Search results for: wind direction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2796

Search results for: wind direction

2346 Study of ANFIS and ARIMA Model for Weather Forecasting

Authors: Bandreddy Anand Babu, Srinivasa Rao Mandadi, C. Pradeep Reddy, N. Ramesh Babu

Abstract:

In this paper quickly illustrate the correlation investigation of Auto-Regressive Integrated Moving and Average (ARIMA) and daptive Network Based Fuzzy Inference System (ANFIS) models done by climate estimating. The climate determining is taken from University of Waterloo. The information is taken as Relative Humidity, Ambient Air Temperature, Barometric Pressure and Wind Direction utilized within this paper. The paper is carried out by analyzing the exhibitions are seen by demonstrating of ARIMA and ANIFIS model like with Sum of average of errors. Versatile Network Based Fuzzy Inference System (ANFIS) demonstrating is carried out by Mat lab programming and Auto-Regressive Integrated Moving and Average (ARIMA) displaying is produced by utilizing XLSTAT programming. ANFIS is carried out in Fuzzy Logic Toolbox in Mat Lab programming.

Keywords: ARIMA, ANFIS, fuzzy surmising tool stash, weather forecasting, MATLAB

Procedia PDF Downloads 388
2345 Frequency Control of Self-Excited Induction Generator Based Microgrid during Transition from Grid Connected to Island Mode

Authors: Azhar Ulhaq, Zubair Yameen, Almas Anjum

Abstract:

Frequency behaviour of self-excited induction generator (SEIG) wind turbines during control mode transition from grid connected to islanded mode is studied in detail. A robust control scheme for frequency regulation based on combined action of STATCOM, energy storage system (ESS) and pitch angle control for wind powered microgrid (MG) is proposed. Suggested STATCOM controller comprises a 3-phase voltage source converter (VSC) that contains insulated gate bipolar transistors (IGBTs) based pulse width modulation (PWM) inverters along with a capacitor bank. Energy storage system control consists of current controlled voltage source converter and battery bank. Both of them acting simultaneously after detection of island compensates for reactive and active power demands, thus regulating frequency at point of common coupling (PCC) and also improves load stability. STATCOM integrates at point of common coupling and ESS is connected to microgrids main bus. Results reveal that proposed control not only stabilizes frequency during transition duration but also minimizes sudden frequency imbalance caused by load variation or wind intermittencies in islanded operation. System is investigated with and without suggested control scheme. The efficacy of proposed strategy has been verified by simulation in MATLAB/Simulink.

Keywords: energy storage system, island, wind, STATCOM, self-excited induction generator, SEIG, transient

Procedia PDF Downloads 127
2344 Research on Aerodynamic Brake Device for High-Speed Train

Authors: S. Yun, M. Kwak

Abstract:

This study is about an aerodynamic brake device for a high-speed train. In order to apply an aerodynamic brake device, an influence of the aerodynamic brake device on a high-speed train was studied aerodynamically, acoustically and dynamically. Wind tunnel test was conducted to predict an effect of braking distance reduction with a scale model of 1/30. Aerodynamic drag increases by 244% with a brake panel of a 90 degree angle. Braking distance for an emergency state was predicted to decrease by 13%.

Keywords: aerodynamic brake, braking distance, drag coefficient, high-speed train, wind-tunnel test

Procedia PDF Downloads 297
2343 Analysis of Weather Radar Data for the Cloud Seeding in Korea, 2018

Authors: Yonghun Ro, Joo-Wan Cha, Sanghee Chae, Areum Ko, Woonseon Jung, Jong-Chul Ha

Abstract:

National Institute of Meteorological Science (NIMS) in South Korea has performed the cloud seeding to support the field of cloud physics. This is to determine the precipitation occurrence analyzing the changes in the microphysical schemes of clouds. NIMS conducted 12 times of cloud seeding in the lower height of the troposphere at Kangwon and Kyunggi provinces throughout 2018. The change in the reflectivity of the weather radar was analyzed to verify the enhancement of precipitation according to the cloud seeding in this study. First, the natural system in the near of the target area was separated to clear the seeding effect. The radar reflectivity in the point of ground gauge station was extracted in every 10 minutes and the increased values during the reaction time of cloud particles and seeding materials were estimated as a seeding effect considering the cloud temperature, wind speed and direction, and seeding line that the aircraft had passed by. The radar reflectivity affected by seeding materials was showed an increment of 5 to 10 dBZ, and enhanced precipitation cloud was also detected in the 11 cases of cloud seeding experiments.

Keywords: cloud seeding, reflectivity, weather radar, seeding effect

Procedia PDF Downloads 146
2342 Wind Energy Harvester Based on Triboelectricity: Large-Scale Energy Nanogenerator

Authors: Aravind Ravichandran, Marc Ramuz, Sylvain Blayac

Abstract:

With the rapid development of wearable electronics and sensor networks, batteries cannot meet the sustainable energy requirement due to their limited lifetime, size and degradation. Ambient energies such as wind have been considered as an attractive energy source due to its copious, ubiquity, and feasibility in nature. With miniaturization leading to high-power and robustness, triboelectric nanogenerator (TENG) have been conceived as a promising technology by harvesting mechanical energy for powering small electronics. TENG integration in large-scale applications is still unexplored considering its attractive properties. In this work, a state of the art design TENG based on wind venturi system is demonstrated for use in any complex environment. When wind introduces into the air gap of the homemade TENG venturi system, a thin flexible polymer repeatedly contacts with and separates from electrodes. This device structure makes the TENG suitable for large scale harvesting without massive volume. Multiple stacking not only amplifies the output power but also enables multi-directional wind utilization. The system converts ambient mechanical energy to electricity with 400V peak voltage by charging of a 1000mF super capacitor super rapidly. Its future implementation in an array of applications aids in environment friendly clean energy production in large scale medium and the proposed design performs with an exhaustive material testing. The relation between the interfacial micro-and nano structures and the electrical performance enhancement is comparatively studied. Nanostructures are more beneficial for the effective contact area, but they are not suitable for the anti-adhesion property due to the smaller restoring force. Considering these issues, the nano-patterning is proposed for further enhancement of the effective contact area. By considering these merits of simple fabrication, outstanding performance, robust characteristic and low-cost technology, we believe that TENG can open up great opportunities not only for powering small electronics, but can contribute to large-scale energy harvesting through engineering design being complementary to solar energy in remote areas.

Keywords: triboelectric nanogenerator, wind energy, vortex design, large scale energy

Procedia PDF Downloads 191
2341 Flow Characterization in Complex Terrain for Aviation Safety

Authors: Adil Rasheed, Mandar Tabib

Abstract:

The paper describes the ability of a high-resolution Computational Fluid Dynamics model to predict terrain-induced turbulence and wind shear close to the ground. Various sensitivity studies to choose the optimal simulation setup for modeling the flow characteristics in a complex terrain are presented. The capabilities of the model are demonstrated by applying it to the Sandnessjøen Airport, Stokka in Norway, an airport that is located in a mountainous area. The model is able to forecast turbulence in real time and trigger an alert when atmospheric conditions might result in high wind shear and turbulence.

Keywords: aviation safety, terrain-induced turbulence, atmospheric flow, alert system

Procedia PDF Downloads 388
2340 Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System

Authors: O. Afshar

Abstract:

A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope.

Keywords: receiver tube, heat convection, heat conduction, Nusselt number

Procedia PDF Downloads 330
2339 Study on Shifting Properties of CVT Rubber V-belt

Authors: Natsuki Tsuda, Kiyotaka Obunai, Kazuya Okubo, Hideyuki Tashiro, Yoshinori Yamaji, Hideyuki Kato

Abstract:

The objective of this study is to investigate the effect of belt stiffness on the performance of the CVT unit, such as the required pulley thrust force and the ratio coverage. The CVT unit consists of the V-grooved pulleys and the rubber CVT belt. The width of the driving pulley groove was controlled by the stepper motor, while that of the driven pulley was controlled by the hydraulic pressure. The generated mechanical power on the motor was transmitted from the driving axis to the driven axis through the CVT unit. The rotational speed and the transmitting torque of both axes were measured by the tachometers and the torque meters attached with these axes, respectively. The transmitted, mechanical power was absorbed by the magnetic powder brake. The thrust force acting on both pulleys and the force between both shafts were measured by the load cell. The back face profile of the rubber CVT belt along with width direction was measured by the 2-dimensional laser displacement meter. This paper found that when the stiffness of the rubber CVT belt in the belt width direction was reduced, the thrust force required for shifting was reduced. Moreover, when the stiffness of the rubber CVT belt in the belt width direction was reduced, the ratio coverage of the CVT unit was reduced. Due to the decrement of stiffness in belt width direction, the excessive concave deformation of belt in pulley groove was confirmed. Because of this excessive concave deformation, apparent wrapping radius of belt would have been reduced. Proposed model could be effectively estimated the difference of ratio coverage due to concave deformation. The proposed model could also be utilized for designing the rubber CVT belt with optimal bending stiffness in width direction.

Keywords: CVT, countinuously variable transmission, rubber, belt stiffness, transmission

Procedia PDF Downloads 121
2338 Fluid Structure Interaction of Flow and Heat Transfer around a Microcantilever

Authors: Khalil Khanafer

Abstract:

This study emphasizes on analyzing the effect of flow conditions and the geometric variation of the microcantilever’s bluff body on the microcantilever detection capabilities within a fluidic device using a finite element fluid-structure interaction model. Such parameters include inlet velocity, flow direction, and height of the microcantilever’s supporting system within the fluidic cell. The transport equations are solved using a finite element formulation based on the Galerkin method of weighted residuals. For a flexible microcantilever, a fully coupled fluid-structure interaction (FSI) analysis is utilized and the fluid domain is described by an Arbitrary-Lagrangian–Eulerian (ALE) formulation that is fully coupled to the structure domain. The results of this study showed a profound effect on the magnitude and direction of the inlet velocity and the height of the bluff body on the deflection of the microcantilever. The vibration characteristics were also investigated in this study. This work paves the road for researchers to design efficient microcantilevers that display least errors in the measurements.

Keywords: fluidic cell, FSI, microcantilever, flow direction

Procedia PDF Downloads 354
2337 Techno-Economic Prospects of High Wind Energy Share in Remote vs. Interconnected Island Grids

Authors: Marina Kapsali, John S. Anagnostopoulos

Abstract:

On the basis of comparative analysis of alternative “development scenarios” for electricity generation, the main objective of the present study is to investigate the techno-economic viability of high wind energy (WE) use at the local (island) level. An integrated theoretical model is developed based on first principles assuming two main possible scenarios for covering future electrification needs of a medium–sized Greek island, i.e. Lesbos. The first scenario (S1), assumes that the island will keep using oil products as the main source for electricity generation. The second scenario (S2) involves the interconnection of the island with the mainland grid to satisfy part of the electricity demand, while remarkable WE penetration is also achieved. The economic feasibility of the above solutions is investigated in terms of determining their Levelized Cost of Energy (LCOE) for the time-period 2020-2045, including also a sensitivity analysis on the worst/reference/best Cases. According to the results obtained, interconnection of Lesbos Island with the mainland grid (S2) presents considerable economic interest in comparison to autonomous development (S1) with WE having a prominent role to this effect.

Keywords: electricity generation cost, levelized cost of energy, mainland, wind energy surplus

Procedia PDF Downloads 320
2336 Conceptual Design of Gravity Anchor Focusing on Anchor Towing and Lowering

Authors: Vinay Kumar Vanjakula, Frank Adam, Nils Goseberg

Abstract:

Wind power is one of the leading renewable energy generation methods. Due to abundant higher wind speeds far away from shore, the construction of offshore wind turbines began in the last decades. However, installation of offshore foundation-based (monopiles) wind turbines in deep waters are often associated with technical and financial challenges. To overcome such challenges, the concept of floating wind turbines is expanded as the basis from the oil and gas industry. The unfolding of Universal heavyweight gravity anchor (UGA) for floating based foundation for floating Tension Leg Platform (TLP) sub-structures is developed in this research work. It is funded by the German Federal Ministry of Education and Research) for a three-year (2019-2022) research program called “Offshore Wind Solutions Plus (OWSplus) - Floating Offshore Wind Solutions Mecklenburg-Vorpommern.” It’s a group consists of German institutions (Universities, laboratories, and consulting companies). The part of the project is focused on the numerical modeling of gravity anchor that involves to analyze and solve fluid flow problems. Compared to gravity-based torpedo anchors, these UGA will be towed and lowered via controlled machines (tug boats) at lower speeds. This kind of installation of UGA are new to the offshore wind industry, particularly for TLP, and very few research works have been carried out in recent years. Conventional methods for transporting the anchor requires a large transportation crane vessel which involves a greater cost. This conceptual UGA anchors consists of ballasting chambers which utilizes the concept of buoyancy forces; the inside chambers are filled with the required amount of water in a way that they can float on the water for towing. After reaching the installation site, those chambers are ballasted with water for lowering. After it’s lifetime, these UGA can be unballasted (for erection or replacement) results in self-rising to the sea surface; buoyancy chambers give an advantage for using an UGA without the need of heavy machinery. However, while lowering/rising the UGA towards/away from the seabed, it experiences difficult, harsh marine environments due to the interaction of waves and currents. This leads to drifting of the anchor from the desired installation position and damage to the lowering machines. To overcome such harsh environments problems, a numerical model is built to investigate the influences of different outer contours and other fluid governing shapes that can be installed on the UGA to overcome the turbulence and drifting. The presentation will highlight the importance of the Computational Fluid Dynamics (CFD) numerical model in OpenFOAM, which is open-source programming software.

Keywords: anchor lowering, towing, waves, currrents, computational fluid dynamics

Procedia PDF Downloads 145
2335 Visualization of PM₂.₅ Time Series and Correlation Analysis of Cities in Bangladesh

Authors: Asif Zaman, Moinul Islam Zaber, Amin Ahsan Ali

Abstract:

In recent years of industrialization, the South Asian countries are being affected by air pollution due to a severe increase in fine particulate matter 2.5 (PM₂.₅). Among them, Bangladesh is one of the most polluting countries. In this paper, statistical analyses were conducted on the time series of PM₂.₅ from various districts in Bangladesh, mostly around Dhaka city. Research has been conducted on the dynamic interactions and relationships between PM₂.₅ concentrations in different zones. The study is conducted toward understanding the characteristics of PM₂.₅, such as spatial-temporal characterization, correlation of other contributors behind air pollution such as human activities, driving factors and environmental casualties. Clustering on the data gave an insight on the districts groups based on their AQI frequency as representative districts. Seasonality analysis on hourly and monthly frequency found higher concentration of fine particles in nighttime and winter season, respectively. Cross correlation analysis discovered a phenomenon of correlations among cities based on time-lagged series of air particle readings and visualization framework is developed for observing interaction in PM₂.₅ concentrations between cities. Significant time-lagged correlations were discovered between the PM₂.₅ time series in different city groups throughout the country by cross correlation analysis. Additionally, seasonal heatmaps depict that the pooled series correlations are less significant in warmer months, and among cities of greater geographic distance as well as time lag magnitude and direction of the best shifted correlated particulate matter time series among districts change seasonally. The geographic map visualization demonstrates spatial behaviour of air pollution among districts around Dhaka city and the significant effect of wind direction as the vital actor on correlated shifted time series. The visualization framework has multipurpose usage from gathering insight of general and seasonal air quality of Bangladesh to determining the pathway of regional transportation of air pollution.

Keywords: air quality, particles, cross correlation, seasonality

Procedia PDF Downloads 89
2334 Fuzzy Adaptive Control of an Intelligent Hybrid HPS (Pvwindbat), Grid Power System Applied to a Dwelling

Authors: A. Derrouazin, N. Mekkakia-M, R. Taleb, M. Helaimi, A. Benbouali

Abstract:

Nowadays the use of different sources of renewable energy for the production of electricity is the concern of everyone, as, even impersonal domestic use of the electricity in isolated sites or in town. As the conventional sources of energy are shrinking, a need has arisen to look for alternative sources of energy with more emphasis on its optimal use. This paper presents design of a sustainable Hybrid Power System (PV-Wind-Storage) assisted by grid as supplementary sources applied to case study residential house, to meet its entire energy demand. A Fuzzy control system model has been developed to optimize and control flow of power from these sources. This energy requirement is mainly fulfilled from PV and Wind energy stored in batteries module for critical load of a residential house and supplemented by grid for base and peak load. The system has been developed for maximum daily households load energy of 3kWh and can be scaled to any higher value as per requirement of individual /community house ranging from 3kWh/day to 10kWh/day, as per the requirement. The simulation work, using intelligent energy management, has resulted in an optimal yield leading to average reduction in cost of electricity by 50% per day.

Keywords: photovoltaic (PV), wind turbine, battery, microcontroller, fuzzy control (FC), Matlab

Procedia PDF Downloads 625
2333 Seismic Behavior of Suction Caisson Foundations

Authors: Mohsen Saleh Asheghabadi, Alireza Jafari Jebeli

Abstract:

Increasing population growth requires more sustainable development of energy. This non-contaminated energy has an inexhaustible energy source. One of the vital parameters in such structures is the choice of foundation type. Suction caissons are now used extensively worldwide for offshore wind turbine. Considering the presence of a number of offshore wind farms in earthquake areas, the study of the seismic behavior of suction caisson is necessary for better design. In this paper, the results obtained from three suction caisson models with different diameter (D) and skirt length (L) in saturated sand were compared with centrifuge test results. All models are analyzed using 3D finite element (FE) method taking account of elasto-plastic Mohr–Coulomb constitutive model for soil which is available in the ABAQUS library. The earthquake load applied to the base of models with a maximum acceleration of 0.65g. The results showed that numerical method is in relative good agreement with centrifuge results. The settlement and rotation of foundation decrease by increasing the skirt length and foundation diameter. The sand soil outside the caisson is prone to liquefaction due to its low confinement.

Keywords: liquefaction, suction caisson foundation, offshore wind turbine, numerical analysis, seismic behavior

Procedia PDF Downloads 98
2332 Assessment of On-Site Solar and Wind Energy at a Manufacturing Facility in Ireland

Authors: A. Sgobba, C. Meskell

Abstract:

The feasibility of on-site electricity production from solar and wind and the resulting load management for a specific manufacturing plant in Ireland are assessed. The industry sector accounts directly and indirectly for a high percentage of electricity consumption and global greenhouse gas emissions; therefore, it will play a key role in emission reduction and control. Manufacturing plants, in particular, are often located in non-residential areas since they require open spaces for production machinery, parking facilities for the employees, appropriate routes for supply and delivery, special connections to the national grid and other environmental impacts. Since they have larger spaces compared to commercial sites in urban areas, they represent an appropriate case study for evaluating the technical and economic viability of energy system integration with low power density technologies, such as solar and wind, for on-site electricity generation. The available open space surrounding the analysed manufacturing plant can be efficiently used to produce a discrete quantity of energy, instantaneously and locally consumed. Therefore, transmission and distribution losses can be reduced. The usage of storage is not required due to the high and almost constant electricity consumption profile. The energy load of the plant is identified through the analysis of gas and electricity consumption, both internally monitored and reported on the bills. These data are not often recorded and available to third parties since manufacturing companies usually keep track only of the overall energy expenditures. The solar potential is modelled for a period of 21 years based on global horizontal irradiation data; the hourly direct and diffuse radiation and the energy produced by the system at the optimum pitch angle are calculated. The model is validated using PVWatts and SAM tools. Wind speed data are available for the same period within one-hour step at a height of 10m. Since the hub of a typical wind turbine reaches a higher altitude, complementary data for a different location at 50m have been compared, and a model for the estimate of wind speed at the required height in the right location is defined. Weibull Statistical Distribution is used to evaluate the wind energy potential of the site. The results show that solar and wind energy are, as expected, generally decoupled. Based on the real case study, the percentage of load covered every hour by on-site generation (Level of Autonomy LA) and the resulting electricity bought from the grid (Expected Energy Not Supplied EENS) are calculated. The economic viability of the project is assessed through Net Present Value, and the influence the main technical and economic parameters have on NPV is presented. Since the results show that the analysed renewable sources can not provide enough electricity, the integration with a cogeneration technology is studied. Finally, the benefit to energy system integration of wind, solar and a cogeneration technology is evaluated and discussed.

Keywords: demand, energy system integration, load, manufacturing, national grid, renewable energy sources

Procedia PDF Downloads 107
2331 Effect of Wind and Humidity on Microwave Links in West North Libya

Authors: M. S. Agha, A. M. Eshahiry, S. A. Aldabbar, Z. M. Alshahri

Abstract:

The propagation of microwave is affected by rain and dust particles by way of signal attenuation and de-polarization. Computations of these effects require knowledge of the propagation characteristics of microwave and millimeter wave energy in the climate conditions of the studied region. This paper presents the effect of wind and humidity on wireless communication such as microwave links in the west north region of Libya (Al-Khoms), experimental procedure to study the effects mentioned above. The experimental procedure is done on three selected antennae towers (Nagaza stations, Al-Khoms center stations, Al-Khoms gateway stations) to determining of the attenuation loss per unit length and cross-polarization discrimination (XPD) change which coverage in the studied region, it is required to collect the dust particles carried out by the wind, measure the particles size distribution (PSD), calculate the concentration, and carry chemical analysis of the contents, then the dielectric constant can be calculated. The result showed that effect of the humidity and dust, the antenna height, the visibility, on the complex permittivity effects both attenuation and phase shift, there is some consideration that has to be taken into account in the communication power budget.

Keywords: attenuation, de-polarization, scattering, transmission loss

Procedia PDF Downloads 128
2330 Necessity for a Standardized Occupational Health and Safety Management System: An Exploratory Study from the Danish Offshore Wind Sector

Authors: Dewan Ahsan

Abstract:

Denmark is well ahead in generating electricity from renewable sources. The offshore wind sector is playing the pivotal role to achieve this target. Though there is a rapid growth of offshore wind sector in Denmark, still there is a dearth of synchronization in OHS (occupational health and safety) regulation and standards. Therefore, this paper attempts to ascertain: i) what are the major challenges of the company specific OHS standards? ii) why does the offshore wind industry need a standardized OHS management system? and iii) who can play the key role in this process? To achieve these objectives, this research applies the interview and survey techniques. This study has identified several key challenges in OHS management system which are; gaps in coordination and communication among the stakeholders, gaps in incident reporting systems, absence of a harmonized OHS standard and blame culture. Furthermore, this research has identified eleven key stakeholders who are actively involve with the offshore wind business in Denmark. As noticed, the relationships among these stakeholders are very complex specially between operators and sub-contractors. The respondent technicians are concerned with the compliance of various third-party OHS standards (e.g. ISO 31000, ISO 29400, Good practice guidelines by G+) which are applying by various offshore companies. On top of these standards, operators also impose their own OHS standards. From the technicians point of angle, many of these standards are not even specific for the offshore wind sector. So, it is a big challenge for the technicians and sub-contractors to comply with different company specific standards which also elevate the price of their services offer to the operators. For instance, when a sub-contractor is competing for a bidding, it must fulfill a number of OHS requirements (which demands many extra documantions) set by the individual operator and/the turbine supplier. According to sub-contractors’ point of view these extra works consume too much time to prepare the bidding documents and they also need to train their employees to pass the specific OHS certification courses to accomplish the demand for individual clients and individual project. The sub-contractors argued that in many cases these extra documentations and OHS certificates are inessential to ensure the quality service. So, a standardized OHS management procedure (which could be applicable for all the clients) can easily solve this problem. In conclusion, this study highlights that i) development of a harmonized OHS standard applicable for all the operators and turbine suppliers, ii) encouragement of technicians’ active participation in the OHS management, iii) development of a good safety leadership, and, iv) sharing of experiences among the stakeholders (specially operators-operators-sub contractors) are the most vital strategies to overcome the existing challenges and to achieve the goal of 'zero accident/harm' in the offshore wind industry.

Keywords: green energy, offshore, safety, Denmark

Procedia PDF Downloads 190
2329 CFD Simulations to Examine Natural Ventilation of a Work Area in a Public Building

Authors: An-Shik Yang, Chiang-Ho Cheng, Jen-Hao Wu, Yu-Hsuan Juan

Abstract:

Natural ventilation has played an important role for many low energy-building designs. It has been also noticed as a essential subject to persistently bring the fresh cool air from the outside into a building. This study carried out the computational fluid dynamics (CFD)-based simulations to examine the natural ventilation development of a work area in a public building. The simulated results can be useful to better understand the indoor microclimate and the interaction of wind with buildings. Besides, this CFD simulation procedure can serve as an effective analysis tool to characterize the airing performance, and thereby optimize the building ventilation for strengthening the architects, planners and other decision makers on improving the natural ventilation design of public buildings.

Keywords: CFD simulations, natural ventilation, microclimate, wind environment

Procedia PDF Downloads 544
2328 Modeling Karachi Dengue Outbreak and Exploration of Climate Structure

Authors: Syed Afrozuddin Ahmed, Junaid Saghir Siddiqi, Sabah Quaiser

Abstract:

Various studies have reported that global warming causes unstable climate and many serious impact to physical environment and public health. The increasing incidence of dengue incidence is now a priority health issue and become a health burden of Pakistan. In this study it has been investigated that spatial pattern of environment causes the emergence or increasing rate of dengue fever incidence that effects the population and its health. The climatic or environmental structure data and the Dengue Fever (DF) data was processed by coding, editing, tabulating, recoding, restructuring in terms of re-tabulating was carried out, and finally applying different statistical methods, techniques, and procedures for the evaluation. Five climatic variables which we have studied are precipitation (P), Maximum temperature (Mx), Minimum temperature (Mn), Humidity (H) and Wind speed (W) collected from 1980-2012. The dengue cases in Karachi from 2010 to 2012 are reported on weekly basis. Principal component analysis is applied to explore the climatic variables and/or the climatic (structure) which may influence in the increase or decrease in the number of dengue fever cases in Karachi. PC1 for all the period is General atmospheric condition. PC2 for dengue period is contrast between precipitation and wind speed. PC3 is the weighted difference between maximum temperature and wind speed. PC4 for dengue period contrast between maximum and wind speed. Negative binomial and Poisson regression model are used to correlate the dengue fever incidence to climatic variable and principal component score. Relative humidity is estimated to positively influence on the chances of dengue occurrence by 1.71% times. Maximum temperature positively influence on the chances dengue occurrence by 19.48% times. Minimum temperature affects positively on the chances of dengue occurrence by 11.51% times. Wind speed is effecting negatively on the weekly occurrence of dengue fever by 7.41% times.

Keywords: principal component analysis, dengue fever, negative binomial regression model, poisson regression model

Procedia PDF Downloads 415
2327 Numerical Investigation of the Diffuser: Geometrical Parameters Effect on Flow Characteristics for Diffuser Augmented Wind Turbine

Authors: Hany El Said Fawaz

Abstract:

This study deals with numerical simulation using a commercial package 'ANSYS FLUENT 14.5' for flow characteristics of a flanged diffuser wind turbine. Influence of geometrical parameters such as flange height, diffuser length, and expansion angle on the lift and drag performance were investigated. As the angle of expansion increases, a considerable flow acceleration through the diffuser occur at expansion angle ranged from 0° and 12° due to the presence of undisturbed streamlines. after that flow circulation is developed near the diffuser outlet and increase with increasing expansion angle which causes a negligible effect of expansion angle. The effect of diffuser length on flow behavior shows that when the diffuser length ratio is less than 1.25, flow acceleration is observed and increased with diffuser length ratio. After this value, the flow field at diffuser outlet is characterized by a recirculation zone. The diffuser flange has an impact effect of the flow behavior as a low pressure zone is developed behind the flange, while a high pressure zone is generated in front of it. As the flange height increase, the intensity of both low and high pressure regions increase which tend to accelerate the flow inside the diffuser till flange height ratio reaches to 0.75.

Keywords: wind turbine, flanged diffuser, expansion angle, diffuser length

Procedia PDF Downloads 222
2326 Effect of Synthetic Jet on Wind Turbine Noise

Authors: Reda Mankbadi

Abstract:

The current work explores the use of Synthetic Jet Actuators (SJAs) for control of the acoustic radiation of a low-speed transitioning airfoil in a uniform stream. In the adopted numerical procedure, the actuator is modeled without its resonator cavity through imposing a simple fluctuating-velocity boundary condition at the bottom of the actuator's orifice. The orifice cavity, with the properly defined boundary condition, is then embedded into the airfoil surface. High-accuracy viscous simulations are then conducted to study the effects of the actuation on sound radiated by the airfoil. Results show that SJA can considerably suppress the radiated sound of the airfoil in uniform incoming stream.

Keywords: simulations, aeroacoustics, wind turbine noise, synthetic jet actuators (SJAs)

Procedia PDF Downloads 332
2325 Directional Search for Dark Matter Using Nuclear Emulsion

Authors: Ali Murat Guler

Abstract:

A variety of experiments have been developed over the past decades, aiming at the detection of Weakly Interactive Massive Particles (WIMPs) via their scattering in an instrumented medium. The sensitivity of these experiments has improved with a tremendous speed, thanks to a constant development of detectors and analysis methods. Detectors capable of reconstructing the direction of the nuclear recoil induced by the WIMP scattering are opening a new frontier to possibly extend Dark Matter searches beyond the neutrino background. Measurement of WIMP’s direction will allow us to detect the galactic origin of dark matter and, therefore to have a clear signal-background separation. The NEWSdm experiment, based on nuclear emulsions, is intended to measure the direction of WIMP-induced nuclear coils with a solid-state detector, thus with high sensitivity. We discuss the discovery potential of a directional experiment based on the use of a solid target made of newly developed nuclear emulsions and novel read-out systems achieving nanometric resolution. We also report results of a technical test conducted in Gran Sasso.

Keywords: dark matter, direct detection, nuclear emulsion, WIMPS

Procedia PDF Downloads 247
2324 Seam Slippage of Light Woven Fabrics with Regards to Sewing Parameters

Authors: Mona Shawky, Khaled M. Elsheikh, Heba M. Darwish, Eman Abd El Elsamea

Abstract:

Seams are the basic component in the structure of any apparel. The seam quality of the garment is a term that indicates both the aesthetic and functional performance of the garment. Seam slippage is one of the important properties that determine garment performance. Lightweight fabrics are preferred for their aesthetic properties. Since seam slippage is one of the most occurable faults for woven garments, in this study, a design of experiment of the following sewing parameters (three levels of needle size, three levels of stitch density, three levels of the seam allowance, two levels of sewing thread count, and two fabric types) was used to obtain the effect of the interaction between different sewing parameters on-seam slippage force. Two lightweight polyester woven fabrics with different constructions were used with lock stitch 301 to perform this study. Regression equations which can predict seam slippage force in both warp and weft directions were concluded. It was found that fabric type has a significant positive effect on seam slippage force in the warp direction, while it has a significant negative effect on seam slippage force on weft direction. Also, the interaction between needle size and stitch density has a significant positive effect on seam slippage force on warp direction, while the interaction between stitch density and seam allowance has a negative effect on seam slippage force in the weft direction.

Keywords: needle size, regression equation, seam allowance, seam slippage, stitch density

Procedia PDF Downloads 140
2323 Advanced Analysis on Dissemination of Pollutant Caused by Flaring System Effect Using Computational Fluid Dynamics (CFD) Fluent Model with WRF Model Input in Transition Season

Authors: Benedictus Asriparusa

Abstract:

In the area of the oil industry, there is accompanied by associated natural gas. The thing shows that a large amount of energy is being wasted mostly in the developing countries by contributing to the global warming process. This research represents an overview of methods in Minas area employed by these researchers in PT. Chevron Pacific Indonesia to determine ways of measuring and reducing gas flaring and its emission drastically. It provides an approximation includes analytical studies, numerical studies, modeling, computer simulations, etc. Flaring system is the controlled burning of natural gas in the course of routine oil and gas production operations. This burning occurs at the end of a flare stack or boom. The combustion process will release emissions of greenhouse gases such as NO2, CO2, SO2, etc. This condition will affect the air and environment around the industrial area. Therefore, we need a simulation to create the pattern of the dissemination of pollutant. This research paper has being made to see trends in gas flaring model and current developments to predict dominant variable which gives impact to dissemination of pollutant. Fluent models used to simulate the distribution of pollutant gas coming out of the stack. While WRF model output is used to overcome the limitations of the analysis of meteorological data and atmospheric conditions in the study area. This study condition focused on transition season in 2012 at Minas area. The goal of the simulation is looking for the exact time which is most influence towards dissemination of pollutants. The most influence factor divided into two main subjects. It is the quickest wind and the slowest wind. According to the simulation results, it can be seen that quickest wind moves to horizontal way and slowest wind moves to vertical way.

Keywords: flaring system, fluent model, dissemination of pollutant, transition season

Procedia PDF Downloads 353
2322 Signal Processing Techniques for Adaptive Beamforming with Robustness

Authors: Ju-Hong Lee, Ching-Wei Liao

Abstract:

Adaptive beamforming using antenna array of sensors is useful in the process of adaptively detecting and preserving the presence of the desired signal while suppressing the interference and the background noise. For conventional adaptive array beamforming, we require a prior information of either the impinging direction or the waveform of the desired signal to adapt the weights. The adaptive weights of an antenna array beamformer under a steered-beam constraint are calculated by minimizing the output power of the beamformer subject to the constraint that forces the beamformer to make a constant response in the steering direction. Hence, the performance of the beamformer is very sensitive to the accuracy of the steering operation. In the literature, it is well known that the performance of an adaptive beamformer will be deteriorated by any steering angle error encountered in many practical applications, e.g., the wireless communication systems with massive antennas deployed at the base station and user equipment. Hence, developing effective signal processing techniques to deal with the problem due to steering angle error for array beamforming systems has become an important research work. In this paper, we present an effective signal processing technique for constructing an adaptive beamformer against the steering angle error. The proposed array beamformer adaptively estimates the actual direction of the desired signal by using the presumed steering vector and the received array data snapshots. Based on the presumed steering vector and a preset angle range for steering mismatch tolerance, we first create a matrix related to the direction vector of signal sources. Two projection matrices are generated from the matrix. The projection matrix associated with the desired signal information and the received array data are utilized to iteratively estimate the actual direction vector of the desired signal. The estimated direction vector of the desired signal is then used for appropriately finding the quiescent weight vector. The other projection matrix is set to be the signal blocking matrix required for performing adaptive beamforming. Accordingly, the proposed beamformer consists of adaptive quiescent weights and partially adaptive weights. Several computer simulation examples are provided for evaluating and comparing the proposed technique with the existing robust techniques.

Keywords: adaptive beamforming, robustness, signal blocking, steering angle error

Procedia PDF Downloads 100
2321 Genetic Algorithm and Multi Criteria Decision Making Approach for Compressive Sensing Based Direction of Arrival Estimation

Authors: Ekin Nurbaş

Abstract:

One of the essential challenges in array signal processing, which has drawn enormous research interest over the past several decades, is estimating the direction of arrival (DOA) of plane waves impinging on an array of sensors. In recent years, the Compressive Sensing based DoA estimation methods have been proposed by researchers, and it has been discovered that the Compressive Sensing (CS)-based algorithms achieved significant performances for DoA estimation even in scenarios where there are multiple coherent sources. On the other hand, the Genetic Algorithm, which is a method that provides a solution strategy inspired by natural selection, has been used in sparse representation problems in recent years and provides significant improvements in performance. With all of those in consideration, in this paper, a method that combines the Genetic Algorithm (GA) and the Multi-Criteria Decision Making (MCDM) approaches for Direction of Arrival (DoA) estimation in the Compressive Sensing (CS) framework is proposed. In this method, we generate a multi-objective optimization problem by splitting the norm minimization and reconstruction loss minimization parts of the Compressive Sensing algorithm. With the help of the Genetic Algorithm, multiple non-dominated solutions are achieved for the defined multi-objective optimization problem. Among the pareto-frontier solutions, the final solution is obtained with the multiple MCDM methods. Moreover, the performance of the proposed method is compared with the CS-based methods in the literature.

Keywords: genetic algorithm, direction of arrival esitmation, multi criteria decision making, compressive sensing

Procedia PDF Downloads 117
2320 Statistical Comparison of Machine and Manual Translation: A Corpus-Based Study of Gone with the Wind

Authors: Yanmeng Liu

Abstract:

This article analyzes and compares the linguistic differences between machine translation and manual translation, through a case study of the book Gone with the Wind. As an important carrier of human feeling and thinking, the literature translation poses a huge difficulty for machine translation, and it is supposed to expose distinct translation features apart from manual translation. In order to display linguistic features objectively, tentative uses of computerized and statistical evidence to the systematic investigation of large scale translation corpora by using quantitative methods have been deployed. This study compiles bilingual corpus with four versions of Chinese translations of the book Gone with the Wind, namely, Piao by Chunhai Fan, Piao by Huairen Huang, translations by Google Translation and Baidu Translation. After processing the corpus with the software of Stanford Segmenter, Stanford Postagger, and AntConc, etc., the study analyzes linguistic data and answers the following questions: 1. How does the machine translation differ from manual translation linguistically? 2. Why do these deviances happen? This paper combines translation study with the knowledge of corpus linguistics, and concretes divergent linguistic dimensions in translated text analysis, in order to present linguistic deviances in manual and machine translation. Consequently, this study provides a more accurate and more fine-grained understanding of machine translation products, and it also proposes several suggestions for machine translation development in the future.

Keywords: corpus-based analysis, linguistic deviances, machine translation, statistical evidence

Procedia PDF Downloads 119
2319 Diagrid Structural System

Authors: K. Raghu, Sree Harsha

Abstract:

The interrelationship between the technology and architecture of tall buildings is investigated from the emergence of tall buildings in late 19th century to the present. In the late 19th century early designs of tall buildings recognized the effectiveness of diagonal bracing members in resisting lateral forces. Most of the structural systems deployed for early tall buildings were steel frames with diagonal bracings of various configurations such as X, K, and eccentric. Though the historical research a filtering concept is developed original and remedial technology- through which one can clearly understand inter-relationship between the technical evolution and architectural esthetic and further stylistic transition buildings. Diagonalized grid structures – “diagrids” - have emerged as one of the most innovative and adaptable approaches to structuring buildings in this millennium. Variations of the diagrid system have evolved to the point of making its use non-exclusive to the tall building. Diagrid construction is also to be found in a range of innovative mid-rise steel projects. Contemporary design practice of tall buildings is reviewed and design guidelines are provided for new design trends. Investigated in depths are the behavioral characteristics and design methodology for diagrids structures, which emerge as a new direction in the design of tall buildings with their powerful structural rationale and symbolic architectural expression. Moreover, new technologies for tall building structures and facades are developed for performance enhancement through design integration, and their architectural potentials are explored. By considering the above data the analysis and design of 40-100 storey diagrids steel buildings is carried out using E-TABS software with diagrids of various angle to be found for entire building which will be helpful to reduce the steel requirement for the structure. The present project will have to undertake wind analysis, seismic analysis for lateral loads acting on the structure due to wind loads, earthquake loads, gravity loads. All structural members are designed as per IS 800-2007 considering all load combination. Comparison of results in terms of time period, top storey displacement and inter-storey drift to be carried out. The secondary effect like temperature variations are not considered in the design assuming small variation.

Keywords: diagrid, bracings, structural, building

Procedia PDF Downloads 357
2318 Orientation of Rotating Platforms on Mobile Vehicles by GNNS

Authors: H. İmrek, O. Corumluoglu, B. Akdemir, I. Sanlioglu

Abstract:

It is important to be able to determine the heading direction of a moving vehicle with respect to a distant location. Additionally, it is important to be able to direct a rotating platform on a moving vehicle towards a distant position or location on the earth surface, especially for applications such as determination of the Kaaba direction for daily Muslim prayers. GNNS offers some reasonable solutions. In this study, a functional model of such a directing system supported by GNNS is discussed, and an appropriate system is designed for these purposes. An application for directing system is done by using RTK and DGNSS. Accuracy estimations are given for this system.

Keywords: GNNS, orientation of rotating platform, vehicle orientation, prayer aid device

Procedia PDF Downloads 371
2317 Risk Assessment of Radiation Hazard for a Typical WWER1000: Cancer Risk Analysis during a Hypothetical Accident

Authors: R. Gharari, N. Kojouri, R. Hosseini Aghdam, E. Alibeigi, B. Salmasian

Abstract:

In this research, the WWER1000/V446 (a PWR Russian type reactor) is chosen as the case study. It is assumed that radioactive materials that release into the environment are more than allowable limit due to a complete failure of the ventilation system (reactor stack). In the following, the HOTSPOT and the RASCAL computational codes have been used and coupled with a developed program using MATLAB software to evaluate Total effective dose equivalent (TEDE) and cancer risk according to the BEIR equations for various human organs. In addition, effects of the containment spray system and climate conditions on the TEDE have been investigated. According to the obtained results, there is an inverse correlation between the received dose and the wind speed; the amount of the TEDE for wind speed 2 m/s and is more than wind speed for 14 m/s during the class A of the climate (2.168 and 0.444 mSv, respectively). Also, containment spray system can effect and reduce the amount of the fission products and TEDE. Furthermore, the probability of the cancer risk for women is more than men, and for children is more than adults. In addition, a specific emergency zonal planning is proposed. Results are promising in which the site selection of the WWER1000/V446 were considered safe for the public in this situation.

Keywords: TEDE, total effective dose equivalent, RASCAL and HOTSPOT codes, BEIR equations, cancer risk

Procedia PDF Downloads 143