Search results for: renewable energy
3814 Atomic Layer Deposition of Metal Oxide Inverse Opals: A Tailorable Platform for Unprecedented Photocatalytic Performance
Authors: Hamsasew Hankebo Lemago, Dóra Hessz, Zoltán Erdélyi, Imre Miklós Szilágyi
Abstract:
Metal oxide inverse opals are a unique class of photocatalysts with a hierarchical structure that mimics the natural opal gemstone. They are composed of a network of interconnected pores, which provides a large surface area and efficient pathways for the transport of light and reactants. Atomic layer deposition (ALD) is a versatile technique for the synthesis of high-precision metal oxide thin films, including inverse opals. ALD allows for precise control over the thickness, composition, and morphology of the synthesized films, making it an ideal technique for the fabrication of photocatalysts with tailored properties. In this study, we report the synthesis of TiO2, ZnO, and Al2O3 inverse opal photocatalysts using thermal or plasma-enhanced ALD. The synthesized photocatalysts were characterized using a variety of techniques, including scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy, photoluminescence (PL), ellipsometry, and UV-visible spectroscopy. The results showed that the ALD-synthesized metal oxide inverse opals had a highly ordered structure and a tunable pore size. The PL spectroscopy results showed low recombination rates of photogenerated electron-hole pairs, while the ellipsometry and UV-visible spectroscopy results showed tunable optical properties and band gap energies. The photocatalytic activity of the samples was evaluated by the degradation of methylene blue under visible light irradiation. The results showed that the ALD-synthesized metal oxide inverse opals exhibited high photocatalytic activity, even under visible light irradiation. The composites photocatalysts showed even higher activity than the individual metal oxide inverse opals. The enhanced photocatalytic activity of the composites can be attributed to the synergistic effect between the different metal oxides. For example, Al2O3 can act as a charge carrier scavenger, which can reduce the recombination of photogenerated electron-hole pairs. The ALD-synthesized metal oxide inverse opals and their composites are promising photocatalysts for a variety of applications, such as wastewater treatment, air purification, and energy production. For example, they can be used to remove organic pollutants from wastewater, decompose harmful gases in the air, and produce hydrogen fuel from water.Keywords: ALD, metal oxide inverse opals, composites, photocatalysis
Procedia PDF Downloads 863813 Implementation of an Associative Memory Using a Restricted Hopfield Network
Authors: Tet H. Yeap
Abstract:
An analog restricted Hopfield Network is presented in this paper. It consists of two layers of nodes, visible and hidden nodes, connected by directional weighted paths forming a bipartite graph with no intralayer connection. An energy or Lyapunov function was derived to show that the proposed network will converge to stable states. By introducing hidden nodes, the proposed network can be trained to store patterns and has increased memory capacity. Training to be an associative memory, simulation results show that the associative memory performs better than a classical Hopfield network by being able to perform better memory recall when the input is noisy.Keywords: restricted Hopfield network, Lyapunov function, simultaneous perturbation stochastic approximation
Procedia PDF Downloads 1353812 Many-Body Effect on Optical Gain of n+ Doping Tensile-Strained Ge/GeSiSn Quantum Wells
Abstract:
The many-body effect on band structure and optical gain of n+ doping tensile-strained Ge/GeSiSn quantum wells are investigated by using an 8-band k•p method. Phase diagram of Ge/GeSiSn quantum well is obtained. The E-k dispersion curves, band gap renormalization and optical gain spectra including many-body effect will be calculated and discussed. We find that the k.p method without many-body effect will overestimate the optical gain and transition energy.Keywords: Si photonics, many-body effect, optical gain, Ge-on-Si, Quantum well
Procedia PDF Downloads 7363811 Industry Symbiosis and Waste Glass Upgrading: A Feasibility Study in Liverpool Towards Circular Economy
Authors: Han-Mei Chen, Rongxin Zhou, Taige Wang
Abstract:
Glass is widely used in everyday life, from glass bottles for beverages to architectural glass for various forms of glazing. Although the mainstream of used glass is recycled in the UK, the single-use and then recycling procedure results in a lot of waste as it incorporates intact glass with smashing, re-melting, and remanufacturing. These processes bring massive energy consumption with a huge loss of high embodied energy and economic value, compared to re-use, which’s towards a ‘zero carbon’ target. As a tourism city, Liverpool has more glass bottle consumption than most less leisure-focused cities. It’s therefore vital for Liverpool to find an upgrading approach for the single-use glass bottles with low carbon output. This project aims to assess the feasibility of industrial symbiosis and upgrading the framework of glass and to investigate the ways of achieving them. It is significant to Liverpool’s future industrial strategy since it provides an opportunity to target economic recovery for post-COVID by industry symbiosis and up-grading waste management in Liverpool to respond to the climate emergency. In addition, it will influence the local government policy for glass bottle reuse and recycling in North West England and as a good practice to be further recommended to other areas of the UK. First, a critical literature review of glass waste strategies has been conducted in the UK and worldwide industrial symbiosis practices. Second, mapping, data collection, and analysis have shown the current life cycle chain and the strong links of glass reuse and upgrading potentials via site visits to 16 local waste recycling centres. The results of this research have demonstrated the understanding of the influence of key factors on the development of a circular industrial symbiosis business model for beverage glass bottles. The current waste management procedures of the glass bottle industry, its business model, supply chain, and material flow have been reviewed. The various potential opportunities for glass bottle up-valuing have been investigated towards an industrial symbiosis in Liverpool. Finally, an up-valuing business model has been developed for an industrial symbiosis framework of glass in Liverpool. For glass bottles, there are two possibilities 1) focus on upgrading processes towards re-use rather than single-use and recycling and 2) focus on ‘smart’ re-use and recycling, leading to optimised values in other sectors to create a wider industry symbiosis for a multi-level and circular economy.Keywords: glass bottles, industry symbiosis, smart re-use, waste upgrading
Procedia PDF Downloads 1093810 Experimental Study Analyzing the Similarity Theory Formulations for the Effect of Aerodynamic Roughness Length on Turbulence Length Scales in the Atmospheric Surface Layer
Authors: Matthew J. Emes, Azadeh Jafari, Maziar Arjomandi
Abstract:
Velocity fluctuations of shear-generated turbulence are largest in the atmospheric surface layer (ASL) of nominal 100 m depth, which can lead to dynamic effects such as galloping and flutter on small physical structures on the ground when the turbulence length scales and characteristic length of the physical structure are the same order of magnitude. Turbulence length scales are a measure of the average sizes of the energy-containing eddies that are widely estimated using two-point cross-correlation analysis to convert the temporal lag to a separation distance using Taylor’s hypothesis that the convection velocity is equal to the mean velocity at the corresponding height. Profiles of turbulence length scales in the neutrally-stratified ASL, as predicted by Monin-Obukhov similarity theory in Engineering Sciences Data Unit (ESDU) 85020 for single-point data and ESDU 86010 for two-point correlations, are largely dependent on the aerodynamic roughness length. Field measurements have shown that longitudinal turbulence length scales show significant regional variation, whereas length scales of the vertical component show consistent Obukhov scaling from site to site because of the absence of low-frequency components. Hence, the objective of this experimental study is to compare the similarity theory relationships between the turbulence length scales and aerodynamic roughness length with those calculated using the autocorrelations and cross-correlations of field measurement velocity data at two sites: the Surface Layer Turbulence and Environmental Science Test (SLTEST) facility in a desert ASL in Dugway, Utah, USA and the Commonwealth Scientific and Industrial Research Organisation (CSIRO) wind tower in a rural ASL in Jemalong, NSW, Australia. The results indicate that the longitudinal turbulence length scales increase with increasing aerodynamic roughness length, as opposed to the relationships derived by similarity theory correlations in ESDU models. However, the ratio of the turbulence length scales in the lateral and vertical directions to the longitudinal length scales is relatively independent of surface roughness, showing consistent inner-scaling between the two sites and the ESDU correlations. Further, the diurnal variation of wind velocity due to changes in atmospheric stability conditions has a significant effect on the turbulence structure of the energy-containing eddies in the lower ASL.Keywords: aerodynamic roughness length, atmospheric surface layer, similarity theory, turbulence length scales
Procedia PDF Downloads 1243809 Influence of Variable Calcium Content on Mechanical Properties of Geopolymer Synthesized at Different Temperature and Moisture Conditions
Authors: Suraj D. Khadka, Priyantha W. Jayawickrama
Abstract:
In search of a sustainable construction material, geopolymer has been investigated for past decades to evaluate its advantage over conventional products. Synthesis of geopolymer requires a source of aluminosilicate mixed with sodium hydroxide and sodium silicate at different proportions to maintain a Si/Al molar ratio of 1-3 and Na/Al molar ratio of unity. A comprehensive geopolymer study was performed with Metakaolin and Class C Fly ash as primary aluminosilicate sources. Synthesized geopolymer was analyzed for time-dependent viscosity, setting period and strength at varying initial moisture content, curing temperature and humidity. Different concentration of Ca(OH)₂ and CaSO₄.2H₂O were added to vary the amount of calcium contained in synthesized geopolymer. Influence of calcium content in unconfined compressive strength behavior of geopolymer were analyzed. Finally, Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS) was performed to investigate the hardened product. It was observed that fly ash based geopolymer had shortened setting time and faster increase in viscosity as compared to geopolymer synthesized from metakaolin. This was primarily attributed to higher calcium content resulting in formation of calcium silicate hydrates (CSH). SEM-EDS was performed to verify the presence of CSH phases. Spectral analysis of geopolymer prepared by addition of Ca(OH)₂ and CaSO₄.2H₂O indicated higher CSH phases at higher concentration. It was observed that lower concentration of added calcium favored strength gain in geopolymer. However, at higher calcium concentration, decrease in strength was observed. Strength variation was also observed with humidity at initial curing condition. At 100% humidity, geopolymer with added calcium presented higher strength compared to samples cured at ambient humidity condition (40%). Reduction in strength in these samples at lower humidity was primarily attributed to reduction in moisture content in specimen due to the formation of CSH phases and loss of moisture through evaporation. For low calcium content geopolymers, with increase in temperature, gain in strength was observed with maximum strength observed at 200 ˚C. However, samples with higher calcium content demonstrated severe cracking resulting in low strength at elevated temperatures.Keywords: calcium silicate hydrates, geopolymer, humidity, Scanning Electron Microscopy-Energy Dispersive Spectroscopy, unconfined compressive strength
Procedia PDF Downloads 1313808 Perfectly Keyless Commercial Vehicle
Authors: Shubha T., Latha H. K. E., Yogananth Karuppiah
Abstract:
Accessing and sharing automobiles will become much simpler thanks to the wide range of automotive use cases made possible by digital keys. This study aims to provide digital keys to car owners and drivers so they can lock or unlock their automobiles and start the engine using a smartphone or other Bluetooth low energy-enabled mobile device. Private automobile owners can digitally lend their car keys to family members or friends without having to physically meet them, possibly for a certain period of time. Owners of company automobile fleets can electronically distribute car keys to staff members, possibly granting access for a given day or length of time. Customers no longer need to physically pick up car keys at a rental desk because automobile owners can digitally transfer keys with them.Keywords: NFC, BLE, CCC, digital key, OEM
Procedia PDF Downloads 1473807 Spectral Efficiency Improvement in 5G Systems by Polyphase Decomposition
Authors: Wilson Enríquez, Daniel Cardenas
Abstract:
This article proposes a filter bank format combined with the mathematical tool called polyphase decomposition and the discrete Fourier transform (DFT) with the purpose of improving the performance of the fifth-generation communication systems (5G). We started with a review of the literature and the study of the filter bank theory and its combination with DFT in order to improve the performance of wireless communications since it reduces the computational complexity of these communication systems. With the proposed technique, several experiments were carried out in order to evaluate the structures in 5G systems. Finally, the results are presented in graphical form in terms of bit error rate against the ratio bit energy/noise power spectral density (BER vs. Eb / No).Keywords: multi-carrier system (5G), filter bank, polyphase decomposition, FIR equalizer
Procedia PDF Downloads 2073806 A Physical Theory of Information vs. a Mathematical Theory of Communication
Authors: Manouchehr Amiri
Abstract:
This article introduces a general notion of physical bit information that is compatible with the basics of quantum mechanics and incorporates the Shannon entropy as a special case. This notion of physical information leads to the Binary data matrix model (BDM), which predicts the basic results of quantum mechanics, general relativity, and black hole thermodynamics. The compatibility of the model with holographic, information conservation, and Landauer’s principles are investigated. After deriving the “Bit Information principle” as a consequence of BDM, the fundamental equations of Planck, De Broglie, Beckenstein, and mass-energy equivalence are derived.Keywords: physical theory of information, binary data matrix model, Shannon information theory, bit information principle
Procedia PDF Downloads 1753805 Alkali Activated Materials Based on Natural Clay from Raciszyn
Authors: Michal Lach, Maria Hebdowska-Krupa, Justyna Stefanek, Artur Stanek, Anna Stefanska, Janusz Mikula, Marek Hebda
Abstract:
Limited resources of raw materials determine the necessity of obtaining materials from other sources. In this area, the most known and widespread are recycling processes, which are mainly focused on the reuse of material. Another possible solution used in various companies to achieve improvement in sustainable development is waste-free production. It involves the production exclusively from such materials, whose waste is included in the group of renewable raw materials. This means that they can: (i) be recycled directly during the manufacturing process of further products or (ii) be raw material obtained by other companies for the production of alternative products. The article presents the possibility of using post-production clay from the Jurassic limestone deposit "Raciszyn II" as a raw material for the production of alkali activated materials (AAM). Such products are currently increasingly used, mostly in various building applications. However, their final properties depend significantly on many factors; the most important of them are: chemical composition of the raw material, particle size, specific surface area, type and concentration of the activator and the temperature range of the heat treatment. Conducted mineralogical and chemical analyzes of clay from the “Raciszyn II” deposit confirmed that this material, due to its high content of aluminosilicates, can be used as raw material for the production of AAM. In order to obtain the product with the best properties, the optimization of the clay calcining process was also carried out. Based on the obtained results, it was found that this process should occur in the range between 750 oC and 800 oC. The use of a lower temperature causes getting a raw material with low metakaolin content which is the main component of materials suitable for alkaline activation processes. On the other hand, higher heat treatment temperatures cause thermal dissociation of large amounts of calcite, which is associated with the release of large amounts of CO2 and the formation of calcium oxide. This compound significantly accelerates the binding process, which consequently often prevents the correct formation of geopolymer mass. The effect of the use of various activators: (i) NaOH, (ii) KOH and (iii) a mixture of KOH to NaOH in a ratio of 10%, 25% and 50% by volume on the compressive strength of the AAM was also analyzed. Obtained results depending on the activator used were in the range from 25 MPa to 40 MPa. These values are comparable with the results obtained for materials produced on the basis of Portland cement, which is one of the most popular building materials.Keywords: alkaline activation, aluminosilicates, calcination, compressive strength
Procedia PDF Downloads 1553804 SFO-ECRSEP: Sensor Field Optimızation Based Ecrsep For Heterogeneous WSNS
Authors: Gagandeep Singh
Abstract:
The sensor field optimization is a serious issue in WSNs and has been ignored by many researchers. As in numerous real-time sensing fields the sensor nodes on the corners i.e. on the segment boundaries will become lifeless early because no extraordinary safety is presented for them. Accordingly, in this research work the central objective is on the segment based optimization by separating the sensor field between advance and normal segments. The inspiration at the back this sensor field optimization is to extend the time spam when the first sensor node dies. For the reason that in normal sensor nodes which were exist on the borders may become lifeless early because the space among them and the base station is more so they consume more power so at last will become lifeless soon.Keywords: WSNs, ECRSEP, SEP, field optimization, energy
Procedia PDF Downloads 3033803 A Novel Combustion Engine, Design and Modeling
Authors: M. A. Effati, M. R. Hojjati, M. Razmdideh
Abstract:
Nowadays, engine developments have focused on internal combustion engine design call for increased engine power, reduced engine size and improved fuel economy, simultaneously. In this paper, a novel design for combustion engine is proposed. Two combustion chambers were designed in two sides of cylinder. Piston was designed in a way that two sides of piston would transfer heat energy due to combustion to linear motion. This motion would convert to rotary motion through the designed mechanism connected to connecting rod. Connecting rod operation was analyzed to evaluate applied stress in 3000, 4500 and 6000 rpm. Boundary conditions including generated pressure in each side of cylinder in these 3 situations was calculated.Keywords: combustion engine, design, finite element method, modeling
Procedia PDF Downloads 5163802 Convective Brinkman-Forchiemer Extended Flow through Channel Filled with Porous Material: An Approximate Analytical Approach
Authors: Basant K. Jha, M. L. Kaurangini
Abstract:
An approximate analytical solution is presented for convective flow in a horizontal channel filled with porous material. The Brinkman-Forchheimer extension of Darcy equation is utilized to model the fluid flow while the energy equation is utilized to model temperature distribution in the channel. The solutions were obtained utilizing the newly suggested technique and compared with those obtained from an implicit finite-difference solution.Keywords: approximate analytical, convective flow, porous material, Brinkman-Forchiemer
Procedia PDF Downloads 4003801 Clusterization Probability in 14N Nuclei
Authors: N. Burtebayev, Sh. Hamada, Zh. Kerimkulov, D. K. Alimov, A. V. Yushkov, N. Amangeldi, A. N. Bakhtibaev
Abstract:
The main aim of the current work is to examine if 14N is candidate to be clusterized nuclei or not. In order to check this attendance, we have measured the angular distributions for 14N ion beam elastically scattered on 12C target nuclei at different low energies; 17.5, 21, and 24.5MeV which are close to the Coulomb barrier energy for 14N+12C nuclear system. Study of various transfer reactions could provide us with useful information about the attendance of nuclei to be in a composite form (core + valence). The experimental data were analyzed using two approaches; Phenomenological (Optical Potential) and semi-microscopic (Double Folding Potential). The agreement between the experimental data and the theoretical predictions is fairly good in the whole angular range.Keywords: deuteron transfer, elastic scattering, optical model, double folding, density distribution
Procedia PDF Downloads 3293800 Impact of Alternative Fuel Feeding on Fuel Cell Performance and Durability
Authors: S. Rodosik, J. P. Poirot-Crouvezier, Y. Bultel
Abstract:
With the expansion of the hydrogen economy, Proton Exchange Membrane Fuel Cell (PEMFC) systems are often presented as promising energy converters suitable for transport applications. However, reaching a durability of 5000 h recommended by the U.S. Department of Energy and decreasing system cost are still major hurdles to their development. In order to increase the system efficiency and simplify the system without affecting the fuel cell lifetime, an architecture called alternative fuel feeding has been developed. It consists in a fuel cell stack divided into two parts, alternatively fed, implemented on a 5-kW system for real scale testing. The operation strategy can be considered close to Dead End Anode (DEA) with specific modifications to avoid water and nitrogen accumulation in the cells. The two half-stacks are connected in series to enable each stack to be alternatively fed. Water and nitrogen accumulated can be shifted from one half-stack to the other one according to the alternative feeding frequency. Thanks to the homogenization of water vapor along the stack, water management was improved. The operating conditions obtained at system scale are close to recirculation without the need of a pump or an ejector. In a first part, a performance comparison with the DEA strategy has been performed. At high temperature and low pressure (80°C, 1.2 bar), performance of alternative fuel feeding was higher, and the system efficiency increased. In a second part, in order to highlight the benefits of the architecture on the fuel cell lifetime, two durability tests, lasting up to 1000h, have been conducted. A test on the 5-kW system has been compared to a reference test performed on a test bench with a shorter stack, conducted with well-controlled operating parameters and flow-through hydrogen strategy. The durability test is based upon the Fuel Cell Dynamic Load Cycle (FC-DLC) protocol but adapted to the system limitations: without OCV steps and a maximum current density of 0.4 A/cm². In situ local measurements with a segmented S++® plate performed all along the tests, showed a more homogeneous distribution of the current density with alternative fuel feeding than in flow-through strategy. Tests performed in this work enabled the understanding of this architecture advantages and drawbacks. Alternative fuel feeding architecture appeared to be a promising solution to ensure the humidification function at the anode side with a simplified fuel cell system.Keywords: automotive conditions, durability, fuel cell system, proton exchange membrane fuel cell, stack architecture
Procedia PDF Downloads 1433799 Analysis of Eating Pattern in Adolescent and Young Adult College Students in Pune City
Authors: Sangeeta Dhamdhere, G. V. P. Rao
Abstract:
Adolescent students need more energy, proteins, vitamins, and minerals because they grow to maturity in this age. Balanced diet plays important role in their wellbeing and health. The study conducted showed 48% students are not normal in their height and weight. 26% students found underweight, 18% overweight and 4% students found obese. The annual income group of underweight students was below 7 Lac and more than 90% students were staying at their home. The researcher has analysed the eating pattern of these students and concluded that there is need of awareness among the parents and students about balance diet and nutrition. The present research will help students improve their dietary habits and health, increase the number of attendees, and achieve academic excellence.Keywords: balanced diet, nutrition, malnutrition, obesity, health education
Procedia PDF Downloads 743798 Digital Forgery Detection by Signal Noise Inconsistency
Authors: Bo Liu, Chi-Man Pun
Abstract:
A novel technique for digital forgery detection by signal noise inconsistency is proposed in this paper. The forged area spliced from the other picture contains some features which may be inconsistent with the rest part of the image. Noise pattern and the level is a possible factor to reveal such inconsistency. To detect such noise discrepancies, the test picture is initially segmented into small pieces. The noise pattern and level of each segment are then estimated by using various filters. The noise features constructed in this step are utilized in energy-based graph cut to expose forged area in the final step. Experimental results show that our method provides a good illustration of regions with noise inconsistency in various scenarios.Keywords: forgery detection, splicing forgery, noise estimation, noise
Procedia PDF Downloads 4643797 Numerical Simulation of Multijunction GaAs/CIGS Solar Cell by AMPS-1D
Authors: Hassane Ben Slimane, Benmoussa Dennai, Abderrahman Hemmani, Abderrachid Helmaoui
Abstract:
During the past few years a great variety of multi-junction solar cells has been developed with the aim of a further increase in efficiency beyond the limits of single junction devices. This paper analyzes the GaAs/CIGS based tandem solar cell performance by AMPS-1D numerical modeling. Various factors which affect the solar cell’s performance are investigated, carefully referring to practical cells, to obtain the optimum parameters for the GaAs and CIGS top and bottom solar cells. Among the factors studied are thickness and band gap energy of dual junction cells.Keywords: multijunction solar cell, GaAs, CIGS, AMPS-1D
Procedia PDF Downloads 5223796 Souk Waqif in Old Doha, Qatar: Cultural Heritage, Urban Regeneration, and Sustainability
Authors: Djamel Boussaa
Abstract:
Cultural heritage and tourism have become during the last two decades dynamic areas of development in the world. The idea of heritage is crucial to the critical decision-making process as to how irreplaceable resources are to be utilized by people of the present or conserved for future generations in a fast changing world. In view of the importance of ‘heritage’ to the development of a tourist destination the emphasis on developing appropriate adaptive reuse strategies cannot be overemphasized. In October 1999, the 12th general assembly of the ICOMOS in Mexico stated, that in the context of sustainable development, two interrelated issues need urgent attention, cultural tourism and historic towns and cities. These two issues underscore the fact that historic resources are non-renewable, belonging to all of humanity. Without adequate adaptive reuse actions to ensure a sustainable future for these historic resources, may lead to their complete vanishing. The growth of tourism and its role in dispersing cultural heritage to everyone is developing rapidly. According to the World Tourism Organization, natural and cultural heritage resources are and will remain motivating factors for travel in the foreseeable future. According to the experts, people choose travel destinations where they can learn about traditional and distinct cultures in their historic context. The Qatar rich urban heritage is now being recognized as a valuable resource for future development. This paper discusses the role of cultural heritage and tourism in regenerating Souk Waqif, and consequently the city of Doha. Therefore, in order to use cultural heritage wisely, it will be necessary to position heritage as an essential element of sustainable development, giving particular attention to cultural heritage and tourism. The research methodology is based on an empirical survey of the situation, based on several visits, meetings and interviews with the local heritage players. The rehabilitation project initiated since 2004 will be examined and assessed. Therefore, there is potential to assess the situation and propose directions for a sustainable future to this historic landmark. Conservation for the sake of conservation appears to be an outdated concept. Many irreplaceable natural and cultural sites are being compromised because local authorities are not giving economic consideration to the value of rehabilitating such sites. The question to be raised here is 'How can cultural heritage be used wisely for tourism without compromising its social sustainability within the emerging global world?'Keywords: cultural heritage, tourism, regeneration, economy, social sustainability
Procedia PDF Downloads 4223795 Gene Expression and Staining Agents: Exploring the Factors That Influence the Electrophoretic Properties of Fluorescent Proteins
Authors: Elif Tugce Aksun Tumerkan, Chris Lowe, Hannah Krupa
Abstract:
Fluorescent proteins are self-sufficient in forming chromophores with a visible wavelength from 3 amino acids sequence within their own polypeptide structure. This chromophore – a molecule that absorbs a photon of light and exhibits an energy transition equal to the energy of the absorbed photon. Fluorescent proteins (FPs) consisted of a chain of 238 amino acid residues and composed of 11 beta strands shaped in a cylinder surrounding an alpha helix structure. A better understanding of the system of the chromospheres and the increasing advance in protein engineering in recent years, the properties of FPs offers the potential for new applications. They have used sensors and probes in molecular biology and cell-based research that giving a chance to observe these FPs tagged cell localization, structural variation and movement. For clarifying functional uses of fluorescent proteins, electrophoretic properties of these proteins are one of the most important parameters. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis is used for determining electrophoretic properties commonly. While there are many techniques are used for determining the functionality of protein-based research, SDS-PAGE analysis can only provide a molecular level assessment of the proteolytic fragments. Before SDS-PAGE analysis, fluorescent proteins need to successfully purified. Due to directly purification of the target, FPs is difficult from the animal, gene expression is commonly used which must be done by transformation with the plasmid. Furthermore, used gel within electrophoresis and staining agents properties have a key role. In this review, the different factors that have the impact on the electrophoretic properties of fluorescent proteins explored. Fluorescent protein separation and purification are the essential steps before electrophoresis that should be done very carefully. For protein purification, gene expression process and following steps have a significant function. For successful gene expression, the properties of selected bacteria for expression, used plasmid are essential. Each bacteria has own characteristics which are very sensitive to gene expression, also used procedure is the important factor for fluorescent protein expression. Another important factors are gel formula and used staining agents. Gel formula has an effect on the specific proteins mobilization and staining with correct agents is a key step for visualization of electrophoretic bands of protein. Visuality of proteins can be changed depending on staining reagents. Apparently, this review has emphasized that gene expression and purification have a stronger effect than electrophoresis protocol and staining agents.Keywords: cell biology, gene expression, staining agents, SDS-page
Procedia PDF Downloads 1963794 Performance Analysis of Different Power Electronics Structures for Electric Vehicles (EVs)
Authors: Sekkak Abdelmalek
Abstract:
The aim of this paper is to establish an energy balance of the drivetrain of a low power electric vehicle (around ten kilowatts). The study is based on two topologies of power electronics converter, the voltage source inverter and cascaded H-Bridge inverter. For each of these solutions, two voltage levels are studied for the drivetrain. At first a discussion of cascaded H-Bridge inverters will be performed on the potential benefits of this structure for its use to other functions such as macroscopic batteries management system. In a second step, the performances of the traction chain are compared according to the structure of the power converter and the voltage level of the traction chain.Keywords: power electronics, static converters, cascaded H-Bridge, traction chain, efficiency, losses, batteries balancing
Procedia PDF Downloads 5143793 Durham Region: How to Achieve Zero Waste in a Municipal Setting
Authors: Mirka Januszkiewicz
Abstract:
The Regional Municipality of Durham is the upper level of a two-tier municipal and regional structure comprised of eight lower-tier municipalities. With a population of 655,000 in both urban and rural settings, the Region is approximately 2,537 square kilometers neighboring the City of Toronto, Ontario Canada to the east. The Region has been focused on diverting waste from disposal since the development of its Long Term Waste Management Strategy Plan for 2000-2020. With a 54 percent solid waste diversion rate, the focus now is on achieving 70 percent diversion on the path to zero waste using local waste management options whenever feasible. The Region has an Integrated Waste Management System that consists of a weekly curbside collection of recyclable printed paper and packaging and source separated organics; a seasonal collection of leaf and yard waste; a bi-weekly collection of residual garbage; and twice annual collection of intact, sealed household batteries. The Region also maintains three Waste Management Facilities for residential drop-off of household hazardous waste, polystyrene, construction and demolition debris and electronics. Special collection events are scheduled in the spring, summer and fall months for reusable items, household hazardous waste, and electronics. The Region is in the final commissioning stages of an energy from the waste facility for residual waste disposal that will recover energy from non-recyclable wastes. This facility is state of the art and is equipped for installation of carbon capture technology in the future. Despite all of these diversion programs and efforts, there is still room for improvement. Recent residential waste studies revealed that over 50% of the residual waste placed at the curb that is destined for incineration could be recycled. To move towards a zero waste community, the Region is looking to more advanced technologies for extracting the maximum recycling value from residential waste. Plans are underway to develop a pre-sort facility to remove organics and recyclables from the residual waste stream, including the growing multi-residential sector. Organics would then be treated anaerobically to generate biogas and fertilizer products for beneficial use within the Region. This project could increase the Region’s diversion rate beyond 70 percent and enhance the Region’s climate change mitigation goals. Zero waste is an ambitious goal in a changing regulatory and economic environment. Decision makers must be willing to consider new and emerging technologies and embrace change to succeed.Keywords: municipal waste, residential, waste diversion, zero waste
Procedia PDF Downloads 2213792 Analysis of Structural Phase Stability of Strontium Sulphide under High Pressure
Authors: Shilpa Kapoor, Namrata Yaduvanshi, Pooja Pawar, Sadhna Singh
Abstract:
A Three Body Interaction Potential (TBIP) model is developed to study the high pressure phase transition of SrS having NaCl (B1) structure at room temperature. This model includes the long range Columbic, three body interaction forces, short range overlap forces operative up to next nearest neighbors and zero point energy effects. We have investigated the phase transition with pressure, volume collapse and second order elastic constants and found results well suited with available experimental data.Keywords: phase transition, second order elastic constants, three body interaction forces, volume collapses
Procedia PDF Downloads 5293791 Hydraulic Performance of Curtain Wall Breakwaters Based on Improved Moving Particle Semi-Implicit Method
Authors: Iddy Iddy, Qin Jiang, Changkuan Zhang
Abstract:
This paper addresses the hydraulic performance of curtain wall breakwaters as a coastal structure protection based on the particles method modelling. The hydraulic functions of curtain wall as wave barriers by reflecting large parts of incident waves through the vertical wall, a part transmitted and a particular part was dissipating the wave energies through the eddy flows formed beneath the lower end of the plate. As a Lagrangian particle, the Moving Particle Semi-implicit (MPS) method which has a robust capability for numerical representation has proven useful for design of structures application that concern free-surface hydrodynamic flow, such as wave breaking and overtopping. In this study, a vertical two-dimensional numerical model for the simulation of violent flow associated with the interaction between the curtain-wall breakwaters and progressive water waves is developed by MPS method in which a higher precision pressure gradient model and free surface particle recognition model were proposed. The wave transmission, reflection, and energy dissipation of the vertical wall were experimentally and theoretically examined. With the numerical wave flume by particle method, very detailed velocity and pressure fields around the curtain-walls under the action of waves can be computed in each calculation steps, and the effect of different wave and structural parameters on the hydrodynamic characteristics was investigated. Also, the simulated results of temporal profiles and distributions of velocity and pressure in the vicinity of curtain-wall breakwaters are compared with the experimental data. Herein, the numerical investigation of hydraulic performance of curtain wall breakwaters indicated that the incident wave is largely reflected from the structure, while the large eddies or turbulent flows occur beneath the curtain-wall resulting in big energy losses. The improved MPS method shows a good agreement between numerical results and analytical/experimental data which are compared to related researches. It is thus verified that the improved pressure gradient model and free surface particle recognition methods are useful for enhancement of stability and accuracy of MPS model for water waves and marine structures. Therefore, it is possible for particle method (MPS method) to achieve an appropriate level of correctness to be applied in engineering fields through further study.Keywords: curtain wall breakwaters, free surface flow, hydraulic performance, improved MPS method
Procedia PDF Downloads 1503790 Cold Spray Fabrication of Coating for Highly Corrosive Environment
Authors: Harminder Singh
Abstract:
Cold spray is a novel and emerging technology for the fabrication of coating. In this study, coating is successfully developed by this process on superalloy surface. The selected coating composition is already proved as corrosion resistant. The microstructure of the newly developed coating is examined by various characterization techniques, for testing its suitability for high temperature corrosive conditions of waste incinerator. The energy producing waste incinerators are still running at low efficiency, mainly due to their chlorine based highly corrosive conditions. The characterization results show that the developed cold sprayed coating structure is suitable for its further testing in highly aggressive conditions.Keywords: coating, cold spray, corrosion, microstructure
Procedia PDF Downloads 3993789 Perception of Eco-Music From the Contents the Earth’s Sound Ecosystem
Authors: Joni Asitashvili, Eka Chabashvili, Maya Virsaladze, Alexander Chokhonelidze
Abstract:
Studying the soundscape is a major challenge in many countries of the civilized world today. The sound environment and music itself are part of the Earth's ecosystem. Therefore, researching its positive or negative impact is important for a clean and healthy environment. The acoustics of nature gave people many musical ideas, and people enriched musical features and performance skills with the ability to imitate the surrounding sound. For example, a population surrounded by mountains invented the technique of antiphonal singing, which mimics the effect of an echo. Canadian composer Raymond Murray Schafer viewed the world as a kind of musical instrument with ever-renewing tuning. He coined the term "Soundscape" as a name of a natural environmental sound, including the sound field of the Earth. It can be said that from which the “music of nature” is constructed. In the 21st century, a new field–Ecomusicology–has emerged in the field of musical art to study the sound ecosystem and various issues related to it. Ecomusicology considers the interconnections between music, culture, and nature–According to the Aaron Allen. Eco-music is a field of ecomusicology concerning with the depiction and realization of practical processes using modern composition techniques. Finding an artificial sound source (instrumental or electronic) for the piece that will blend into the soundscape of Sound Oases. Creating a composition, which sounds in harmony with the vibrations of human, nature, environment, and micro- macrocosm as a whole; Currently, we are exploring the ambient sound of the Georgian urban and suburban environment to discover “Sound Oases" and compose Eco-music works. We called “Sound Oases" an environment with a specific sound of the ecosystem to use in the musical piece as an instrument. The most interesting examples of Eco-music are the round dances, which were already created in the BC era. In round dances people would feel the united energy. This urge to get united revealed itself in our age too, manifesting itself in a variety of social media. The virtual world, however, is not enough for a healthy interaction; we created plan of “contemporary round dance” in sound oasis, found during expedition in Georgian caves, where people interacted with cave's soundscape and eco-music, they feel each other sharing energy and listen to earth sound. This project could be considered a contemporary round dance, a long improvisation, particular type of art therapy, where everyone can participate in an artistic process. We would like to present research result of our eco-music experimental performance.Keywords: eco-music, environment, sound, oasis
Procedia PDF Downloads 623788 A Review on Design and Analysis of Structure Against Blast Forces
Authors: Akshay Satishrao Kawtikwar
Abstract:
The effect of blast masses on structures is an essential aspect that need to be considered. This type of assault could be very horrifying, who where we take it into consideration in the course of the design system. While designing a building, now not only the wind and seismic masses however also the consequences of the blast have to be take into consideration. Blast load is the burden implemented to a structure form a blast wave that comes straight away after an explosion. A blast in or close to a constructing can reason catastrophic harm to the interior and exterior of the building, inner structural framework, wall collapsing, and so on. The most important feature of blast resistant construction is the ability to absorb blast energy without causing catastrophic failure of the structure as a whole. Construction materials in blastprotective structures must have ductility as well as strength.Keywords: blast resistant design, blast load, explosion, ETABS
Procedia PDF Downloads 1063787 Building Exoskeletons for Seismic Retrofitting
Authors: Giuliana Scuderi, Patrick Teuffel
Abstract:
The proven vulnerability of the existing social housing building heritage to natural or induced earthquakes requires the development of new design concepts and conceptual method to preserve materials and object, at the same time providing new performances. An integrate intervention between civil engineering, building physics and architecture can convert the social housing districts from a critical part of the city to a strategic resource of revitalization. Referring to bio-mimicry principles the present research proposes a taxonomy with the exoskeleton of the insect, an external, light and resistant armour whose role is to protect the internal organs from external potentially dangerous inputs. In the same way, a “building exoskeleton”, acting from the outside of the building as an enclosing cage, can restore, protect and support the existing building, assuming a complex set of roles, from the structural to the thermal, from the aesthetical to the functional. This study evaluates the structural efficiency of shape memory alloys devices (SMADs) connecting the “building exoskeleton” with the existing structure to rehabilitate, in order to prevent the out-of-plane collapse of walls and for the passive dissipation of the seismic energy, with a calibrated operability in relation to the intensity of the horizontal loads. The two case studies of a masonry structure and of a masonry structure with concrete frame are considered, and for each case, a theoretical social housing building is exposed to earthquake forces, to evaluate its structural response with or without SMADs. The two typologies are modelled with the finite element program SAP2000, and they are respectively defined through a “frame model” and a “diagonal strut model”. In the same software two types of SMADs, called the 00-10 SMAD and the 05-10 SMAD are defined, and non-linear static and dynamic analyses, namely push over analysis and time history analysis, are performed to evaluate the seismic response of the building. The effectiveness of the devices in limiting the control joint displacements resulted higher in one direction, leading to the consideration of a possible calibrated use of the devices in the different walls of the building. The results show also a higher efficiency of the 00-10 SMADs in controlling the interstory drift, but at the same time the necessity to improve the hysteretic behaviour, to maximise the passive dissipation of the seismic energy.Keywords: adaptive structure, biomimetic design, building exoskeleton, social housing, structural envelope, structural retrofitting
Procedia PDF Downloads 4243786 The Effect of the Crystal Field Interaction on the Critical Temperatures and the Sublattice Magnetizations of a Mixedspin-3/2 and Spin-5/2 Ferromagnetic System
Authors: Fathi Abubrig, Mohamed Delfag, Suad Abuzariba
Abstract:
The influence of the crystal field interactions on the mixed spin-3/2 and spin-5/2 ferromagnetic Ising system is considered by using the mean field theory based on Bogoliubov inequality for the Gibbs free energy. The ground-state phase diagram is constructed, the phase diagrams of the second-order critical temperatures are obtained, and the thermal variation of the sublattice magnetizations is investigated in detail. We find some interesting phenomena for the sublattice magnetizations at particular values of the crystal field interactions.Keywords: crystal field, Ising system, ferromagnetic, magnetization, phase diagrams
Procedia PDF Downloads 4893785 The Application of Green Technology to Residential Architecture in Hangzhou
Authors: Huiru Chen, Xuran Zhang
Abstract:
At present, the residential architecture in China are still causing high energy consumption and high pollution during their whole life cycle, which can be backward compared with the developed countries. The aim of this paper is to discuss the application of green technology to residential architecture in Hangzhou. This article will start with the development of green buildings, then analyzes the use status of green technology in Hangzhou from several specific measures. Analysis of the typical existing green residential buildings in Hangzhou is an attempt to form a preliminary Hangzhou’s green technology application strategy system. Through research, it has been found that the application of green technology in Hangzhou has changed from putting green to the facade, to the combination of the preservation of the traditional green concept and the modern green technology.Keywords: application, green technology, Hangzhou, residential architecture
Procedia PDF Downloads 212