperature taking the cases of single shear and double shear. The thermal behavior of the connections is simulated in transient state while taking into account the modes of heat transfer by convection and by radiation. The variation of temperature as a function of time is evaluated in different positions of the connections while talking about the heat produced and the formation of the carbon layer. The results relate to the temperature distributions in the connection elements as a function of the duration of the fire. The results of the thermal analysis show that the temperature increases rapidly and reaches more than 260 °C in the steel material for an hour of exposure to fire. The temperature development in wood material is different from that in steel because of its thermal properties. Wood heats up on the outside and burns, its surface can reach very high temperatures in points on the surface.

Keywords: Eurocode 5, finite elements, ISO834, simple shear, thermal behaviour, wood-steel connection

Procedia PDF Downloads 69