Search results for: feature learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8334

Search results for: feature learning

3564 Design, Synthesis and Evaluation of 4-(Phenylsulfonamido)Benzamide Derivatives as Selective Butyrylcholinesterase Inhibitors

Authors: Sushil Kumar Singh, Ashok Kumar, Ankit Ganeshpurkar, Ravi Singh, Devendra Kumar

Abstract:

In spectrum of neurodegenerative diseases, Alzheimer’s disease (AD) is characterized by the presence of amyloid β plaques and neurofibrillary tangles in the brain. It results in cognitive and memory impairment due to loss of cholinergic neurons, which is considered to be one of the contributing factors. Donepezil, an acetylcholinesterase (AChE) inhibitor which also inhibits butyrylcholinesterase (BuChE) and improves the memory and brain’s cognitive functions, is the most successful and prescribed drug to treat the symptoms of AD. The present work is based on designing of the selective BuChE inhibitors using computational techniques. In this work, machine learning models were trained using classification algorithms followed by screening of diverse chemical library of compounds. The various molecular modelling and simulation techniques were used to obtain the virtual hits. The amide derivatives of 4-(phenylsulfonamido) benzoic acid were synthesized and characterized using 1H & 13C NMR, FTIR and mass spectrometry. The enzyme inhibition assays were performed on equine plasma BuChE and electric eel’s AChE by method developed by Ellman et al. Compounds 31, 34, 37, 42, 49, 52 and 54 were found to be active against equine BuChE. N-(2-chlorophenyl)-4-(phenylsulfonamido)benzamide and N-(2-bromophenyl)-4-(phenylsulfonamido)benzamide (compounds 34 and 37) displayed IC50 of 61.32 ± 7.21 and 42.64 ± 2.17 nM against equine plasma BuChE. Ortho-substituted derivatives were more active against BuChE. Further, the ortho-halogen and ortho-alkyl substituted derivatives were found to be most active among all with minimal AChE inhibition. The compounds were selective toward BuChE.

Keywords: Alzheimer disease, butyrylcholinesterase, machine learning, sulfonamides

Procedia PDF Downloads 136
3563 Promoting Open Educational Resources (OER) in Theological/Religious Education in Nigeria

Authors: Miracle Ajah

Abstract:

One of the biggest challenges facing Theological/Religious Education in Nigeria is access to quality learning materials. For instance at the Trinity (Union) Theological College, Umuahia, it was difficult for lecturers to access suitable and qualitative materials for instruction especially the ones that would suit the African context and stimulate a deep rooted interest among the students. Some textbooks written by foreign authors were readily available in the School Library, but were lacking in the College bookshops for students to own copies. Even when the College was able to order some of the books from abroad, it did not usher in the needed enthusiasm expected from the students because they were either very expensive or very difficult to understand during private studies. So it became necessary to develop contextual materials which were affordable and understandable, though with little success. The National Open University of Nigeria (NOUN)’s innovation in the development and sharing of learning resources through its Open Course ware is a welcome development and of great assistance to students. Apart from NOUN students who could easily access the materials, many others from various theological/religious institutes across the nation have benefited immensely. So, the thesis of this paper is that the promotion of open educational resources in theological/religious education in Nigeria would facilitate a better informed/equipped religious leadership, which would in turn impact its adherents for a healthier society and national development. Adopting a narrative and historical approach within the context of Nigeria’s educational system, the paper discusses: educational traditions in Nigeria; challenges facing theological/religious education in Nigeria; and benefits of open educational resources. The study goes further to making recommendations on how OER could positively influence theological/religious education in Nigeria. It is expected that theologians, religious educators, and ODL practitioners would find this work very useful.

Keywords: OER, theological education, religious education, Nigeria

Procedia PDF Downloads 344
3562 A Hybrid Data Mining Algorithm Based System for Intelligent Defence Mission Readiness and Maintenance Scheduling

Authors: Shivam Dwivedi, Sumit Prakash Gupta, Durga Toshniwal

Abstract:

It is a challenging task in today’s date to keep defence forces in the highest state of combat readiness with budgetary constraints. A huge amount of time and money is squandered in the unnecessary and expensive traditional maintenance activities. To overcome this limitation Defence Intelligent Mission Readiness and Maintenance Scheduling System has been proposed, which ameliorates the maintenance system by diagnosing the condition and predicting the maintenance requirements. Based on new data mining algorithms, this system intelligently optimises mission readiness for imminent operations and maintenance scheduling in repair echelons. With modified data mining algorithms such as Weighted Feature Ranking Genetic Algorithm and SVM-Random Forest Linear ensemble, it improves the reliability, availability and safety, alongside reducing maintenance cost and Equipment Out of Action (EOA) time. The results clearly conclude that the introduced algorithms have an edge over the conventional data mining algorithms. The system utilizing the intelligent condition-based maintenance approach improves the operational and maintenance decision strategy of the defence force.

Keywords: condition based maintenance, data mining, defence maintenance, ensemble, genetic algorithms, maintenance scheduling, mission capability

Procedia PDF Downloads 293
3561 Prediction of Covid-19 Cases and Current Situation of Italy and Its Different Regions Using Machine Learning Algorithm

Authors: Shafait Hussain Ali

Abstract:

Since its outbreak in China, the Covid_19 19 disease has been caused by the corona virus SARS N coyote 2. Italy was the first Western country to be severely affected, and the first country to take drastic measures to control the disease. In start of December 2019, the sudden outbreaks of the Coronary Virus Disease was caused by a new Corona 2 virus (SARS-CO2) of acute respiratory syndrome in china city Wuhan. The World Health Organization declared the epidemic a public health emergency of international concern on January 30, 2020,. On February 14, 2020, 49,053 laboratory-confirmed deaths and 1481 deaths have been reported worldwide. The threat of the disease has forced most of the governments to implement various control measures. Therefore it becomes necessary to analyze the Italian data very carefully, in particular to investigates and to find out the present condition and the number of infected persons in the form of positive cases, death, hospitalized or some other features of infected persons will clear in simple form. So used such a model that will clearly shows the real facts and figures and also understandable to every readable person which can get some real benefit after reading it. The model used must includes(total positive cases, current positive cases, hospitalized patients, death, recovered peoples frequency rates ) all features that explains and clear the wide range facts in very simple form and helpful to administration of that country.

Keywords: machine learning tools and techniques, rapid miner tool, Naive-Bayes algorithm, predictions

Procedia PDF Downloads 107
3560 The Attitude of Students towards the Use of the Social Networks in Education

Authors: Abdulmjeid Aljerawi

Abstract:

This study aimed to investigate the students' attitudes towards the use of social networking in education. Due to the nature of the study, and on the basis of its problem, objectives, and questions, the researcher used the descriptive approach. An appropriate questionnaire was prepared and validity and reliability were ensured. The questionnaire was then applied to the study sample of 434 students from King Saud University.

Keywords: social networks, education, learning, students

Procedia PDF Downloads 277
3559 Development of the ‘Teacher’s Counselling Competence Self-Efficacy Scale’

Authors: Riin Seema

Abstract:

Guidance and counseling as a whole-school responsibility is a global trend. Counseling is a specific competence, that consist of cognitive, emotional, attitudinal, and behavioral components. To authors best knowledge, there are no self-assessment scales for teachers in the whole world to measure teachers’ counseling competency. In 2016 an Estonian scale on teachers counseling competence was developed during an Interdisciplinary Project at Tallinn University. The team consisted of 10 interdisciplinary students (psychology, nursery school, special and adult education) and their supervisor. In 2017 another international Interdisciplinary Project was carried out for adapting the scale in English for international students. Firstly, the Estonian scale was translated by 2 professional translators, and then a group of international Erasmus students (again from psychology, nursery school, special and adult education) selected the most suitable translation for the scale. The developed ‘Teacher’s Counselling Competence Self-Efficacy Scale’ measures teacher’s self-efficacy beliefs in their own competence to perform different counseling tasks (creating a counseling relationship, using different reflection techniques, etc.). The scale consists of 47 questions in a 5-point numeric scale. The scale is created based on counseling theory and scale development and validation theory. The scale has been used as a teaching and learning material for counseling courses by 174 Estonian and 10 international student teachers. After filling out the scale, the students also reflected on the scale and their own counseling competencies. The study showed that the scale is unidimensional and has an excellent Cronbach alpha coefficient. Student’s qualitative feedback on the scale has been very positive, as the scale supports their self-reflection. In conclusion, the developed ‘Teacher’s Counselling Competence Self-Efficacy Scale’ is a useful tool for supporting student teachers’ learning.

Keywords: competency, counseling, self-efficacy, teacher students

Procedia PDF Downloads 144
3558 Design and Construction of Models of Sun Tracker or Sun Tracking System for Light Transmission

Authors: Mohsen Azarmjoo, Yasaman Azarmjoo, Zahra Alikhani Koopaei

Abstract:

This article introduces devices that can transfer sunlight to buildings that do not have access to direct sunlight during the day. The transmission and reflection of sunlight are done through the movement of movable mirrors. The focus of this article is on two models of sun tracker systems designed and built by the Macad team. In fact, this article will reveal the distinction between the two Macad devices and the previously built competitor device. What distinguishes the devices built by the Macad team from the competitor's device is the different mode of operation and the difference in the location of the sensors. Given that the devices have the same results, the Macad team has tried to reduce the defects of the competitor's device as much as possible. The special feature of the second type of device built by the Macad team has enabled buildings with different construction positions to use sun tracking systems. This article will also discuss diagrams of the path of sunlight transmission and more details of the device. It is worth mentioning that fixed mirrors are also placed next to the main devices. So that the light shining on the first device is reflected to these mirrors, this light is guided within the light receiver space and is transferred to the different parts around by steel sheets built in the light receiver space, and finally, these spaces benefit from sunlight.

Keywords: design, construction, mechatronic device, sun tracker system, sun tracker, sunlight

Procedia PDF Downloads 82
3557 Designing an MTB-MLE for Linguistically Heterogenous Contexts: A Practitioner’s Perspective

Authors: Ajay Pinjani, Minha Khan, Ayesha Mehkeri, Anum Iftikhar

Abstract:

There is much research available on the benefits of adopting mother tongue-based multilingual education (MTB MLE) in primary school classrooms, but there is limited guidance available on how to design such programs for low-resource and linguistically diverse contexts. This paper is an effort to bridge the gap between theory and practice by offering a practitioner’s perspective on designing an MTB MLE program for linguistically heterogeneous contexts. The research compounds findings from current academic literature on MTB MLE, the study of global MTB MLE programs, interviews with practitioners, policy-makers, and academics worldwide, and a socio-linguistic survey carried out in parts of Tharparkar, Pakistan, the area selected for envisioned pilot implementation. These findings enabled the creation of ‘guiding principles’ which provide structure for the development of a contextualized and holistic MTB-MLE program. The guiding principles direct the creation of teaching and learning materials, creating effective teaching and learning environment, community engagement, and program evaluation. Additionally, the paper demonstrates the development of a context-specific language ladder framework which outlines the language journey of a child’s education, beginning with the mother tongue/ most familiar language in the early years and then gradually transitioning into other languages. Both the guiding principles and language ladder can be adapted to any multilingual context. Thus, this research provides MTB MLE practitioners with assistance in developing an MTB MLE model, which is best suited for their context.

Keywords: mother tongue based multilingual education, education design, language ladder, language issues, heterogeneous contexts

Procedia PDF Downloads 114
3556 Communication in Inclusive Education: A Qualitative Study in Poland

Authors: Klara Królewiak-Detsi, Anna Orylska, Anna Gorgolewska, Marta Boczkowska, Agata Graczykowska

Abstract:

This study investigates the communication between students and teachers in inclusive education in Poland. Specifically, we examine the communication and interaction of students with special educational needs during online learning compared to traditional face-to-face instruction. Our research questions are (1) how children with special educational needs communicate with their teachers and peers during online learning, and (2) what strategies can improve their communication skills. We conducted five focus groups with: (1) 55 children with special educational needs, (2) 65 typically developing pupils, (3) 28 professionals (psychologists and special education therapists), (4) 16 teachers, and (5) 16 parents of children with special educational needs. Our analysis focused on primary schools and used thematic analysis according to the 6-step procedure of Braun and Clarke. Our findings reveal that children with disabilities faced more difficulties communicating and interacting with others online than in face-to-face lessons. The online tools used for education were not adapted to the needs of children with disabilities, and schools lacked clear guidelines on how to pursue inclusive education online. Based on the results, we offer recommendations for online communication training and tools that are dedicated to children with special educational needs. Additionally, our results demonstrate that typically developing pupils are better in interpersonal relations and more often and effectively use social support. Children with special educational needs had similar emotional and communication challenges compared to their typically developing peers. In conclusion, our study highlights the importance of providing adequate support for the online education of children with special educational needs in inclusive classrooms.

Keywords: Inclusive education, Special educational needs, Social skills development, Online communication

Procedia PDF Downloads 128
3555 Sustainable Development: Evaluation of an Urban Neighborhood

Authors: Harith Mohammed Benbouali

Abstract:

The concept of sustainable development is becoming increasingly important in our society. The efforts of specialized agencies, cleverly portrayed in the media, allow a widespread environmental awareness. Far from the old environmental movement in the backward-looking nostalgia, the environment is combined with today's progress. Many areas now include these concerns in their efforts, this in order to try to reduce the negative impact of human activities on the environment. The quantitative dimension of development has given way to the quality aspect. However, this feature is not common, and the initial target was abandoned in favor of economic considerations. Specialists in the field of building and construction have constantly sought to further integrate the environmental dimension, creating a seal of high environmental quality buildings. The pursuit of well-being of neighborhood residents and the quality of buildings are also a hot topic in planning. Quality of life is considered so on, since financial concerns dominate to the detriment of the environment and the welfare of the occupants. This work concerns the development of an analytical method based on multiple indicators of objectives across the district. The quantification of indicators related to objectives allows the construction professional, the developer or the community, to quantify and compare different alternatives for development of a neighborhood. This quantification is based on the use of simulation tools and a multi-criteria aggregation.

Keywords: sustainable development, environment, district, indicators, multi-criteria analysis, evaluation

Procedia PDF Downloads 311
3554 A Vertical-Axis Unidirectional Rotor with Nested Blades for Wave Energy Conversion

Authors: Yingchen Yang

Abstract:

In the present work, development of a new vertical-axis unidirectional wave rotor is reported. The wave rotor is a key component of a wave energy converter (WEC), which harvests energy from ocean waves. Differing from the huge majority of WEC designs that perform reciprocating motions (heaving up and down, swaying back and forth, etc.), our wave rotor performs unidirectional rotation about a vertical axis when directly exposed in waves. The unidirectional feature of the rotor makes the rotor respond well in a wide range of the wave frequency. The vertical axis arrangement of the rotor makes the rotor insensitive to the wave propagation direction. The rotor employs blades with a cross-section in an airfoil shape and a span curled into a semi-oval shape. Two sets of blades, with one nested inside the other, constitute the rotor. In waves, water particles perform an omnidirectional motion that constantly changes in both spatial and temporal domains. The blade nesting permits a compact rotor configuration that ‘sees’ a relatively uniform local flow in the spatial domain. The rotor was experimentally tested in simulated waves in a wave flume under various conditions. The testing results show a promising unidirectional rotor that is capable of extracting energy from waves at a capture width ratio of 0.08 to 0.15, depending on detailed wave conditions.

Keywords: unidirectional, vertical axis, wave energy converter, wave rotor

Procedia PDF Downloads 234
3553 Offline Signature Verification Using Minutiae and Curvature Orientation

Authors: Khaled Nagaty, Heba Nagaty, Gerard McKee

Abstract:

A signature is a behavioral biometric that is used for authenticating users in most financial and legal transactions. Signatures can be easily forged by skilled forgers. Therefore, it is essential to verify whether a signature is genuine or forged. The aim of any signature verification algorithm is to accommodate the differences between signatures of the same person and increase the ability to discriminate between signatures of different persons. This work presented in this paper proposes an automatic signature verification system to indicate whether a signature is genuine or not. The system comprises four phases: (1) The pre-processing phase in which image scaling, binarization, image rotation, dilation, thinning, and connecting ridge breaks are applied. (2) The feature extraction phase in which global and local features are extracted. The local features are minutiae points, curvature orientation, and curve plateau. The global features are signature area, signature aspect ratio, and Hu moments. (3) The post-processing phase, in which false minutiae are removed. (4) The classification phase in which features are enhanced before feeding it into the classifier. k-nearest neighbors and support vector machines are used. The classifier was trained on a benchmark dataset to compare the performance of the proposed offline signature verification system against the state-of-the-art. The accuracy of the proposed system is 92.3%.

Keywords: signature, ridge breaks, minutiae, orientation

Procedia PDF Downloads 144
3552 Case Report: Clinical Improvement of Forbrain Neurologic Signs in 3- Month- Old Persian Mastiff Dog with Calvarial Hyperostosis Syndrome after Corticosteroid, Antiepileptic and Antibiotic Therapy

Authors: Hamidreza Jahani, Zahra Salehzadeh, Ehsan Amini, Mohsen Tohidifar

Abstract:

Calvarial Hyperostosis Syndrome (CHS) is a benign bone disease of the skull. It is a non-neoplastic and proliferative bone disease, and the main feature of the disease is progressive and asymmetrical bone involvement. CHS is mostly reported in young male and female bullmastiff dogs and less frequently in other breeds. The etiology of CHS is unknown. This is the first case report of CHS in Iran. A 3-month-old male Persian Mastiff was presented with chief complaints of multiple episodes of seizure, pacing, bizarre behavior, delayed growth, head pressing, and difficulty in opening the mouth. Central blindness and open fontanelles were observed in clinical examination. No abnormality was found in the complete blood count and routine blood biochemical tests. CT scan findings include cortical thickening of frontal and parietal bones and enlargement of the left retropharyngeal lymph node. For treatment, oral clindamycin for two weeks, prednisolone and phenobarbital for one month, respectively, were administrated, and the case showed improvement after a week and recovered after one month.

Keywords: calvarial hyperostosis, Persian Mastiff, frontal bone, seizure

Procedia PDF Downloads 133
3551 Educational Sustainability: Teaching the Next Generation of Educators in Medical Simulation

Authors: Thomas Trouton, Sebastian Tanner, Manvir Sandher

Abstract:

The use of simulation in undergraduate and postgraduate medical curricula is ever-growing, is a useful addition to the traditional apprenticeship model of learning within medical education, and better prepares graduates for the team-based approach to healthcare seen in real-life clinical practice. As a learning tool, however, undergraduate medical students often have little understanding of the theory behind the use of medical simulation and have little experience in planning and delivering their own simulated teaching sessions. We designed and implemented a student-selected component (SSC) as part of the undergraduate medical curriculum at the University of Buckingham Medical School to introduce students to the concepts behind the use of medical simulation in education and allow them to plan and deliver their own simulated medical scenario to their peers. The SSC took place over a 2-week period in the 3rd year of the undergraduate course. There was a mix of lectures, seminars and interactive group work sessions, as well as hands-on experience in the simulation suite, to introduce key concepts related to medical simulation, including technical considerations in simulation, human factors, debriefing and troubleshooting scenarios. We evaluated the success of our SSC using “Net Promotor Scores” (NPS) to assess students’ confidence in planning and facilitating a simulation-based teaching session, as well as leading a debrief session. In all three domains, we showed an increase in the confidence of the students. We also showed an increase in confidence in the management of common medical emergencies as a result of the SSC. Overall, the students who chose our SSC had the opportunity to learn new skills in medical education, with a particular focus on the use of simulation-based teaching, and feedback highlighted that a number of students would take these skills forward in their own practice. We demonstrated an increase in confidence in several domains related to the use of medical simulation in education and have hopefully inspired a new generation of medical educators.

Keywords: simulation, SSC, teaching, medical students

Procedia PDF Downloads 122
3550 Don't Just Guess and Slip: Estimating Bayesian Knowledge Tracing Parameters When Observations Are Scant

Authors: Michael Smalenberger

Abstract:

Intelligent tutoring systems (ITS) are computer-based platforms which can incorporate artificial intelligence to provide step-by-step guidance as students practice problem-solving skills. ITS can replicate and even exceed some benefits of one-on-one tutoring, foster transactivity in collaborative environments, and lead to substantial learning gains when used to supplement the instruction of a teacher or when used as the sole method of instruction. A common facet of many ITS is their use of Bayesian Knowledge Tracing (BKT) to estimate parameters necessary for the implementation of the artificial intelligence component, and for the probability of mastery of a knowledge component relevant to the ITS. While various techniques exist to estimate these parameters and probability of mastery, none directly and reliably ask the user to self-assess these. In this study, 111 undergraduate students used an ITS in a college-level introductory statistics course for which detailed transaction-level observations were recorded, and users were also routinely asked direct questions that would lead to such a self-assessment. Comparisons were made between these self-assessed values and those obtained using commonly used estimation techniques. Our findings show that such self-assessments are particularly relevant at the early stages of ITS usage while transaction level data are scant. Once a user’s transaction level data become available after sufficient ITS usage, these can replace the self-assessments in order to eliminate the identifiability problem in BKT. We discuss how these findings are relevant to the number of exercises necessary to lead to mastery of a knowledge component, the associated implications on learning curves, and its relevance to instruction time.

Keywords: Bayesian Knowledge Tracing, Intelligent Tutoring System, in vivo study, parameter estimation

Procedia PDF Downloads 171
3549 Mathematics Professional Development: Uptake and Impacts on Classroom Practice

Authors: Karen Koellner, Nanette Seago, Jennifer Jacobs, Helen Garnier

Abstract:

Although studies of teacher professional development (PD) are prevalent, surprisingly most have only produced incremental shifts in teachers’ learning and their impact on students. There is a critical need to understand what teachers take up and use in their classroom practice after attending PD and why we often do not see greater changes in learning and practice. This paper is based on a mixed methods efficacy study of the Learning and Teaching Geometry (LTG) video-based mathematics professional development materials. The extent to which the materials produce a beneficial impact on teachers’ mathematics knowledge, classroom practices, and their students’ knowledge in the domain of geometry through a group-randomized experimental design are considered. Included is a close-up examination of a small group of teachers to better understand their interpretations of the workshops and their classroom uptake. The participants included 103 secondary mathematics teachers serving grades 6-12 from two US states in different regions. Randomization was conducted at the school level, with 23 schools and 49 teachers assigned to the treatment group and 18 schools and 54 teachers assigned to the comparison group. The case study examination included twelve treatment teachers. PD workshops for treatment teachers began in Summer 2016. Nine full days of professional development were offered to teachers, beginning with the one-week institute (Summer 2016) and four days of PD throughout the academic year. The same facilitator-led all of the workshops, after completing a facilitator preparation process that included a multi-faceted assessment of fidelity. The overall impact of the LTG PD program was assessed from multiple sources: two teacher content assessments, two PD embedded assessments, pre-post-post videotaped classroom observations, and student assessments. Additional data were collected from the case study teachers including additional videotaped classroom observations and interviews. Repeated measures ANOVA analyses were used to detect patterns of change in the treatment teachers’ content knowledge before and after completion of the LTG PD, relative to the comparison group. No significant effects were found across the two groups of teachers on the two teacher content assessments. Teachers were rated on the quality of their mathematics instruction captured in videotaped classroom observations using the Math in Common Observation Protocol. On average, teachers who attended the LTG PD intervention improved their ability to engage students in mathematical reasoning and to provide accurate, coherent, and well-justified mathematical content. In addition, the LTG PD intervention and instruction that engaged students in mathematical practices both positively and significantly predicted greater student knowledge gains. Teacher knowledge was not a significant predictor. Twelve treatment teachers self-selected to serve as case study teachers to provide additional videotapes in which they felt they were using something from the PD they learned and experienced. Project staff analyzed the videos, compared them to previous videos and interviewed the teachers regarding their uptake of the PD related to content knowledge, pedagogical knowledge and resources used. The full paper will include the case study of Ana to illustrate the factors involved in what teachers take up and use from participating in the LTG PD.

Keywords: geometry, mathematics professional development, pedagogical content knowledge, teacher learning

Procedia PDF Downloads 123
3548 Stuck Spaces as Moments of Learning: Uncovering Threshold Concepts in Teacher Candidate Experiences of Teaching in Inclusive Classrooms

Authors: Joy Chadwick

Abstract:

There is no doubt that classrooms of today are more complex and diverse than ever before. Preparing teacher candidates to meet these challenges is essential to ensure the retention of teachers within the profession and to ensure that graduates begin their teaching careers with the knowledge and understanding of how to effectively meet the diversity of students they will encounter. Creating inclusive classrooms requires teachers to have a repertoire of effective instructional skills and strategies. Teachers must also have the mindset to embrace diversity and value the uniqueness of individual students in their care. This qualitative study analyzed teacher candidates' experiences as they completed a fourteen-week teaching practicum while simultaneously completing a university course focused on inclusive pedagogy. The research investigated the challenges and successes teacher candidates had in navigating the translation of theory related to inclusive pedagogy into their teaching practice. Applying threshold concept theory as a framework, the research explored the troublesome concepts, liminal spaces, and transformative experiences as connected to inclusive practices. Threshold concept theory suggests that within all disciplinary fields, there exists particular threshold concepts that serve as gateways or portals into previously inaccessible ways of thinking and practicing. It is in these liminal spaces that conceptual shifts in thinking and understanding and deep learning can occur. The threshold concept framework provided a lens to examine teacher candidate struggles and successes with the inclusive education course content and the application of this content to their practicum experiences. A qualitative research approach was used, which included analyzing twenty-nine course reflective journals and six follow up one-to-one semi structured interviews. The journals and interview transcripts were coded and themed using NVivo software. Threshold concept theory was then applied to the data to uncover the liminal or stuck spaces of learning and the ways in which the teacher candidates navigated those challenging places of teaching. The research also sought to uncover potential transformative shifts in teacher candidate understanding as connected to teaching in an inclusive classroom. The findings suggested that teacher candidates experienced difficulties when they did not feel they had the knowledge, skill, or time to meet the needs of the students in the way they envisioned they should. To navigate the frustration of this thwarted vision, they relied on present and previous course content and experiences, collaborative work with other teacher candidates and their mentor teachers, and a proactive approach to planning for students. Transformational shifts were most evident in their ability to reframe their perceptions of children from a deficit or disability lens to a strength-based belief in the potential of students. It was evident that through their course work and practicum experiences, their beliefs regarding struggling students shifted as they saw the value of embracing neurodiversity, the importance of relationships, and planning for and teaching through a strength-based approach. Research findings have implications for teacher education programs and for understanding threshold concepts theory as connected to practice-based learning experiences.

Keywords: inclusion, inclusive education, liminal space, teacher education, threshold concepts, troublesome knowledge

Procedia PDF Downloads 78
3547 Coming Closer to Communities of Practice through Situated Learning: The Case Study of Polish-English, English-Polish Undergraduate BA Level Language for Specific Purposes of Translation Class

Authors: Marta Lisowska

Abstract:

The growing trend of market specialization imposes upon translators the need for proficiency in the working knowledge of specialist discourse. The notion of specialization differs from a broad general category to a highly specialized narrow field. The specialised discourse is used in the channel of communication based upon distinctive features typical for communities of practice whose co-existence is codified and hermetically locked against outsiders. Consequently, any translator deprived of professional discourse competence and social skills is incapable of providing competent translation product from source language into target language. In this paper, we report on research that explores the pedagogical practices aiming to bridge the dichotomy between the professionals and the specialist translators, while accounting for the reality of the world of professional communities entered by undergraduates on two levels: the text-based generic, and the social one. Drawing from the functional social constructivist approach, seen here as situated learning, this paper reports on the case of English-Polish, Polish-English undergraduate BA Level LSP of law translation class run in line with the simulated classroom-based and the reality-based (apprenticeship) approach. This blended method serves the purpose of introducing the young trainees to the professional world. The research provides new insights into how the LSP translation undergraduates become legitimized through discursive and social participation and engagement. The undergraduates, situated peripherally at the outset, experience their own transformation towards becoming members of these professional groups. With subjective evaluation, the trainees take a stance on this dual mode class and development of their skills. Comparing and contrasting their own work done in line with two models of translation teaching: authentic and near-authentic, the undergraduates answer research questions devised by a questionnaire survey The responses take us closer to how students feel about their LSP translation competence development. The major findings show how the trainees perceive the benefits and hardships of their functional translation class. In terms of skills, they related to communication as the most enhanced one; they highly valued the fact of being ‘exposed’ to a variety of texts (cf. multi literalism), team work, learning how to schedule work, IT skills boost and the ability to learn how to work individually. Another finding indicates that students struggled most with specialized language, and co-working with other students. The short-term research shows the momentum when the undergraduate LSP translation trainees entered the path of transformation i.e. gained consciousness of ‘how it is’ to be a participant-translator of real-life communities of practice, gaining pragmatic dint of the social and linguistic skills understood here as discursive competence (text > genre > discourse > professional practice). The undergraduates need to be aware of the work they have to do and challenges they are to face before arriving at the expert level of professional translation competence.

Keywords: communities of practice in LSP translation teaching, learning LSP translation as situated experience, peripheral participation, professional discourse for LSP translation teaching, professional translation competence

Procedia PDF Downloads 94
3546 Data Analysis Tool for Predicting Water Scarcity in Industry

Authors: Tassadit Issaadi Hamitouche, Nicolas Gillard, Jean Petit, Valerie Lavaste, Celine Mayousse

Abstract:

Water is a fundamental resource for the industry. It is taken from the environment either from municipal distribution networks or from various natural water sources such as the sea, ocean, rivers, aquifers, etc. Once used, water is discharged into the environment, reprocessed at the plant or treatment plants. These withdrawals and discharges have a direct impact on natural water resources. These impacts can apply to the quantity of water available, the quality of the water used, or to impacts that are more complex to measure and less direct, such as the health of the population downstream from the watercourse, for example. Based on the analysis of data (meteorological, river characteristics, physicochemical substances), we wish to predict water stress episodes and anticipate prefectoral decrees, which can impact the performance of plants and propose improvement solutions, help industrialists in their choice of location for a new plant, visualize possible interactions between companies to optimize exchanges and encourage the pooling of water treatment solutions, and set up circular economies around the issue of water. The development of a system for the collection, processing, and use of data related to water resources requires the functional constraints specific to the latter to be made explicit. Thus the system will have to be able to store a large amount of data from sensors (which is the main type of data in plants and their environment). In addition, manufacturers need to have 'near-real-time' processing of information in order to be able to make the best decisions (to be rapidly notified of an event that would have a significant impact on water resources). Finally, the visualization of data must be adapted to its temporal and geographical dimensions. In this study, we set up an infrastructure centered on the TICK application stack (for Telegraf, InfluxDB, Chronograf, and Kapacitor), which is a set of loosely coupled but tightly integrated open source projects designed to manage huge amounts of time-stamped information. The software architecture is coupled with the cross-industry standard process for data mining (CRISP-DM) data mining methodology. The robust architecture and the methodology used have demonstrated their effectiveness on the study case of learning the level of a river with a 7-day horizon. The management of water and the activities within the plants -which depend on this resource- should be considerably improved thanks, on the one hand, to the learning that allows the anticipation of periods of water stress, and on the other hand, to the information system that is able to warn decision-makers with alerts created from the formalization of prefectoral decrees.

Keywords: data mining, industry, machine Learning, shortage, water resources

Procedia PDF Downloads 121
3545 Combining Diffusion Maps and Diffusion Models for Enhanced Data Analysis

Authors: Meng Su

Abstract:

High-dimensional data analysis often presents challenges in capturing the complex, nonlinear relationships and manifold structures inherent to the data. This article presents a novel approach that leverages the strengths of two powerful techniques, Diffusion Maps and Diffusion Probabilistic Models (DPMs), to address these challenges. By integrating the dimensionality reduction capability of Diffusion Maps with the data modeling ability of DPMs, the proposed method aims to provide a comprehensive solution for analyzing and generating high-dimensional data. The Diffusion Map technique preserves the nonlinear relationships and manifold structure of the data by mapping it to a lower-dimensional space using the eigenvectors of the graph Laplacian matrix. Meanwhile, DPMs capture the dependencies within the data, enabling effective modeling and generation of new data points in the low-dimensional space. The generated data points can then be mapped back to the original high-dimensional space, ensuring consistency with the underlying manifold structure. Through a detailed example implementation, the article demonstrates the potential of the proposed hybrid approach to achieve more accurate and effective modeling and generation of complex, high-dimensional data. Furthermore, it discusses possible applications in various domains, such as image synthesis, time-series forecasting, and anomaly detection, and outlines future research directions for enhancing the scalability, performance, and integration with other machine learning techniques. By combining the strengths of Diffusion Maps and DPMs, this work paves the way for more advanced and robust data analysis methods.

Keywords: diffusion maps, diffusion probabilistic models (DPMs), manifold learning, high-dimensional data analysis

Procedia PDF Downloads 105
3544 Automated Adaptions of Semantic User- and Service Profile Representations by Learning the User Context

Authors: Nicole Merkle, Stefan Zander

Abstract:

Ambient Assisted Living (AAL) describes a technological and methodological stack of (e.g. formal model-theoretic semantics, rule-based reasoning and machine learning), different aspects regarding the behavior, activities and characteristics of humans. Hence, a semantic representation of the user environment and its relevant elements are required in order to allow assistive agents to recognize situations and deduce appropriate actions. Furthermore, the user and his/her characteristics (e.g. physical, cognitive, preferences) need to be represented with a high degree of expressiveness in order to allow software agents a precise evaluation of the users’ context models. The correct interpretation of these context models highly depends on temporal, spatial circumstances as well as individual user preferences. In most AAL approaches, model representations of real world situations represent the current state of a universe of discourse at a given point in time by neglecting transitions between a set of states. However, the AAL domain currently lacks sufficient approaches that contemplate on the dynamic adaptions of context-related representations. Semantic representations of relevant real-world excerpts (e.g. user activities) help cognitive, rule-based agents to reason and make decisions in order to help users in appropriate tasks and situations. Furthermore, rules and reasoning on semantic models are not sufficient for handling uncertainty and fuzzy situations. A certain situation can require different (re-)actions in order to achieve the best results with respect to the user and his/her needs. But what is the best result? To answer this question, we need to consider that every smart agent requires to achieve an objective, but this objective is mostly defined by domain experts who can also fail in their estimation of what is desired by the user and what not. Hence, a smart agent has to be able to learn from context history data and estimate or predict what is most likely in certain contexts. Furthermore, different agents with contrary objectives can cause collisions as their actions influence the user’s context and constituting conditions in unintended or uncontrolled ways. We present an approach for dynamically updating a semantic model with respect to the current user context that allows flexibility of the software agents and enhances their conformance in order to improve the user experience. The presented approach adapts rules by learning sensor evidence and user actions using probabilistic reasoning approaches, based on given expert knowledge. The semantic domain model consists basically of device-, service- and user profile representations. In this paper, we present how this semantic domain model can be used in order to compute the probability of matching rules and actions. We apply this probability estimation to compare the current domain model representation with the computed one in order to adapt the formal semantic representation. Our approach aims at minimizing the likelihood of unintended interferences in order to eliminate conflicts and unpredictable side-effects by updating pre-defined expert knowledge according to the most probable context representation. This enables agents to adapt to dynamic changes in the environment which enhances the provision of adequate assistance and affects positively the user satisfaction.

Keywords: ambient intelligence, machine learning, semantic web, software agents

Procedia PDF Downloads 281
3543 Tracing the Developmental Repertoire of the Progressive: Evidence from L2 Construction Learning

Authors: Tianqi Wu, Min Wang

Abstract:

Research investigating language acquisition from a constructionist perspective has demonstrated that language is learned as constructions at various linguistic levels, which is related to factors of frequency, semantic prototypicality, and form-meaning contingency. However, previous research on construction learning tended to focus on clause-level constructions such as verb argument constructions but few attempts were made to study morpheme-level constructions such as the progressive construction, which is regarded as a source of acquisition problems for English learners from diverse L1 backgrounds, especially for those whose L1 do not have an equivalent construction such as German and Chinese. To trace the developmental trajectory of Chinese EFL learners’ use of the progressive with respect to verb frequency, verb-progressive contingency, and verbal prototypicality and generality, a learner corpus consisting of three sub-corpora representing three different English proficiency levels was extracted from the Chinese Learners of English Corpora (CLEC). As the reference point, a native speakers’ corpus extracted from the Louvain Corpus of Native English Essays was also established. All the texts were annotated with C7 tagset by part-of-speech tagging software. After annotation all valid progressive hits were retrieved with AntConc 3.4.3 followed by a manual check. Frequency-related data showed that from the lowest to the highest proficiency level, (1) the type token ratio increased steadily from 23.5% to 35.6%, getting closer to 36.4% in the native speakers’ corpus, indicating a wider use of verbs in the progressive; (2) the normalized entropy value rose from 0.776 to 0.876, working towards the target score of 0.886 in native speakers’ corpus, revealing that upper-intermediate learners exhibited a more even distribution and more productive use of verbs in the progressive; (3) activity verbs (i.e., verbs with prototypical progressive meanings like running and singing) dropped from 59% to 34% but non-prototypical verbs such as state verbs (e.g., being and living) and achievement verbs (e.g., dying and finishing) were increasingly used in the progressive. Apart from raw frequency analyses, collostructional analyses were conducted to quantify verb-progressive contingency and to determine what verbs were distinctively associated with the progressive construction. Results were in line with raw frequency findings, which showed that contingency between the progressive and non-prototypical verbs represented by light verbs (e.g., going, doing, making, and coming) increased as English proficiency proceeded. These findings altogether suggested that beginning Chinese EFL learners were less productive in using the progressive construction: they were constrained by a small set of verbs which had concrete and typical progressive meanings (e.g., the activity verbs). But with English proficiency increasing, their use of the progressive began to spread to marginal members such as the light verbs.

Keywords: Construction learning, Corpus-based, Progressives, Prototype

Procedia PDF Downloads 127
3542 Ontology-Driven Knowledge Discovery and Validation from Admission Databases: A Structural Causal Model Approach for Polytechnic Education in Nigeria

Authors: Bernard Igoche Igoche, Olumuyiwa Matthew, Peter Bednar, Alexander Gegov

Abstract:

This study presents an ontology-driven approach for knowledge discovery and validation from admission databases in Nigerian polytechnic institutions. The research aims to address the challenges of extracting meaningful insights from vast amounts of admission data and utilizing them for decision-making and process improvement. The proposed methodology combines the knowledge discovery in databases (KDD) process with a structural causal model (SCM) ontological framework. The admission database of Benue State Polytechnic Ugbokolo (Benpoly) is used as a case study. The KDD process is employed to mine and distill knowledge from the database, while the SCM ontology is designed to identify and validate the important features of the admission process. The SCM validation is performed using the conditional independence test (CIT) criteria, and an algorithm is developed to implement the validation process. The identified features are then used for machine learning (ML) modeling and prediction of admission status. The results demonstrate the adequacy of the SCM ontological framework in representing the admission process and the high predictive accuracies achieved by the ML models, with k-nearest neighbors (KNN) and support vector machine (SVM) achieving 92% accuracy. The study concludes that the proposed ontology-driven approach contributes to the advancement of educational data mining and provides a foundation for future research in this domain.

Keywords: admission databases, educational data mining, machine learning, ontology-driven knowledge discovery, polytechnic education, structural causal model

Procedia PDF Downloads 61
3541 Evaluating the Satisfaction of Chinese Consumers toward Influencers at TikTok

Authors: Noriyuki Suyama

Abstract:

The progress and spread of digitalization have led to the provision of a variety of new services. The recent progress in digitization can be attributed to rapid developments in science and technology. First, the research and diffusion of artificial intelligence (AI) has made dramatic progress. Around 2000, the third wave of AI research, which had been underway for about 50 years, arrived. Specifically, machine learning and deep learning were made possible in AI, and the ability of AI to acquire knowledge, define the knowledge, and update its own knowledge in a quantitative manner made the use of big data practical even for commercial PCs. On the other hand, with the spread of social media, information exchange has become more common in our daily lives, and the lending and borrowing of goods and services, in other words, the sharing economy, has become widespread. The scope of this trend is not limited to any industry, and its momentum is growing as the SDGs take root. In addition, the Social Network Service (SNS), a part of social media, has brought about the evolution of the retail business. In the past few years, social network services (SNS) involving users or companies have especially flourished. The People's Republic of China (hereinafter referred to as "China") is a country that is stimulating enormous consumption through its own unique SNS, which is different from the SNS used in developed countries around the world. This paper focuses on the effectiveness and challenges of influencer marketing by focusing on the influence of influencers on users' behavior and satisfaction with Chinese SNSs. Specifically, Conducted was the quantitative survey of Tik Tok users living in China, with the aim of gaining new insights from the analysis and discussions. As a result, we found several important findings and knowledge.

Keywords: customer satisfaction, social networking services, influencer marketing, Chinese consumers’ behavior

Procedia PDF Downloads 88
3540 The Effect of Using Mobile Listening Applications on Listening Skills of Iranian Intermediate EFL Learners

Authors: Mahmoud Nabilu

Abstract:

The present study explored the effect of using Mobile listening applications on developing listening skills by Iranian intermediate EFL learners. Fifty male intermediate English learners whose age range was between 15 and 20, participated in the study. The participants were placed in two groups on the basis of their scores on a placement test. Therefore, the participants of the study were homogenized in terms of general proficiency, and groups were assigned as one experimental group and one control group. The experimental group was instructed by the treatment which was using mobile applications to develop their listening skills while the control group received traditional methods. The research data were obtained from the 40-item multiple-choice tests as a pre-test and a post-test. The results of the t-test clearly revealed that the learners in the experimental group performed better in the post-test than the pre-test. This implies that using a mobile application for developing listening skills as a treatment was effective in helping the language learners perform better on post-test. However, a statistically significant difference was found between the post-tests scores of the two groups. The mean of the experimental group was greater compared to the control group. The participants were Iranian and from an Iranian Language Institute, so care should be taken while generalizing the results to the learners of other nationalities. However, in the researcher's view, the findings of this study have valuable implications for teachers and learners, methodologists and syllabus designers, linguists and MALL/CALL (mobile/computer-assisted language learning) experts. Using the result of the present paper is an aim of raising the consciousness of a better technique of developing listening skills in order to make language learning more efficient for the learners.

Keywords: Mobile listening applications, intermediate EFL learners, MALL, CALL

Procedia PDF Downloads 194
3539 Kinetic Model to Interpret Whistler Waves in Multicomponent Non-Maxwellian Space Plasmas

Authors: Warda Nasir, M. N. S. Qureshi

Abstract:

Whistler waves are right handed circularly polarized waves and are frequently observed in space plasmas. The Low frequency branch of the Whistler waves having frequencies nearly around 100 Hz, known as Lion roars, are frequently observed in magnetosheath. Another feature of the magnetosheath is the observations of flat top electron distributions with single as well as two electron populations. In the past, lion roars were studied by employing kinetic model using classical bi-Maxwellian distribution function, however, could not be justified both on quantitatively as well as qualitatively grounds. We studied Whistler waves by employing kinetic model using non-Maxwellian distribution function such as the generalized (r,q) distribution function which is the generalized form of kappa and Maxwellian distribution functions by employing kinetic theory with single or two electron populations. We compare our results with the Cluster observations and found good quantitative and qualitative agreement between them. At times when lion roars are observed (not observed) in the data and bi-Maxwellian could not provide the sufficient growth (damping) rates, we showed that when generalized (r,q) distribution function is employed, the resulted growth (damping) rates exactly match the observations.

Keywords: kinetic model, whistler waves, non-maxwellian distribution function, space plasmas

Procedia PDF Downloads 313
3538 Analyzing the Perceptions of Accounting Practitioners regarding Communication Skills of Distance-Learning Graduates

Authors: Carol S. Binnekade, Deon Scott, Christina C. Shuttleworth, Annelien A. Van Rooyen

Abstract:

Higher education institutions are constantly challenged to deliver skilled graduates into the workplace. Employers expect graduates to have the required technical knowledge as well as various pervasive skills. This also applies to accountants who need to know the technical requirements of financial reporting and be able to communicate with individuals, teams and clients at a high level. Accountants need to develop effective business conversational skills and use these skills to communicate up, down and across organizations, taking into consideration cultural and gender diversity. In addition, they need to master business writing and presentation skills. However, providing students with these skills in a distance-learning environment where interaction between students and instructors is limited, is a challenge for academics. The study on which this paper reports, forms part of a larger body of research, which explored the perceptions of accounting practitioners of the communication skills (or lack thereof) of recently qualified accounting students. Feedback (qualitative and quantitative) was obtained from various accounting practitioners in South Africa. Taking into consideration that distance learners communicate mainly with their instructors via email communication and their assignments are submitted using various word processor software, the researchers were of the opinion that the accounting graduates would be capable of communicating effectively once they entered the workplace. However, the research findings, inter alia, suggested that the accounting graduates lacked communication skills and that training was needed to differentiate between business and social communication once they entered the workplace. Recommendations on how these communication challenges may be addressed by higher education institutions are provided.

Keywords: accounting practitioners, communication skills, distance education, pervasive skills

Procedia PDF Downloads 203
3537 Beyond Rhetoric and Buzzword, Policies and Politics: Towards Practical Institutional Involvement in Science and Technology Teacher Education Programmes for Sustainable Development

Authors: Alvin Uchenna Ugwu

Abstract:

The United Nation’s 2030 agenda and Global Action Programme (GAP) for implementation of the Sustainable Development Goals (SDGs), has mandated all sectors in the societies, including education, to develop strategies towards actualizing sustainability in all facets of the society, by the year 2030. Education is no doubt a key tool for social change. However, educational institutions in most African nations need a paradigmatic shift to strike a balance between policies (curricular) and practices, with regards to Education for Sustainable Development (ESD). The paradigm shift in this regard is described as whole-institution/school approach. The whole institution approaches advocate action-focused ESD. In other words, ESD policy and curriculum makers, formal and non-formal education institutions, need to ‘practice what they preach’. This paper is developed from an ongoing study carried out by the author and guided by two research questions: -What are the views of intermediate phase science and technology preservice teachers on the ESD content included in the science and technology modules? -What challenges or enable intermediate phase science and technology pre-service teachers to learn about ESD in science and technology modules? The study drew from the views and experiences of preservice science teachers, learning about ESD in a university’s college of education in South Africa. Using qualitative case study research design, the research data were generated via questionnaires and focus group discussions. Analysis of generated data indicates that universities and institutions of higher learning need to demonstrate practical involvement while implementing ESD in societies, rather than just standing as knowledge media. Findings of the study further suggest that natural sciences and technology courses in teacher education programmes and other institutions of higher learning, should be perceived as key transformative tools in shaping the consciousness of students towards integrating and fostering ESD in developing countries such as South Africa. Thus, this paper seeks to promote ‘Whole Institution Involvement’ in teacher education colleges in South Africa, as a measure of improving ESD in higher education settings. The paper suggests that in order to achieve ESD in higher education settings and beyond, policies and practices should be reexamined beyond rhetoric and buzzwords. The paper further argues that implementation of ESD is largely influenced by context, hence two different contexts should be examined empirically.

Keywords: education for sustainable development, higher education institutions, pre-service science teachers, qualitative case study research, whole institution involvement

Procedia PDF Downloads 172
3536 Shark Detection and Classification with Deep Learning

Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti

Abstract:

Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.

Keywords: classification, data mining, Instagram, remote monitoring, sharks

Procedia PDF Downloads 120
3535 Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients' Cohorts: A Case Study in Scotland

Authors: Raptis Sotirios

Abstract:

Health and social care (HSc) services planning and scheduling are facing unprecedented challenges due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven can help to improve policies, plan and design services provision schedules using algorithms assist healthcare managers’ to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as CART, random forests (RF), and logistic regression (LGR). The significance tests Chi-Squared test and Student test are used on data over a 39 years span for which HSc services data exist for services delivered in Scotland. The demands are probabilistically associated through statistical hypotheses that assume that the target service’s demands are statistically dependent on other demands as a NULL hypothesis. This linkage can be confirmed or not by the data. Complementarily, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus groups of services. Statistical tests confirm ML couplings making the prediction also statistically meaningful and prove that a target service can be matched reliably to other services, and ML shows these indicated relationships can also be linear ones. Zero paddings were used for missing years records and illustrated better such relationships both for limited years and in the entire span offering long term data visualizations while limited years groups explained how well patients numbers can be related in short periods or can change over time as opposed to behaviors across more years. The prediction performance of the associations is measured using Receiver Operating Characteristic(ROC) AUC and ACC metrics as well as the statistical tests, Chi-Squared and Student. Co-plots and comparison tables for RF, CART, and LGR as well as p-values and Information Exchange(IE), are provided showing the specific behavior of the ML and of the statistical tests and the behavior using different learning ratios. The impact of k-NN and cross-correlation and C-Means first groupings is also studied over limited years and the entire span. It was found that CART was generally behind RF and LGR, but in some interesting cases, LGR reached an AUC=0 falling below CART, while the ACC was as high as 0.912, showing that ML methods can be confused padding or by data irregularities or outliers. On average, 3 linear predictors were sufficient, LGR was found competing RF well, and CART followed with the same performance at higher learning ratios. Services were packed only if when significance level(p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, birth weights, alcoholism, drug abuse, and emergency admissions. The work found that different HSc services can be well packed as plans of limited years, across various services sectors, learning configurations, as confirmed using statistical hypotheses.

Keywords: class, cohorts, data frames, grouping, prediction, prob-ability, services

Procedia PDF Downloads 229