Search results for: forecast model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16983

Search results for: forecast model

12153 Estimation of the Acute Toxicity of Halogenated Phenols Using Quantum Chemistry Descriptors

Authors: Khadidja Bellifa, Sidi Mohamed Mekelleche

Abstract:

Phenols and especially halogenated phenols represent a substantial part of the chemicals produced worldwide and are known as aquatic pollutants. Quantitative structure–toxicity relationship (QSTR) models are useful for understanding how chemical structure relates to the toxicity of chemicals. In the present study, the acute toxicities of 45 halogenated phenols to Tetrahymena Pyriformis are estimated using no cost semi-empirical quantum chemistry methods. QSTR models were established using the multiple linear regression technique and the predictive ability of the models was evaluated by the internal cross-validation, the Y-randomization and the external validation. Their structural chemical domain has been defined by the leverage approach. The results show that the best model is obtained with the AM1 method (R²= 0.91, R²CV= 0.90, SD= 0.20 for the training set and R²= 0.96, SD= 0.11 for the test set). Moreover, all the Tropsha’ criteria for a predictive QSTR model are verified.

Keywords: halogenated phenols, toxicity mechanism, hydrophobicity, electrophilicity index, quantitative stucture-toxicity relationships

Procedia PDF Downloads 301
12152 A Model Based Metaheuristic for Hybrid Hierarchical Community Structure in Social Networks

Authors: Radhia Toujani, Jalel Akaichi

Abstract:

In recent years, the study of community detection in social networks has received great attention. The hierarchical structure of the network leads to the emergence of the convergence to a locally optimal community structure. In this paper, we aim to avoid this local optimum in the introduced hybrid hierarchical method. To achieve this purpose, we present an objective function where we incorporate the value of structural and semantic similarity based modularity and a metaheuristic namely bees colonies algorithm to optimize our objective function on both hierarchical level divisive and agglomerative. In order to assess the efficiency and the accuracy of the introduced hybrid bee colony model, we perform an extensive experimental evaluation on both synthetic and real networks.

Keywords: social network, community detection, agglomerative hierarchical clustering, divisive hierarchical clustering, similarity, modularity, metaheuristic, bee colony

Procedia PDF Downloads 379
12151 Theoretical and ML-Driven Identification of a Mispriced Credit Risk

Authors: Yuri Katz, Kun Liu, Arunram Atmacharan

Abstract:

Due to illiquidity, mispricing on Credit Markets is inevitable. This creates huge challenges to banks and investors as they seek to find new ways of risk valuation and portfolio management in a post-credit crisis world. Here, we analyze the difference in behavior of the spread-to-maturity in investment and high-yield categories of US corporate bonds between 2014 and 2023. Deviation from the theoretical dependency of this measure in the universe under study allows to identify multiple cases of mispriced credit risk. Remarkably, we observe mispriced bonds in both categories of credit ratings. This identification is supported by the application of the state-of-the-art machine learning model in more than 90% of cases. Noticeably, the ML-driven model-based forecasting of a category of bond’s credit ratings demonstrate an excellent out-of-sample accuracy (AUC = 98%). We believe that these results can augment conventional valuations of credit portfolios.

Keywords: credit risk, credit ratings, bond pricing, spread-to-maturity, machine learning

Procedia PDF Downloads 80
12150 Multidimensional Approach to Analyse the Environmental Impacts of Mobility

Authors: Andras Gyorfi, Andras Torma, Adrienn Buruzs

Abstract:

Mobility has been evolved to a determining field of science. The continuously developing segment involves a variety of affected issues such as public and economic sectors. Beside the changes in mobility the state of environment had also changed in the last period. Alternative mobility as a separate category and the idea of its widespread appliance is such a new field that needs to be studied deeper. Alternative mobility implies finding new types of propulsion, using innovative kinds of power and energy resources, revolutionizing the approach to vehicular control. Including new resources and excluding others has such a complex effect which cannot be unequivocally confirmed by today’s scientific achievements. Changes in specific parameters will most likely reduce the environmental impacts, however, the production of new substances or even their subtraction of the system will cause probably energy deficit as well. The aim of this research is to elaborate the environmental impact matrix of alternative mobility and cognize the factors that are yet unknown, analyse them, look for alternative solutions and conclude all the above in a coherent system. In order to this, we analyse it with a method called ‘the system of systems (SoS) method’ to model the effects and the dynamics of the system. A part of the research process is to examine its impacts on the environment, and to decide whether the newly developed versions of alternative mobility are affecting the environmental state. As a final result, a complex approach will be used which can supplement the current scientific studies. By using the SoS approach, we create a framework of reference containing elements in which we examine the interactions as well. In such a way, a flexible and modular model can be established which supports the prioritizing of effects and the deeper analysis of the complex system.

Keywords: environment, alternative mobility, complex model, element analysis, multidimensional map

Procedia PDF Downloads 324
12149 Cadmium Removal from Aqueous Solution Using Chitosan Beads Prepared from Shrimp Shell Extracted Chitosan

Authors: Bendjaballah Malek; Makhlouf Mohammed Rabeh; Boukerche Imane; Benhamza Mohammed El Hocine

Abstract:

In this study, chitosan was derived from Parapenaeus longirostris shrimp shells sourced from a local market in Annaba, eastern Algeria. The extraction process entailed four chemical stages: demineralization, deproteinization, decolorization, and deacetylation. The degree of deacetylation was calculated to be 80.86 %. The extracted chitosan was physically altered to synthesize chitosan beads and characterized via FTIR and XRD analysis. These beads were employed to eliminate cadmium ions from synthetic water. The batch adsorption process was optimized by analyzing the impact of contact time, pH, adsorbent dose, and temperature. The adsorption capacity of and Cd+2 on chitosan beads was found to be 6.83 mg/g and 7.94 mg/g, respectively. The kinetic adsorption of Cd+2 conformed to the pseudo-first-order model, while the isotherm study indicated that the Langmuir Isotherm model well described the adsorption of cadmium . A thermodynamic analysis demonstrated that the adsorption of Cd+2 on chitosan beads is spontaneous and exothermic.

Keywords: Cd, chitosan, chitosanbeds, bioadsorbent

Procedia PDF Downloads 101
12148 Foodborne Outbreak Calendar: Application of Time Series Analysis

Authors: Ryan B. Simpson, Margaret A. Waskow, Aishwarya Venkat, Elena N. Naumova

Abstract:

The Centers for Disease Control and Prevention (CDC) estimate that 31 known foodborne pathogens cause 9.4 million cases of these illnesses annually in US. Over 90% of these illnesses are associated with exposure to Campylobacter, Cryptosporidium, Cyclospora, Listeria, Salmonella, Shigella, Shiga-Toxin Producing E.Coli (STEC), Vibrio, and Yersinia. Contaminated products contain parasites typically causing an intestinal illness manifested by diarrhea, stomach cramping, nausea, weight loss, fatigue and may result in deaths in fragile populations. Since 1998, the National Outbreak Reporting System (NORS) has allowed for routine collection of suspected and laboratory-confirmed cases of food poisoning. While retrospective analyses have revealed common pathogen-specific seasonal patterns, little is known concerning the stability of those patterns over time and whether they can be used for preventative forecasting. The objective of this study is to construct a calendar of foodborne outbreaks of nine infections based on the peak timing of outbreak incidence in the US from 1996 to 2017. Reported cases were abstracted from FoodNet for Salmonella (135115), Campylobacter (121099), Shigella (48520), Cryptosporidium (21701), STEC (18022), Yersinia (3602), Vibrio (3000), Listeria (2543), and Cyclospora (758). Monthly counts were compiled for each agent, seasonal peak timing and peak intensity were estimated, and the stability of seasonal peaks and synchronization of infections was examined. Negative Binomial harmonic regression models with the delta-method were applied to derive confidence intervals for the peak timing for each year and overall study period estimates. Preliminary results indicate that five infections continue to lead as major causes of outbreaks, exhibiting steady upward trends with annual increases in cases ranging from 2.71% (95%CI: [2.38, 3.05]) in Campylobacter, 4.78% (95%CI: [4.14, 5.41]) in Salmonella, 7.09% (95%CI: [6.38, 7.82]) in E.Coli, 7.71% (95%CI: [6.94, 8.49]) in Cryptosporidium, and 8.67% (95%CI: [7.55, 9.80]) in Vibrio. Strong synchronization of summer outbreaks were observed, caused by Campylobacter, Vibrio, E.Coli and Salmonella, peaking at 7.57 ± 0.33, 7.84 ± 0.47, 7.85 ± 0.37, and 7.82 ± 0.14 calendar months, respectively, with the serial cross-correlation ranging 0.81-0.88 (p < 0.001). Over 21 years, Listeria and Cryptosporidium peaks (8.43 ± 0.77 and 8.52 ± 0.45 months, respectively) have a tendency to arrive 1-2 weeks earlier, while Vibrio peaks (7.8 ± 0.47) delay by 2-3 weeks. These findings will be incorporated in the forecast models to predict common paths of the spread, long-term trends, and the synchronization of outbreaks across etiological agents. The predictive modeling of foodborne outbreaks should consider long-term changes in seasonal timing, spatiotemporal trends, and sources of contamination.

Keywords: foodborne outbreak, national outbreak reporting system, predictive modeling, seasonality

Procedia PDF Downloads 128
12147 Coupling Large Language Models with Disaster Knowledge Graphs for Intelligent Construction

Authors: Zhengrong Wu, Haibo Yang

Abstract:

In the context of escalating global climate change and environmental degradation, the complexity and frequency of natural disasters are continually increasing. Confronted with an abundance of information regarding natural disasters, traditional knowledge graph construction methods, which heavily rely on grammatical rules and prior knowledge, demonstrate suboptimal performance in processing complex, multi-source disaster information. This study, drawing upon past natural disaster reports, disaster-related literature in both English and Chinese, and data from various disaster monitoring stations, constructs question-answer templates based on large language models. Utilizing the P-Tune method, the ChatGLM2-6B model is fine-tuned, leading to the development of a disaster knowledge graph based on large language models. This serves as a knowledge database support for disaster emergency response.

Keywords: large language model, knowledge graph, disaster, deep learning

Procedia PDF Downloads 56
12146 Effect of Non-Tariff Measures to Indonesian Shrimp Export in International Market: Case of Sanitary and Phytosanitary and Technical Barriers to Trade

Authors: Muhammad Khaliqi, Amzul Rifin, Andriyono Kilat Adhi

Abstract:

The non-tariff policy could make Indonesian shrimp exports decrease in the international market. This research was aimed to analyze factors affecting Indonesia's exports of shrimp and the impact of SPS and TBT policy on Indonesian shrimp. Factors affecting the exports of Indonesian shrimp were estimated using gravity model. The results showed the GDP of exporters and exchange rate, have a negative influence against the export of Indonesia’s shrimp exports. The GDP of the importers and trade cost have a positive influence against the export of shrimp Indonesia while the SPS policy and TBT don’t affect Indonesia's exports of shrimp in the international market.

Keywords: gravity model, international trade, non-tariff measure, sanitary and phytosanitary, shrimp, technical barriers to trade

Procedia PDF Downloads 194
12145 Transformational Entrepreneurship: Exploring Pedagogy in Tertiary Education

Authors: S. Karmokar

Abstract:

Over the last 20 years, there has been increasing interest in the topic of entrepreneurship education as it is seen in many countries as a way of enhancing the enterprise culture and promote capability building among community. There is also rapid growth of emerging technologies across the globe and forced entrepreneurs to searching for a new model of economic growth. There are two movements that are dominating and creating waves, Technology Entrepreneurship and Social Entrepreneurship. An increasing number of entrepreneurs are awakening to the possibility of combining the scalable tools and methodology of Technology Entrepreneurship with the value system of Social Entrepreneurship–‘Transformational Entrepreneurship’. To do this transitional educational institute’s need to figure out how to unite the scalable tools of Technology Entrepreneurship with the moral ethos of Social Entrepreneurship. The traditional entrepreneurship education model is wedded to top-down instructive approaches, that is widely used in management education have led to passive educational model. Despite the effort, disruptive’ pedagogies are rare in higher education; they remain underused and often marginalized. High impact and transformational entrepreneurship education and training require universities to adopt new practices and revise current, traditional ways of working. This is a conceptual research paper exploring the potential and growth of transformational entrepreneurship, investigating links between social entrepreneurship. Based on empirical studies and theoretical approaches, this paper outlines some educational approach for both academics and educational institutes to deliver emerging transformational entrepreneurship in tertiary education. The paper presents recommendations for tertiary educators to inform the designing of teaching practices, revise current delivery methods and encourage students to fulfill their potential as entrepreneurs.

Keywords: educational pedagogies, emerging technologies, social entrepreneurship, transformational entrepreneurship

Procedia PDF Downloads 192
12144 Experimental and Numerical Investigations on the Vulnerability of Flying Structures to High-Energy Laser Irradiations

Authors: Vadim Allheily, Rudiger Schmitt, Lionel Merlat, Gildas L'Hostis

Abstract:

Inflight devices are nowadays major actors in both military and civilian landscapes. Among others, missiles, mortars, rockets or even drones this last decade are increasingly sophisticated, and it is today of prior manner to develop always more efficient defensive systems from all these potential threats. In this frame, recent High Energy Laser weapon prototypes (HEL) have demonstrated some extremely good operational abilities to shot down within seconds flying targets several kilometers off. Whereas test outcomes are promising from both experimental and cost-related perspectives, the deterioration process still needs to be explored to be able to closely predict the effects of a high-energy laser irradiation on typical structures, heading finally to an effective design of laser sources and protective countermeasures. Laser matter interaction researches have a long history of more than 40 years at the French-German Research Institute (ISL). Those studies were tied with laser sources development in the mid-60s, mainly for specific metrology of fast phenomena. Nowadays, laser matter interaction can be viewed as the terminal ballistics of conventional weapons, with the unique capability of laser beams to carry energy at light velocity over large ranges. In the last years, a strong focus was made at ISL on the interaction process of laser radiation with metal targets such as artillery shells. Due to the absorbed laser radiation and the resulting heating process, an encased explosive charge can be initiated resulting in deflagration or even detonation of the projectile in flight. Drones and Unmanned Air Vehicles (UAVs) are of outmost interests in modern warfare. Those aerial systems are usually made up of polymer-based composite materials, whose complexity involves new scientific challenges. Aside this main laser-matter interaction activity, a lot of experimental and numerical knowledge has been gathered at ISL within domains like spectrometry, thermodynamics or mechanics. Techniques and devices were developed to study separately each aspect concerned by this topic; optical characterization, thermal investigations, chemical reactions analysis or mechanical examinations are beyond carried out to neatly estimate essential key values. Results from these diverse tasks are then incorporated into analytic or FE numerical models that were elaborated, for example, to predict thermal repercussion on explosive charges or mechanical failures of structures. These simulations highlight the influence of each phenomenon during the laser irradiation and forecast experimental observations with good accuracy.

Keywords: composite materials, countermeasure, experimental work, high-energy laser, laser-matter interaction, modeling

Procedia PDF Downloads 263
12143 Basic Study on a Thermal Model for Evaluating The Environment of Infant Facilities

Authors: Xin Yuan, Yuji Ryu

Abstract:

The indoor environment has a significant impact on occupants and a suitable indoor thermal environment can improve the children’s physical health and study efficiency during school hours. In this study, we explored the thermal environment in infant facilities classrooms for infants and children aged 1-5 and evaluated their thermal comfort. An infant facility in Fukuoka, Japan was selected for a case study to capture the infant and children’s thermal comfort characteristics in summer and winter from August 2019 to February 2020. Previous studies have pointed out using PMV indices to evaluate the thermal comfort for children could create errors that may lead to misleading results. Thus, to grasp the actual thermal environment and thermal comfort characteristics of infants and children, we retrieved the operative temperature of each child through the thermal model, based on the sensible heat transfer from the skin to the environment, and the measured classroom indoor temperature, relative humidity, and pocket temperature of children’s shorts. The statistical and comparative analysis of the results shows that (1) the operative temperature showed a large individual difference among children, with the maximum reached 6.25 °C. (2) The children might feel slightly cold in the classrooms in summer, with the frequencies of operative temperature within the interval of 26-28 ºC were only 5.33% and 16.6% for children respectively. (3) The thermal environment around children is more complicated in winter the operative temperature could exceed or fail to reach the thermal comfort temperature zone (20-23 ºC interval). (4) The environmental conditions surrounding the children may account for the reduction of their thermal comfort. The findings contribute to improving the understanding of the infant and children’s thermal comfort and provide valuable information for designers and governments to develop effective strategies for the indoor thermal environment considering the perspective of children.

Keywords: infant and children, thermal environment, thermal model, operative temperature.

Procedia PDF Downloads 119
12142 Effects of Different Meteorological Variables on Reference Evapotranspiration Modeling: Application of Principal Component Analysis

Authors: Akinola Ikudayisi, Josiah Adeyemo

Abstract:

The correct estimation of reference evapotranspiration (ETₒ) is required for effective irrigation water resources planning and management. However, there are some variables that must be considered while estimating and modeling ETₒ. This study therefore determines the multivariate analysis of correlated variables involved in the estimation and modeling of ETₒ at Vaalharts irrigation scheme (VIS) in South Africa using Principal Component Analysis (PCA) technique. Weather and meteorological data between 1994 and 2014 were obtained both from South African Weather Service (SAWS) and Agricultural Research Council (ARC) in South Africa for this study. Average monthly data of minimum and maximum temperature (°C), rainfall (mm), relative humidity (%), and wind speed (m/s) were the inputs to the PCA-based model, while ETₒ is the output. PCA technique was adopted to extract the most important information from the dataset and also to analyze the relationship between the five variables and ETₒ. This is to determine the most significant variables affecting ETₒ estimation at VIS. From the model performances, two principal components with a variance of 82.7% were retained after the eigenvector extraction. The results of the two principal components were compared and the model output shows that minimum temperature, maximum temperature and windspeed are the most important variables in ETₒ estimation and modeling at VIS. In order words, ETₒ increases with temperature and windspeed. Other variables such as rainfall and relative humidity are less important and cannot be used to provide enough information about ETₒ estimation at VIS. The outcome of this study has helped to reduce input variable dimensionality from five to the three most significant variables in ETₒ modelling at VIS, South Africa.

Keywords: irrigation, principal component analysis, reference evapotranspiration, Vaalharts

Procedia PDF Downloads 258
12141 Corpus Stylistics and Multidimensional Analysis for English for Specific Purposes Teaching and Assessment

Authors: Svetlana Strinyuk, Viacheslav Lanin

Abstract:

Academic English has become lingua franca for international scientific community which stimulates universities to introduce English for Specific Purposes (EAP) courses into curriculum. Teaching L2 EAP students might be fulfilled with corpus technologies and digital stylistics. A special software developed to reach the manifold task of teaching, assessing and researching academic writing of L2 students on basis of digital stylistics and multidimensional analysis was created. A set of annotations (style markers) – grammar, lexical and syntactic features most significant of academic writing was built. Contrastive comparison of two corpora “model corpus”, subject domain limited papers published by competent writers in leading academic journals, and “students’ corpus”, subject domain limited papers written by last year students allows to receive data about the features of academic writing underused or overused by L2 EAP student. Both corpora are tagged with a special software created in GATE Developer. Style markers within the framework of research might be replaced depending on the relevance and validity of the result which is achieved from research corpora. Thus, selecting relevant (high frequency) style markers and excluding less relevant, i.e. less frequent annotations, high validity of the model is achieved. Software allows to compare the data received from processing model corpus to students’ corpus and get reports which can be used in teaching and assessment. The less deviation from the model corpus students demonstrates in their writing the higher is academic writing skill acquisition. The research showed that several style markers (hedging devices) were underused by L2 EAP students whereas lexical linking devices were used excessively. A special software implemented into teaching of EAP courses serves as a successful visual aid, makes assessment more valid; it is indicative of the degree of writing skill acquisition, and provides data for further research.

Keywords: corpus technologies in EAP teaching, multidimensional analysis, GATE Developer, corpus stylistics

Procedia PDF Downloads 200
12140 Information Exchange Process Analysis between Authoring Design Tools and Lighting Simulation Tools

Authors: Rudan Xue, Annika Moscati, Rehel Zeleke Kebede, Peter Johansson

Abstract:

Successful buildings’ simulation and analysis inevitably require information exchange between multiple building information modeling (BIM) software. The BIM infor-mation exchange based on IFC is widely used. However, Industry Foundation Classifi-cation (IFC) files are not always reliable and information can get lost when using dif-ferent software for modeling and simulations. In this research, interviews with lighting simulation experts and a case study provided by a company producing lighting devices have been the research methods used to identify the necessary steps and data for suc-cessful information exchange between lighting simulation tools and authoring design tools. Model creation, information exchange, and model simulation have been identi-fied as key aspects for the success of information exchange. The paper concludes with recommendations for improved information exchange and more reliable simulations that take all the needed parameters into consideration.

Keywords: BIM, data exchange, interoperability issues, lighting simulations

Procedia PDF Downloads 242
12139 Deep Learning Approach for Colorectal Cancer’s Automatic Tumor Grading on Whole Slide Images

Authors: Shenlun Chen, Leonard Wee

Abstract:

Tumor grading is an essential reference for colorectal cancer (CRC) staging and survival prognostication. The widely used World Health Organization (WHO) grading system defines histological grade of CRC adenocarcinoma based on the density of glandular formation on whole slide images (WSI). Tumors are classified as well-, moderately-, poorly- or un-differentiated depending on the percentage of the tumor that is gland forming; >95%, 50-95%, 5-50% and <5%, respectively. However, manually grading WSIs is a time-consuming process and can cause observer error due to subjective judgment and unnoticed regions. Furthermore, pathologists’ grading is usually coarse while a finer and continuous differentiation grade may help to stratifying CRC patients better. In this study, a deep learning based automatic differentiation grading algorithm was developed and evaluated by survival analysis. Firstly, a gland segmentation model was developed for segmenting gland structures. Gland regions of WSIs were delineated and used for differentiation annotating. Tumor regions were annotated by experienced pathologists into high-, medium-, low-differentiation and normal tissue, which correspond to tumor with clear-, unclear-, no-gland structure and non-tumor, respectively. Then a differentiation prediction model was developed on these human annotations. Finally, all enrolled WSIs were processed by gland segmentation model and differentiation prediction model. The differentiation grade can be calculated by deep learning models’ prediction of tumor regions and tumor differentiation status according to WHO’s defines. If multiple WSIs were possessed by a patient, the highest differentiation grade was chosen. Additionally, the differentiation grade was normalized into scale between 0 to 1. The Cancer Genome Atlas, project COAD (TCGA-COAD) project was enrolled into this study. For the gland segmentation model, receiver operating characteristic (ROC) reached 0.981 and accuracy reached 0.932 in validation set. For the differentiation prediction model, ROC reached 0.983, 0.963, 0.963, 0.981 and accuracy reached 0.880, 0.923, 0.668, 0.881 for groups of low-, medium-, high-differentiation and normal tissue in validation set. Four hundred and one patients were selected after removing WSIs without gland regions and patients without follow up data. The concordance index reached to 0.609. Optimized cut off point of 51% was found by “Maxstat” method which was almost the same as WHO system’s cut off point of 50%. Both WHO system’s cut off point and optimized cut off point performed impressively in Kaplan-Meier curves and both p value of logrank test were below 0.005. In this study, gland structure of WSIs and differentiation status of tumor regions were proven to be predictable through deep leaning method. A finer and continuous differentiation grade can also be automatically calculated through above models. The differentiation grade was proven to stratify CAC patients well in survival analysis, whose optimized cut off point was almost the same as WHO tumor grading system. The tool of automatically calculating differentiation grade may show potential in field of therapy decision making and personalized treatment.

Keywords: colorectal cancer, differentiation, survival analysis, tumor grading

Procedia PDF Downloads 134
12138 Causal-Explanatory Model of Academic Performance in Social Anxious Adolescents

Authors: Beatriz Delgado

Abstract:

Although social anxiety is one of the most prevalent disorders in adolescents and causes considerable difficulties and social distress in those with the disorder, to date very few studies have explored the impact of social anxiety on academic adjustment in student populations. The aim of this study was analyze the effect of social anxiety on school functioning in Secondary Education. Specifically, we examined the relationship between social anxiety and self-concept, academic goals, causal attributions, intellectual aptitudes, and learning strategies, personality traits, and academic performance, with the purpose of creating a causal-explanatory model of academic performance. The sample consisted of 2,022 students in the seven to ten grades of Compulsory Secondary Education in Spain (M = 13.18; SD = 1.35; 51.1% boys). We found that: (a) social anxiety has a direct positive effect on internal attributional style, and a direct negative effect on self-concept. Social anxiety also has an indirect negative effect on internal causal attributions; (b) prior performance (first academic trimester) exerts a direct positive effect on intelligence, achievement goals, academic self-concept, and final academic performance (third academic trimester), and a direct negative effect on internal causal attributions. It also has an indirect positive effect on causal attributions (internal and external), learning goals, achievement goals, and study strategies; (c) intelligence has a direct positive effect on learning goals and academic performance (third academic trimester); (d) academic self-concept has a direct positive effect on internal and external attributional style. Also, has an indirect effect on learning goals, achievement goals, and learning strategies; (e) internal attributional style has a direct positive effect on learning strategies and learning goals. Has a positive but indirect effect on achievement goals and learning strategies; (f) external attributional style has a direct negative effect on learning strategies and learning goals and a direct positive effect on internal causal attributions; (g) learning goals have direct positive effect on learning strategies and achievement goals. The structural equation model fit the data well (CFI = .91; RMSEA = .04), explaining 93.8% of the variance in academic performance. Finally, we emphasize that the new causal-explanatory model proposed in the present study represents a significant contribution in that it includes social anxiety as an explanatory variable of cognitive-motivational constructs.

Keywords: academic performance, adolescence, cognitive-motivational variables, social anxiety

Procedia PDF Downloads 332
12137 Quality of the Ruin Probabilities Approximation Using the Regenerative Processes Approach regarding to Large Claims

Authors: Safia Hocine, Djamil Aïssani

Abstract:

Risk models, recently studied in the literature, are becoming increasingly complex. It is rare to find explicit analytical relations to calculate the ruin probability. Indeed, the stability issue occurs naturally in ruin theory, when parameters in risk cannot be estimated than with uncertainty. However, in most cases, there are no explicit formulas for the ruin probability. Hence, the interest to obtain explicit stability bounds for these probabilities in different risk models. In this paper, we interest to the stability bounds of the univariate classical risk model established using the regenerative processes approach. By adopting an algorithmic approach, we implement this approximation and determine numerically the bounds of ruin probability in the case of large claims (heavy-tailed distribution).

Keywords: heavy-tailed distribution, large claims, regenerative process, risk model, ruin probability, stability

Procedia PDF Downloads 364
12136 Numerical Modelling of Dry Stone Masonry Structures Based on Finite-Discrete Element Method

Authors: Ž. Nikolić, H. Smoljanović, N. Živaljić

Abstract:

This paper presents numerical model based on finite-discrete element method for analysis of the structural response of dry stone masonry structures under static and dynamic loads. More precisely, each discrete stone block is discretized by finite elements. Material non-linearity including fracture and fragmentation of discrete elements as well as cyclic behavior during dynamic load are considered through contact elements which are implemented within a finite element mesh. The application of the model was conducted on several examples of these structures. The performed analysis shows high accuracy of the numerical results in comparison with the experimental ones and demonstrates the potential of the finite-discrete element method for modelling of the response of dry stone masonry structures.

Keywords: dry stone masonry structures, dynamic load, finite-discrete element method, static load

Procedia PDF Downloads 414
12135 Association of Phosphorus and Magnesium with Fat Indices in Children with Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Metabolic syndrome (MetS) is a disease associated with obesity. It is a complicated clinical problem possibly affecting body composition as well as macrominerals. These parameters gain further attention, particularly in the pediatric population. The aim of this study is to investigate the amount of discrete body composition fractions in groups that differ in the severity of obesity. Also, the possible associations with calcium (Ca), phosphorus (P), magnesium (Mg) will be examined. The study population was divided into four groups. Twenty-eight, 29, 34, and 34 children were involved in Group 1 (healthy), 2 (obese), 3 (morbid obese), and 4 (MetS), respectively. Institutional Ethical Committee approved the study protocol. Informed consent forms were obtained from the participants. The classification of obese groups was performed based upon the recommendations of the World Health Organization. Metabolic syndrome components were defined. Serum Ca, P, Mg concentrations were measured. Within the scope of body composition, fat mass, fat-free mass, protein mass, mineral mass were determined by a body composition monitor using bioelectrical impedance analysis technology. Weight, height, waist circumference, hip circumference, head circumference, and neck circumference values were recorded. Body mass index, diagnostic obesity notation model assessment index, fat mass index, and fat-free mass index values were calculated. Data were statistically evaluated and interpreted. There was no statistically significant difference among the groups in terms of Ca and P concentrations. Magnesium concentrations differed between Group 1 and Group 4. Strong negative correlations were detected between P as well as Mg and fat mass index as well as diagnostic obesity notation model assessment index in Group 4, the group, which comprised morbid obese children with MetS. This study emphasized unique associations of P and Mg minerals with diagnostic obesity notation model assessment index and fat mass index during the evaluation of morbid obese children with MetS. It was also concluded that diagnostic obesity notation model assessment index and fat mass index were more proper indices in comparison with body mass index and fat-free mass index for the purpose of defining body composition in children.

Keywords: children, fat mass, fat-free mass, macrominerals, obesity

Procedia PDF Downloads 153
12134 Flood Hazard Impact Based on Simulation Model of Potential Flood Inundation in Lamong River, Gresik Regency

Authors: Yunita Ratih Wijayanti, Dwi Rahmawati, Turniningtyas Ayu Rahmawati

Abstract:

Gresik is one of the districts in East Java Province, Indonesia. Gresik Regency has three major rivers, namely Bengawan Solo River, Brantas River, and Lamong River. Lamong River is a tributary of Bengawan Solo River. Flood disasters that occur in Gresik Regency are often caused by the overflow of the Lamong River. The losses caused by the flood were very large and certainly detrimental to the affected people. Therefore, to be able to minimize the impact caused by the flood, it is necessary to take preventive action. However, before taking preventive action, it is necessary to have information regarding potential inundation areas and water levels at various points. For this reason, a flood simulation model is needed. In this study, the simulation was carried out using the Geographic Information System (GIS) method with the help of Global Mapper software. The approach used in this simulation is to use a topographical approach with Digital Elevation Models (DEMs) data. DEMs data have been widely used for various researches to analyze hydrology. The results obtained from this flood simulation are the distribution of flood inundation and water level. The location of the inundation serves to determine the extent of the flooding that occurs by referring to the 50-100 year flood plan, while the water level serves to provide early warning information. Both will be very useful to find out how much loss will be caused in the future due to flooding in Gresik Regency so that the Gresik Regency Regional Disaster Management Agency can take precautions before the flood disaster strikes.

Keywords: flood hazard, simulation model, potential inundation, global mapper, Gresik Regency

Procedia PDF Downloads 84
12133 An Approach to Electricity Production Utilizing Waste Heat of a Triple-Pressure Cogeneration Combined Cycle Power Plant

Authors: Soheil Mohtaram, Wu Weidong, Yashar Aryanfar

Abstract:

This research investigates the points with heat recovery potential in a triple-pressure cogeneration combined cycle power plant and determines the amount of waste heat that can be recovered. A modified cycle arrangement is then adopted for accessing thermal potentials. Modeling the energy system is followed by thermodynamic and energetic evaluation, and then the price of the manufactured products is also determined using the Total Revenue Requirement (TRR) method and term economic analysis. The results of optimization are then presented in a Pareto chart diagram by implementing a new model with dual objective functions, which include power cost and produce heat. This model can be utilized to identify the optimal operating point for such power plants based on electricity and heat prices in different regions.

Keywords: heat loss, recycling, unused energy, efficient production, optimization, triple-pressure cogeneration

Procedia PDF Downloads 82
12132 Molding Properties of Cobalt-Chrome-Based Feedstocks Used in Low-Pressure Powder Injection Molding

Authors: Ehsan Gholami, Vincent Demers

Abstract:

Low-pressure powder injection molding is an emerging technology for cost-effectively producing complex shape metallic parts with the proper dimensional tolerances, either in high or in low production volumes. In this study, the molding properties of cobalt-chrome-based feedstocks were evaluated for use in a low-pressure powder injection molding process. The rheological properties of feedstock formulations were obtained by mixing metallic powder with a proprietary wax-based binder system. Rheological parameters such as reference viscosity, shear rate sensitivity index, and activation energy for viscous flow, were extracted from the viscosity profiles and introduced into the Weir model to calculate the moldability index. Feedstocks were experimentally injected into a spiral mold cavity to validate the injection performance calculated with the model.

Keywords: binder, feedstock, moldability, powder injection molding, viscosity

Procedia PDF Downloads 274
12131 Residential and Care Model for Elderly People Based on “Internet Plus”

Authors: Haoyi Sheng

Abstract:

China's aging tendency is becoming increasingly severe, which leads to the embarrassing situation of "getting old before getting wealthy". The traditional pension model does not comply with the need of today. Relying on "Internet Plus", it can efficiently integrate information and resources and meet the personalized needs of elderly care. It can reduce the operating cost of community elderly care facilities and lay a technical foundation for providing better services for the elderly. The key for providing help for the elderly in the future is to effectively integrate technology, make good use of technology, and improve the efficiency of elderly care services. The effective integration of traditional home care, community care, intelligent elderly care equipment and medical resources to create the "Internet Plus" community intelligent pension service mode has become the future development trend of aging care. The research method of this paper is to collect literature and conduct theoretical research on community pension firstly. Secondly, the combination of suitable aging design and "Internet Plus" is elaborated through research. Finally, this paper states the current level of intelligent technology in old-age care and looks into the future by understanding multiple levels of "Internet Plus". The development of community intelligent pension mode and content under "Internet Plus" has enormous development potential. In addition to the characteristics and functions of ordinary houses, residential design of endowment housing has higher requirements for comfort and personalization, and the people-oriented is the principle of design.

Keywords: ageing tendency, 'Internet Plus', community intelligent elderly care, elderly care service model, technology

Procedia PDF Downloads 137
12130 Job Satisfaction and Career Choices: A Study Using Schein´s Career Anchor Model

Authors: Rosana Silvina Codaro, Patricia Amelia Tomei

Abstract:

This study explores the relationship between job satisfaction and alignment between the individual´s current occupation and his talents, needs and values, namely his 'career anchors'. With this purpose in mind, a quantitative survey was performed for a non- graduate probabilistic sample of management business students of a private university in Rio de Janeiro. The results of the survey showed there is no significant association between satisfaction at work and alignment with the individual’s career anchor. The most frequent career anchor found for both genders was lifestyle, showing a trend towards finding a career that allows some balance between professional and personal life. The study also showed that self-employed individuals are more satisfied with their work than the individuals employed by a company are, and men are more satisfied at work than women are, Individuals aligned and not satisfied tend to be the ones who have fewer years of work experience and individuals not aligned and satisfied tend to be older.

Keywords: careers, career anchors, job satisfaction, Schein´s career anchor model

Procedia PDF Downloads 363
12129 Code Embedding for Software Vulnerability Discovery Based on Semantic Information

Authors: Joseph Gear, Yue Xu, Ernest Foo, Praveen Gauravaran, Zahra Jadidi, Leonie Simpson

Abstract:

Deep learning methods have been seeing an increasing application to the long-standing security research goal of automatic vulnerability detection for source code. Attention, however, must still be paid to the task of producing vector representations for source code (code embeddings) as input for these deep learning models. Graphical representations of code, most predominantly Abstract Syntax Trees and Code Property Graphs, have received some use in this task of late; however, for very large graphs representing very large code snip- pets, learning becomes prohibitively computationally expensive. This expense may be reduced by intelligently pruning this input to only vulnerability-relevant information; however, little research in this area has been performed. Additionally, most existing work comprehends code based solely on the structure of the graph at the expense of the information contained by the node in the graph. This paper proposes Semantic-enhanced Code Embedding for Vulnerability Discovery (SCEVD), a deep learning model which uses semantic-based feature selection for its vulnerability classification model. It uses information from the nodes as well as the structure of the code graph in order to select features which are most indicative of the presence or absence of vulnerabilities. This model is implemented and experimentally tested using the SARD Juliet vulnerability test suite to determine its efficacy. It is able to improve on existing code graph feature selection methods, as demonstrated by its improved ability to discover vulnerabilities.

Keywords: code representation, deep learning, source code semantics, vulnerability discovery

Procedia PDF Downloads 159
12128 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encryption

Authors: Waziri Victor Onomza, John K. Alhassan, Idris Ismaila, Noel Dogonyaro Moses

Abstract:

This paper describes the problem of building secure computational services for encrypted information in the Cloud Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy, confidentiality, availability of the users. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute theoretical presentations in high-level computational processes that are based on number theory and algebra that can easily be integrated and leveraged in the Cloud computing with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based cryptographic security algorithm.

Keywords: big data analytics, security, privacy, bootstrapping, homomorphic, homomorphic encryption scheme

Procedia PDF Downloads 380
12127 SEM Detection of Folate Receptor in a Murine Breast Cancer Model Using Secondary Antibody-Conjugated, Gold-Coated Magnetite Nanoparticles

Authors: Yasser A. Ahmed, Juleen M Dickson, Evan S. Krystofiak, Julie A. Oliver

Abstract:

Cancer cells urgently need folate to support their rapid division. Folate receptors (FR) are over-expressed on a wide range of tumor cells, including breast cancer cells. FR are distributed over the entire surface of cancer cells, but are polarized to the apical surface of normal cells. Targeting of cancer cells using specific surface molecules such as folate receptors may be one of the strategies used to kill cancer cells without hurting the neighing normal cells. The aim of the current study was to try a method of SEM detecting FR in a murine breast cancer cell model (4T1 cells) using secondary antibody conjugated to gold or gold-coated magnetite nanoparticles. 4T1 cells were suspended in RPMI medium witth FR antibody and incubated with secondary antibody for fluorescence microscopy. The cells were cultured on 30mm Thermanox coverslips for 18 hours, labeled with FR antibody then incubated with secondary antibody conjugated to gold or gold-coated magnetite nanoparticles and processed to scanning electron microscopy (SEM) analysis. The fluorescence microscopy study showed strong punctate FR expression on 4T1 cell membrane. With SEM, the labeling with gold or gold-coated magnetite conjugates showed a similar pattern. Specific labeling occurred in nanoparticle clusters, which are clearly visualized in backscattered electron images. The 4T1 tumor cell model may be useful for the development of FR-targeted tumor therapy using gold-coated magnetite nano-particles.

Keywords: cancer cell, nanoparticles, cell culture, SEM

Procedia PDF Downloads 735
12126 Support Services in Open and Distance Education: An Integrated Model of Open Universities

Authors: Evrim Genc Kumtepe, Elif Toprak, Aylin Ozturk, Gamze Tuna, Hakan Kilinc, Irem Aydin Menderis

Abstract:

Support services are very significant elements for all educational institutions in general; however, for distance learners, these services are more essential than traditional (face-to-face) counterparts. One of the most important reasons for this is that learners and instructors do not share the same physical environment and that distance learning settings generally require intrapersonal interactions rather than interpersonal ones. Some learners in distance learning programs feel isolated. Furthermore, some fail to feel a sense of belonging to the institution because of lack of self-management skills, lack of motivation levels, and the need of being socialized, so that they are more likely to fail or drop out of an online class. In order to overcome all these problems, support services have emerged as a critical element for an effective and sustainable distance education system. Within the context of distance education support services, it is natural to include technology-based and web-based services and also the related materials. Moreover, institutions in education sector are expected to use information and communication technologies effectively in order to be successful in educational activities and programs. In terms of the sustainability of the system, an institution should provide distance education services through ICT enabled processes to support all stakeholders in the system, particularly distance learners. In this study, it is envisaged to develop a model based on the current support services literature in the field of open and distance learning and the applications of the distance higher education institutions. Specifically, content analysis technique is used to evaluate the existing literature in the distance education support services, the information published on websites, and applications of distance higher education institutions across the world. A total of 60 institutions met the inclusion criteria which are language option (English) and availability of materials in the websites. The six field experts contributed to brainstorming process to develop and extract codes for the coding scheme. During the coding process, these preset and emergent codes are used to conduct analyses. Two coders independently reviewed and coded each assigned website to ensure that all coders are interpreting the data the same way and to establish inter-coder reliability. Once each web page is included in descriptive and relational analysis, a model of support services is developed by examining the generated codes and themes. It is believed that such a model would serve as a quality guide for future institutions, as well as the current ones.

Keywords: support services, open education, distance learning, support model

Procedia PDF Downloads 197
12125 Integrated Mass Rapid Transit (MRT) and Bus System in Singapore: MRT Ridership and the Provision of Feeder Bus Services

Authors: Devansh Jain, Shu Ting Goh

Abstract:

With the aim of improving the quality of life of people of Singapore with provision of better transport services, Land and Transport Authority Singapore recently published its Master Plan 2013. The major objectives mentioned in the plan were to make a comprehensive public transport network with better quality Mass Rapid Transit, bus services along with cycling and walking. MRT is the backbone of the transport system in Singapore, and to promote and increase the MRT ridership, good accessibility to access the MRT stations is a necessity. The aim of this paper is to investigate the relationship between MRT ridership and the provision of feeder bus services in Singapore planning areas and also to understand the hub and spoke model adopted by Singapore for provision of transport services. The findings of the study will lead to conclusions made from the Regression model developed by the various factors affecting MRT ridership, and hence will benefit to enhance the services provided by the system.

Keywords: quality of life, public transport, mass rapid transit, ridership

Procedia PDF Downloads 248
12124 Analysis and Prediction of Netflix Viewing History Using Netflixlatte as an Enriched Real Data Pool

Authors: Amir Mabhout, Toktam Ghafarian, Amirhossein Farzin, Zahra Makki, Sajjad Alizadeh, Amirhossein Ghavi

Abstract:

The high number of Netflix subscribers makes it attractive for data scientists to extract valuable knowledge from the viewers' behavioural analyses. This paper presents a set of statistical insights into viewers' viewing history. After that, a deep learning model is used to predict the future watching behaviour of the users based on previous watching history within the Netflixlatte data pool. Netflixlatte in an aggregated and anonymized data pool of 320 Netflix viewers with a length 250 000 data points recorded between 2008-2022. We observe insightful correlations between the distribution of viewing time and the COVID-19 pandemic outbreak. The presented deep learning model predicts future movie and TV series viewing habits with an average loss of 0.175.

Keywords: data analysis, deep learning, LSTM neural network, netflix

Procedia PDF Downloads 251