Search results for: traffic monitoring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4191

Search results for: traffic monitoring

3741 Mixed Traffic Speed–Flow Behavior under Influence of Road Side Friction and Non-Motorized Vehicles: A Comparative Study of Arterial Roads in India

Authors: Chetan R. Patel, G. J. Joshi

Abstract:

The present study is carried out on six lane divided urban arterial road in Patna and Pune city of India. Both the road having distinct differences in terms of the vehicle composition and the road side parking. Arterial road in Patan city has 33% of non-motorized mode, whereas Pune arterial road dominated by 65% of Two wheeler. Also road side parking is observed in Patna city. The field studies using vidiographic techniques are carried out for traffic data collection. Data are extracted for one minute duration for vehicle composition, speed variation and flow rate on selected arterial road of the two cities. Speed flow relationship is developed and capacity is determine. Equivalency factor in terms of dynamic car unit is determine to represent the vehicle is single unit. The variation in the capacity due to side friction, presence of non motorized traffic and effective utilization of lane width is compared at concluding remarks.

Keywords: arterial road, capacity, dynamic equivalency factor, effect of non motorized mode, side friction

Procedia PDF Downloads 348
3740 An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling

Authors: Amin Nezarat, Naeime Seifadini

Abstract:

Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.

Keywords: predicting, deep learning, neural network, urban trip

Procedia PDF Downloads 138
3739 Preferences of Electric Buses in Public Transport; Conclusions from Real Life Testing in Eight Swedish Municipalities

Authors: Sven Borén, Lisiana Nurhadi, Henrik Ny

Abstract:

From a theoretical perspective, electric buses can be more sustainable and can be cheaper than fossil fuelled buses in city traffic. The authors have not found other studies based on actual urban public transport in Swedish winter climate. Further on, noise measurements from buses for the European market were found old. The aims of this follow-up study was therefore to test and possibly verify in a real-life environment how energy efficient and silent electric buses are, and then conclude on if electric buses are preferable to use in public transport. The Ebusco 2.0 electric bus, fitted with a 311 kWh battery pack, was used and the tests were carried out during November 2014-April 2015 in eight municipalities in the south of Sweden. Six tests took place in urban traffic and two took place in more of a rural traffic setting. The energy use for propulsion was measured via logging of the internal system in the bus and via an external charging meter. The average energy use turned out to be 8% less (0,96 kWh/km) than assumed in the earlier theoretical study. This rate allows for a 320 km range in public urban traffic. The interior of the bus was kept warm by a diesel heater (biodiesel will probably be used in a future operational traffic situation), which used 0,67 kWh/km in January. This verified that electric buses can be up to 25% cheaper when used in public transport in cities for about eight years. The noise was found to be lower, primarily during acceleration, than for buses with combustion engines in urban bus traffic. According to our surveys, most passengers and drivers appreciated the silent and comfortable ride and preferred electric buses rather than combustion engine buses. Bus operators and passenger transport executives were also positive to start using electric buses for public transport. The operators did however point out that procurement processes need to account for eventual risks regarding this new technology, along with personnel education. The study revealed that it is possible to establish a charging infrastructure for almost all studied bus lines. However, design of a charging infrastructure for each municipality requires further investigations, including electric grid capacity analysis, smart location of charging points, and tailored schedules to allow fast charging. In conclusion, electric buses proved to be a preferable alternative for all stakeholders involved in public bus transport in the studied municipalities. However, in order to electric buses to be a prominent support for sustainable development, they need to be charged either by stand-alone units or via an expansion of the electric grid, and the electricity should be made from new renewable sources.

Keywords: sustainability, electric, bus, noise, greencharge

Procedia PDF Downloads 342
3738 Application of GPRS in Water Quality Monitoring System

Authors: V. Ayishwarya Bharathi, S. M. Hasker, J. Indhu, M. Mohamed Azarudeen, G. Gowthami, R. Vinoth Rajan, N. Vijayarangan

Abstract:

Identification of water quality conditions in a river system based on limited observations is an essential task for meeting the goals of environmental management. The traditional method of water quality testing is to collect samples manually and then send to laboratory for analysis. However, it has been unable to meet the demands of water quality monitoring today. So a set of automatic measurement and reporting system of water quality has been developed. In this project specifies Water quality parameters collected by multi-parameter water quality probe are transmitted to data processing and monitoring center through GPRS wireless communication network of mobile. The multi parameter sensor is directly placed above the water level. The monitoring center consists of GPRS and micro-controller which monitor the data. The collected data can be monitor at any instant of time. In the pollution control board they will monitor the water quality sensor data in computer using Visual Basic Software. The system collects, transmits and processes water quality parameters automatically, so production efficiency and economy benefit are improved greatly. GPRS technology can achieve well within the complex environment of poor water quality non-monitored, and more specifically applicable to the collection point, data transmission automatically generate the field of water analysis equipment data transmission and monitoring.

Keywords: multiparameter sensor, GPRS, visual basic software, RS232

Procedia PDF Downloads 412
3737 Energy Detection Based Sensing and Primary User Traffic Classification for Cognitive Radio

Authors: Urvee B. Trivedi, U. D. Dalal

Abstract:

As wireless communication services grow quickly; the seriousness of spectrum utilization has been on the rise gradually. An emerging technology, cognitive radio has come out to solve today’s spectrum scarcity problem. To support the spectrum reuse functionality, secondary users are required to sense the radio frequency environment, and once the primary users are found to be active, the secondary users are required to vacate the channel within a certain amount of time. Therefore, spectrum sensing is of significant importance. Once sensing is done, different prediction rules apply to classify the traffic pattern of primary user. Primary user follows two types of traffic patterns: periodic and stochastic ON-OFF patterns. A cognitive radio can learn the patterns in different channels over time. Two types of classification methods are discussed in this paper, by considering edge detection and by using autocorrelation function. Edge detection method has a high accuracy but it cannot tolerate sensing errors. Autocorrelation-based classification is applicable in the real environment as it can tolerate some amount of sensing errors.

Keywords: cognitive radio (CR), probability of detection (PD), probability of false alarm (PF), primary user (PU), secondary user (SU), fast Fourier transform (FFT), signal to noise ratio (SNR)

Procedia PDF Downloads 345
3736 Modeling User Departure Time Choice for Work Trips in High Traffic Suburban Roads

Authors: Saeed Sayyad Hagh Shomar

Abstract:

Modeling users’ decisions on departure time choice is the main motivation for this research. In particular, it examines the impact of social-demographic features, household, job characteristics and trip qualities on individuals’ departure time choice. Departure time alternatives are presented as adjacent discrete time periods. The choice between these alternatives is done using a discrete choice model. Since a great deal of early morning trips and traffic congestion at that time of the day comprise work trips, the focus of this study is on the work trip over the entire day. Therefore, this study by using the users’ stated preference in questionnaire models users’ departure time choice affected by congestion pricing schemes in high traffic suburban entrance roads of Tehran. The results demonstrate efficient social-demographic impact on work trips’ departure time. These findings have substantial outcomes for the analysis of transportation planning. Particularly, the analysis shows that ignoring the effects of these variables could result in erroneous information and consequently decisions in the field of transportation planning and air quality would fail and cause financial resources loss.

Keywords: congestion pricing, departure time, modeling, travel timing, time of the day, transportation planning

Procedia PDF Downloads 298
3735 Economical and Technical Analysis of Urban Transit System Selection Using TOPSIS Method According to Constructional and Operational Aspects

Authors: Ali Abdi Kordani, Meysam Rooyintan, Sid Mohammad Boroomandrad

Abstract:

Nowadays, one the most important problems in megacities is public transportation and satisfying citizens from this system in order to decrease the traffic congestions and air pollution. Accordingly, to improve the transit passengers and increase the travel safety, new transportation systems such as Bus Rapid Transit (BRT), tram, and monorail have expanded that each one has different merits and demerits. That is why comparing different systems for a systematic selection of public transportation systems in a big city like Tehran, which has numerous problems in terms of traffic and pollution, is essential. In this paper, it is tried to investigate the advantages and feasibility of using monorail, tram and BRT systems, which are widely used in most of megacities in all over the world. In Tehran, by using SPSS statistical analysis software and TOPSIS method, these three modes are compared to each other and their results will be assessed. Experts, who are experienced in the transportation field, answer the prepared matrix questionnaire to select each public transportation mode (tram, monorail, and BRT). The results according to experts’ judgments represent that monorail has the first priority, Tram has the second one, and BRT has the third one according to the considered indices like execution costs, wasting time, depreciation, pollution, operation costs, travel time, passenger satisfaction, benefit to cost ratio and traffic congestion.

Keywords: BRT, costs, monorail, pollution, tram

Procedia PDF Downloads 177
3734 The Data Quality Model for the IoT based Real-time Water Quality Monitoring Sensors

Authors: Rabbia Idrees, Ananda Maiti, Saurabh Garg, Muhammad Bilal Amin

Abstract:

IoT devices are the basic building blocks of IoT network that generate enormous volume of real-time and high-speed data to help organizations and companies to take intelligent decisions. To integrate this enormous data from multisource and transfer it to the appropriate client is the fundamental of IoT development. The handling of this huge quantity of devices along with the huge volume of data is very challenging. The IoT devices are battery-powered and resource-constrained and to provide energy efficient communication, these IoT devices go sleep or online/wakeup periodically and a-periodically depending on the traffic loads to reduce energy consumption. Sometime these devices get disconnected due to device battery depletion. If the node is not available in the network, then the IoT network provides incomplete, missing, and inaccurate data. Moreover, many IoT applications, like vehicle tracking and patient tracking require the IoT devices to be mobile. Due to this mobility, If the distance of the device from the sink node become greater than required, the connection is lost. Due to this disconnection other devices join the network for replacing the broken-down and left devices. This make IoT devices dynamic in nature which brings uncertainty and unreliability in the IoT network and hence produce bad quality of data. Due to this dynamic nature of IoT devices we do not know the actual reason of abnormal data. If data are of poor-quality decisions are likely to be unsound. It is highly important to process data and estimate data quality before bringing it to use in IoT applications. In the past many researchers tried to estimate data quality and provided several Machine Learning (ML), stochastic and statistical methods to perform analysis on stored data in the data processing layer, without focusing the challenges and issues arises from the dynamic nature of IoT devices and how it is impacting data quality. A comprehensive review on determining the impact of dynamic nature of IoT devices on data quality is done in this research and presented a data quality model that can deal with this challenge and produce good quality of data. This research presents the data quality model for the sensors monitoring water quality. DBSCAN clustering and weather sensors are used in this research to make data quality model for the sensors monitoring water quality. An extensive study has been done in this research on finding the relationship between the data of weather sensors and sensors monitoring water quality of the lakes and beaches. The detailed theoretical analysis has been presented in this research mentioning correlation between independent data streams of the two sets of sensors. With the help of the analysis and DBSCAN, a data quality model is prepared. This model encompasses five dimensions of data quality: outliers’ detection and removal, completeness, patterns of missing values and checks the accuracy of the data with the help of cluster’s position. At the end, the statistical analysis has been done on the clusters formed as the result of DBSCAN, and consistency is evaluated through Coefficient of Variation (CoV).

Keywords: clustering, data quality, DBSCAN, and Internet of things (IoT)

Procedia PDF Downloads 139
3733 Assessment of Pollutant Concentrations and Respiratory Tract Depositions of PM from Traffic Emissions: A Case Study of a Highway Toll Plaza in India

Authors: Nazneen, Aditya Kumar Patra

Abstract:

The aim of this study was to investigate the personal exposures of toll plaza workers on a busy national highway in India during the winter season to PM₂.₅, PM₁₀, BC (black carbon), and UFP (ultrafine particles). The results showed that toll workers inside the toll collection booths (ITC) were exposed to higher concentrations of air pollutants than those working outside the booths (OTC), except for UFP. Specifically, the concentrations of PM₂.₅ were 20₄.₇ µg m⁻³ (ITC) and 100.4 µg m⁻³ (OTC), while PM₁₀ concentrations were 326.1 µg m⁻³ (ITC) and 24₄.₇ µg m⁻³ (OTC), and BC concentrations were 30.7 µg m⁻³ (ITC) and 17.2 µg m⁻³ (OTC). In contrast, UFP concentrations were higher at OTC (11312.8 pt cm⁻³) than at IOC (7431.6 pt cm⁻³). The diurnal variation of pollutants showed higher concentrations in the evening due to increased traffic and less atmospheric dispersion. The respiratory deposition dose (RDD) of pollutants was higher inside the toll booths, especially during the evening. The study also revealed that PM particles consisted of soot, mineral and fly ash, which are proxies of fresh exhaust emissions, re-suspended road dust, and industrial emissions, respectively. The presence of Si, Al, Ca and Pb, as confirmed by EDX (Energy Dispersive X-ray analysis) analyses, indicated the sources of pollutants to be re-suspended road dust, brake/tire wear, and construction dust. The findings emphasize the need for policies to regulate air pollutant concentrations, particularly in workplaces situated near busy roads.

Keywords: air pollution, PM₂.₅, black carbon, traffic emissions

Procedia PDF Downloads 87
3732 A Real Time Monitoring System of the Supply Chain Conditions, Products and Means of Transport

Authors: Dimitris E. Kontaxis, George Litainas, Dimitris P. Ptochos

Abstract:

Real-time monitoring of the supply chain conditions and procedures is a critical element for the optimal coordination and safety of the deliveries, as well as for the minimization of the delivery time and cost. Real-time monitoring requires IoT data streams, which are related to the conditions of the products and the means of transport (e.g., location, temperature/humidity conditions, kinematic state, ambient light conditions, etc.). These streams are generated by battery-based IoT tracking devices, equipped with appropriate sensors, and are transmitted to a cloud-based back-end system. Proper handling and processing of the IoT data streams, using predictive and artificial intelligence algorithms, can provide significant and useful results, which can be exploited by the supply chain stakeholders in order to enhance their financial benefits, as well as the efficiency, security, transparency, coordination, and sustainability of the supply chain procedures. The technology, the features, and the characteristics of a complete, proprietary system, including hardware, firmware, and software tools -developed in the context of a co-funded R&D programme- are addressed and presented in this paper.

Keywords: IoT embedded electronics, real-time monitoring, tracking device, sensor platform

Procedia PDF Downloads 177
3731 Artificial Intelligence and Governance in Relevance to Satellites in Space

Authors: Anwesha Pathak

Abstract:

With the increasing number of satellites and space debris, space traffic management (STM) becomes crucial. AI can aid in STM by predicting and preventing potential collisions, optimizing satellite trajectories, and managing orbital slots. Governance frameworks need to address the integration of AI algorithms in STM to ensure safe and sustainable satellite activities. AI and governance play significant roles in the context of satellite activities in space. Artificial intelligence (AI) technologies, such as machine learning and computer vision, can be utilized to process vast amounts of data received from satellites. AI algorithms can analyse satellite imagery, detect patterns, and extract valuable information for applications like weather forecasting, urban planning, agriculture, disaster management, and environmental monitoring. AI can assist in automating and optimizing satellite operations. Autonomous decision-making systems can be developed using AI to handle routine tasks like orbit control, collision avoidance, and antenna pointing. These systems can improve efficiency, reduce human error, and enable real-time responsiveness in satellite operations. AI technologies can be leveraged to enhance the security of satellite systems. AI algorithms can analyze satellite telemetry data to detect anomalies, identify potential cyber threats, and mitigate vulnerabilities. Governance frameworks should encompass regulations and standards for securing satellite systems against cyberattacks and ensuring data privacy. AI can optimize resource allocation and utilization in satellite constellations. By analyzing user demands, traffic patterns, and satellite performance data, AI algorithms can dynamically adjust the deployment and routing of satellites to maximize coverage and minimize latency. Governance frameworks need to address fair and efficient resource allocation among satellite operators to avoid monopolistic practices. Satellite activities involve multiple countries and organizations. Governance frameworks should encourage international cooperation, information sharing, and standardization to address common challenges, ensure interoperability, and prevent conflicts. AI can facilitate cross-border collaborations by providing data analytics and decision support tools for shared satellite missions and data sharing initiatives. AI and governance are critical aspects of satellite activities in space. They enable efficient and secure operations, ensure responsible and ethical use of AI technologies, and promote international cooperation for the benefit of all stakeholders involved in the satellite industry.

Keywords: satellite, space debris, traffic, threats, cyber security.

Procedia PDF Downloads 76
3730 An Android Application for ECG Monitoring and Evaluation Using Pan-Tompkins Algorithm

Authors: Cebrail Çiflikli, Emre Öner Tartan

Abstract:

Parallel to the fast worldwide increase of elderly population and spreading unhealthy life habits, there is a significant rise in the number of patients and health problems. The supervision of people who have health problems and oversight in detection of people who have potential risks, bring a considerable cost to health system and increase workload of physician. To provide an efficient solution to this problem, in the recent years mobile applications have shown their potential for wide usage in health monitoring. In this paper we present an Android mobile application that records and evaluates ECG signal using Pan-Tompkins algorithm for QRS detection. The application model includes an alarm mechanism that is proposed to be used for sending message including abnormality information and location information to health supervisor.

Keywords: Android mobile application, ECG monitoring, QRS detection, Pan-Tompkins Algorithm

Procedia PDF Downloads 234
3729 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. It also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 60
3728 Strength Properties of Concrete Paving Blocks with Fly Ash and Glass Powder

Authors: Joel Santhosh, N. Bhavani Shankar Rao

Abstract:

Problems associated with construction site have been known for many years. Construction industry has to support a world of continuing population growth and economic development. The rising costs of construction materials and the need to adhere to sustainability, alternative construction techniques and materials are being sought. To increase the applications of concrete paving blocks, greater understanding of products produced with locally available materials and indigenously produced mineral admixtures is essential. In the present investigation, concrete paving blocks may be produced with locally available aggregates, cement, fly ash and waste glass powder as the mineral admixture. The ultimate aim of this work is to ascertain the performance of concrete paving blocks containing fly ash and glass powder and compare it with the performance of conventional concrete paving blocks. Mix design is carried out to form M40 grade of concrete by using IS: 10262: 2009 and specification given by IRC: SP: 63: 2004. The paving blocks are tested in accordance to IS: 15658: 2006. It showed that the partial replacement of cement by fly ash and waste glass powder satisfies the minimum requirement as specified by the Indian standard IS: 15658: 2006 for concrete paving blocks to be used in non traffic, light traffic and medium-heavy traffic areas. The study indicated that fly ash and waste glass powder can effectively be used as cement replacement without substantial change in strength.

Keywords: paving block, fly ash, glass powder, strength, abrasion resistance, durability

Procedia PDF Downloads 299
3727 Satellite-Based Drought Monitoring in Korea: Methodologies and Merits

Authors: Joo-Heon Lee, Seo-Yeon Park, Chanyang Sur, Ho-Won Jang

Abstract:

Satellite-based remote sensing technique has been widely used in the area of drought and environmental monitoring to overcome the weakness of in-situ based monitoring. There are many advantages of remote sensing for drought watch in terms of data accessibility, monitoring resolution and types of available hydro-meteorological data including environmental areas. This study was focused on the applicability of drought monitoring based on satellite imageries by applying to the historical drought events, which had a huge impact on meteorological, agricultural, and hydrological drought. Satellite-based drought indices, the Standardized Precipitation Index (SPI) using Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM); Vegetation Health Index (VHI) using MODIS based Land Surface Temperature (LST), and Normalized Difference Vegetation Index (NDVI); and Scaled Drought Condition Index (SDCI) were evaluated to assess its capability to analyze the complex topography of the Korean peninsula. While the VHI was accurate when capturing moderate drought conditions in agricultural drought-damaged areas, the SDCI was relatively well monitored in hydrological drought-damaged areas. In addition, this study found correlations among various drought indices and applicability using Receiver Operating Characteristic (ROC) method, which will expand our understanding of the relationships between hydro-meteorological variables and drought events at global scale. The results of this research are expected to assist decision makers in taking timely and appropriate action in order to save millions of lives in drought-damaged areas.

Keywords: drought monitoring, moderate resolution imaging spectroradiometer (MODIS), remote sensing, receiver operating characteristic (ROC)

Procedia PDF Downloads 329
3726 Deep Routing Strategy: Deep Learning based Intelligent Routing in Software Defined Internet of Things.

Authors: Zabeehullah, Fahim Arif, Yawar Abbas

Abstract:

Software Defined Network (SDN) is a next genera-tion networking model which simplifies the traditional network complexities and improve the utilization of constrained resources. Currently, most of the SDN based Internet of Things(IoT) environments use traditional network routing strategies which work on the basis of max or min metric value. However, IoT network heterogeneity, dynamic traffic flow and complexity demands intelligent and self-adaptive routing algorithms because traditional routing algorithms lack the self-adaptions, intelligence and efficient utilization of resources. To some extent, SDN, due its flexibility, and centralized control has managed the IoT complexity and heterogeneity but still Software Defined IoT (SDIoT) lacks intelligence. To address this challenge, we proposed a model called Deep Routing Strategy (DRS) which uses Deep Learning algorithm to perform routing in SDIoT intelligently and efficiently. Our model uses real-time traffic for training and learning. Results demonstrate that proposed model has achieved high accuracy and low packet loss rate during path selection. Proposed model has also outperformed benchmark routing algorithm (OSPF). Moreover, proposed model provided encouraging results during high dynamic traffic flow.

Keywords: SDN, IoT, DL, ML, DRS

Procedia PDF Downloads 110
3725 On-Site Management from Reactive to Proactive

Authors: Yu-Tzu Chen, Luh-Maan Chang

Abstract:

Construction is an inherently risky industry. The projects have been dominated by reactive actions owing to non-routine in nature. The on-site activities are especially crucial for successful project control. In order to alter actions from reactive to proactive, this paper presents an on-site data collection system utilizing advanced technology RFID and GPS in assisting on-site management with near real time progress monitoring.

Keywords: On-Site management, progress monitoring, RFID, GPS

Procedia PDF Downloads 568
3724 Comparative Assessment of Bus Rapid Transit System in India

Authors: Namrata Ghosh, Sapan Tiwari

Abstract:

Public transport service plays an important role in people's transportation needs in urban areas. Bus Rapid Transit System (BRTS) is a transport service that provides passengers with a quick and efficient mode of transport. It is developed by changing the existing infrastructure, vehicles, route, or by developing a new dedicated corridor for the bus route. This dedicated lanes transport passengers to their destination quickly and efficiently and flexible in meeting demand. However, with rapid urbanization and increasing population density in Indian cities, traffic congestion has become a significant issue. In a few Indian cities, the BRTS concept is implemented to address the issue of traffic congestion that eventually resulted in less road congestion. The research aims to provide a literature review on the overall outlook of the BRTS system and its practical implementation in mass urban transit. First, it reflects a literature review on the concept of the BRTS system in both developed and developing countries. Afterward, comparative analysis of BRTS, hindrances associated with the permanent integrated system, and the need for establishing the Bus Rapid Transit System in Indian cities is demonstrated. The research concludes with some recommendations that could help in improving the loopholes in the existing system.

Keywords: bus rapid transit system(BRTS), dedicated corridor, public transport, traffic congestion

Procedia PDF Downloads 286
3723 Portfolio Selection with Active Risk Monitoring

Authors: Marc S. Paolella, Pawel Polak

Abstract:

The paper proposes a framework for large-scale portfolio optimization which accounts for all the major stylized facts of multivariate financial returns, including volatility clustering, dynamics in the dependency structure, asymmetry, heavy tails, and non-ellipticity. It introduces a so-called risk fear portfolio strategy which combines portfolio optimization with active risk monitoring. The former selects optimal portfolio weights. The latter, independently, initiates market exit in case of excessive risks. The strategy agrees with the stylized fact of stock market major sell-offs during the initial stage of market downturns. The advantages of the new framework are illustrated with an extensive empirical study. It leads to superior multivariate density and Value-at-Risk forecasting, and better portfolio performance. The proposed risk fear portfolio strategy outperforms various competing types of optimal portfolios, even in the presence of conservative transaction costs and frequent rebalancing. The risk monitoring of the optimal portfolio can serve as an early warning system against large market risks. In particular, the new strategy avoids all the losses during the 2008 financial crisis, and it profits from the subsequent market recovery.

Keywords: comfort, financial crises, portfolio optimization, risk monitoring

Procedia PDF Downloads 525
3722 Knowledge and Ontology Engineering in Continuous Monitoring of Production Systems

Authors: Maciej Zaręba, Sławomir Lasota

Abstract:

The monitoring of manufacturing processes is an important issue in nowadays ERP systems. The identification and analysis of appropriate data for the units that take part in the production process are ones of the most crucial problems. In this paper, the authors introduce a new approach towards modelling the relation between production units, signals, and factors possible to obtain from the production system. The main idea for the system is based on the ontology of production units.

Keywords: manufacturing operation management, OWL, ontology implementation, ontology modeling

Procedia PDF Downloads 120
3721 Development of MEMS Based 3-Axis Accelerometer for Hand Movement Monitoring

Authors: Zohra Aziz Ali Manjiyani, Renju Thomas Jacob, Keerthan Kumar

Abstract:

This project develops a hand movement monitoring system, which feeds the data into the computer and gives the 3D image rotation according to the direction of the tilt and hence monitoring the movement of the hand in context to its tilt. Advancement of MEMS Technology has enabled us to get very small and low-cost accelerometer ICs which is based on capacitive principle. Accelerometer based Tilt sensor ADXL335 is used in this paper, based on MEMS technology and the project emphasis on the development of the MEMS-based accelerometer to measure the tilt, interfacing the hardware with the LabVIEW and showing the 3D rotation to the user, which is in his understandable form and tilt data can be saved in the computer. It provides an experience of working on emerging technologies like MEMS and design software like LabVIEW.

Keywords: MEMS accelerometer, tilt sensor ADXL335, LabVIEW simulation, 3D animation

Procedia PDF Downloads 516
3720 Flood Monitoring Using Active Microwave Remote Sensed Synthetic Aperture Radar Data

Authors: Bikramjit Goswami, Manoranjan Kalita

Abstract:

Active microwave remote sensing is useful in remote sensing applications in cloud-covered regions in the world. Because of high spatial resolution, the spatial variations of land cover can be monitored in greater detail using synthetic aperture radar (SAR). Inundation is studied using the SAR images obtained from Sentinel-1A in both VH and VV polarizations in the present experimental study. The temporal variation of the SAR scattering coefficient values for the area gives a good indication of flood and its boundary. The study area is the district of Morigaon in the state of Assam in India. The period of flood monitoring study is the monsoon season of the year 2017, during which high flood occurred in the state of Assam. The variation of microwave scattering value shows a distinctive indication of flood from the non-flooded period. Frequent monitoring of flood in a large area (10 km x 10 km) using passive microwave sensing and pin-pointing the actual flooded portions (5 m x 5 m) within the flooded area using active microwave sensing, can be a highly useful combination, as revealed by the present experimental results.

Keywords: active remote sensing, flood monitoring, microwave remote sensing, synthetic aperture radar

Procedia PDF Downloads 151
3719 Modular Probe for Basic Monitoring of Water and Air Quality

Authors: Andrés Calvillo Téllez, Marianne Martínez Zanzarric, José Cruz Núñez Pérez

Abstract:

A modular system that performs basic monitoring of both water and air quality is presented. Monitoring is essential for environmental, aquaculture, and agricultural disciplines, where this type of instrumentation is necessary for data collection. The system uses low-cost components, which allows readings close to those with high-cost probes. The probe collects readings such as the coordinates of the geographical position, as well as the time it records the target parameters of the monitored. The modules or subsystems that make up the probe are the global positioning (GPS), which shows the altitude, latitude, and longitude data of the point where the reading will be recorded, a real-time clock stage, the date marking the time, the module SD memory continuously stores data, data acquisition system, central processing unit, and energy. The system acquires parameters to measure water quality, conductivity, pressure, and temperature, and for air, three types of ammonia, dioxide, and carbon monoxide gases were censored. The information obtained allowed us to identify the schedule of modification of the parameters and the identification of the ideal conditions for the growth of microorganisms in the water.

Keywords: calibration, conductivity, datalogger, monitoring, real time clock, water quality

Procedia PDF Downloads 103
3718 Development, Testing, and Application of a Low-Cost Technology Sulphur Dioxide Monitor as a Tool for use in a Volcanic Emissions Monitoring Network

Authors: Viveka Jackson, Erouscilla Joseph, Denise Beckles, Thomas Christopher

Abstract:

Sulphur Dioxide (SO2) has been defined as a non-flammable, non-explosive, colourless gas, having a pungent, irritating odour, and is one of the main gases emitted from volcanoes. Sulphur dioxide has been recorded in concentrations hazardous to humans (0.25 – 0.5 ppm (~650 – 1300 μg/m3), downwind of many volcanoes and hence warrants constant air-quality monitoring around these sites. It has been linked to an increase in chronic respiratory disease attributed to long-term exposures and alteration in lung and other physiological functions attributed to short-term exposures. Sulphur Springs in Saint Lucia is a highly active geothermal area, located within the Soufrière Volcanic Centre, and is a park widely visited by tourists and locals. It is also a current source of continuous volcanic emissions via its many fumaroles and bubbling pools, warranting concern by residents and visitors to the park regarding the effects of exposure to these gases. In this study, we introduce a novel SO2 measurement system for the monitoring and quantification of ambient levels of airborne volcanic SO2 using low-cost technology. This work involves the extensive production of low-cost SO2 monitors/samplers, as well as field examination in tandem with standard commercial samplers (SO2 diffusion tubes). It also incorporates community involvement in the volcanic monitoring process as non-professional users of the instrument. We intend to present the preliminary monitoring results obtained from the low-cost samplers, to identify the areas in the Park exposed to high concentrations of ambient SO2, and to assess the feasibility of the instrument for non-professional use and application in volcanic settings

Keywords: ambient SO2, community-based monitoring, risk-reduction, sulphur springs, low-cost

Procedia PDF Downloads 467
3717 Maximizing Bidirectional Green Waves for Major Road Axes

Authors: Christian Liebchen

Abstract:

Both from an environmental perspective and with respect to road traffic flow quality, planning so-called green waves along major road axes is a well-established target for traffic engineers. For one-way road axes (e.g. the Avenues in Manhattan), this is a trivial downstream task. For bidirectional arterials, the well-known necessary condition for establishing a green wave in both directions is that the driving times between two subsequent crossings must be an integer multiple of half of the cycle time of the signal programs at the nodes. In this paper, we propose an integer linear optimization model to establish fixed-time green waves in both directions that are as long and as wide as possible, even in the situation where the driving time condition is not fulfilled. In particular, we are considering an arterial along whose nodes separate left-turn signal groups are realized. In our computational results, we show that scheduling left-turn phases before or after the straight phases can reduce waiting times along the arterial. Moreover, we show that there is always a solution with green waves in both directions that are as long and as wide as possible, where absolute priority is put on just one direction. Compared to optimizing both directions together, establishing an ideal green wave into one direction can only provide suboptimal quality when considering prioritized parts of a green band (e.g., first few seconds).

Keywords: traffic light coordination, synchronization, phase sequencing, green waves, integer programming

Procedia PDF Downloads 117
3716 Standards of Toxicity and Food Security in Brazil

Authors: Ana Luiza Da Gama E Souza

Abstract:

This article aims to discuss the problem of food insecurity in Brazil in what it refers to contamination of food by chemical substances such as herbicides, pesticides, and other contaminants. The issue will be faced by analyzing, on the one hand, the standards that guide the food system in the world and, on the other hand, human rights indicators whose purpose is to provide an effective monitoring of the State's obligations to guarantee food security, analyzing the implications of the former for the success of the latter. The methodology adopted in this article was bibliographic-documentary and consists of three moments of analysis. The first moment consists in the analysis of the reports of the Commission on Human Rights of the Organization of American States to identify the set of progress indicators developed by the Commission. This analysis will involve the new methodology used to evaluate the efficiency in monitoring food security in Brazil the case of using pesticides in the production of food at levels of toxicity not admitted by the inspection bodies. The second moment consists in evaluating the mechanism for monitoring food security in Brazil, which was initially established by the National Food Security Plan (PLANSAN) for 2012-2015 and improved by the II National Food Security Plan for 2016-2019. Those mechanisms were prepared by the Chamber (CAISAN), and have the function to compare the monitoring proposals with the results presented by CAISAN on the Indicators and Results Report of the National Plan for Food and Nutrition Security 2012-2015. The third moment was intended to understand, analyze and evaluate the standardization process of the agri-food system, especially regarding the level of toxicity standards, that is related to food safety monitoring as a guarantee of pesticide-free food. The results show the dependence between private standards of toxicity and the indicators of food safety that leads to inefficiency on monitoring that mechanism in Brazil.

Keywords: standards, indicators, human rights, food security

Procedia PDF Downloads 333
3715 Parental Monitoring of Learners’ Cell Phone Use in the Eastern Cape, South Africa

Authors: Melikhaya Skhephe, Robert Mawuli Kwasi Boadzo, Zanoxolo Berington Gobingca

Abstract:

This research study sought to examine parental monitoring of learners’ cell phone use in the Eastern Cape, South Africa. To this end, the researchers employed a quantitative approach. Data were obtained through questionnaires, with a sample of 15 parents having been purposively selected. The findings revealed that parents are unaware that they have to monitor the learner’s cell phone. Another finding was that parents in the 21-century did not support the use of mobile phones in education. The researchers recommend that parent’s discussion forums be created to educate parents on how a cell phone can be used in education. Cellphone companies need to be encouraged to educate parents on how they monitor cell phones used by learners. Another recommendation was that network providers need to restrict access to searching on the internet according to age.

Keywords: parental monitoring, app blocking services, learner’s cell phone use, cell phone

Procedia PDF Downloads 160
3714 Designing a Patient Monitoring System Using Cloud and Semantic Web Technologies

Authors: Chryssa Thermolia, Ekaterini S. Bei, Stelios Sotiriadis, Kostas Stravoskoufos, Euripides G. M. Petrakis

Abstract:

Moving into a new era of healthcare, new tools and devices are developed to extend and improve health services, such as remote patient monitoring and risk prevention. In this concept, Internet of Things (IoT) and Cloud Computing present great advantages by providing remote and efficient services, as well as cooperation between patients, clinicians, researchers and other health professionals. This paper focuses on patients suffering from bipolar disorder, a brain disorder that belongs to a group of conditions called effective disorders, which is characterized by great mood swings.We exploit the advantages of Semantic Web and Cloud Technologies to develop a patient monitoring system to support clinicians. Based on intelligently filtering of evidence-knowledge and individual-specific information we aim to provide treatment notifications and recommended function tests at appropriate times or concluding into alerts for serious mood changes and patient’s non-response to treatment. We propose an architecture, as the back-end part of a cloud platform for IoT, intertwining intelligence devices with patients’ daily routine and clinicians’ support.

Keywords: bipolar disorder, intelligent systems patient monitoring, semantic web technologies, healthcare

Procedia PDF Downloads 509
3713 Effects of a Cooler on the Sampling Process in a Continuous Emission Monitoring System

Authors: J. W. Ahn, I. Y. Choi, T. V. Dinh, J. C. Kim

Abstract:

A cooler has been widely employed in the extractive system of the continuous emission monitoring system (CEMS) to remove water vapor in the gas stream. The effect of the cooler on analytical target gases was investigated in this research. A commercial cooler for the CEMS operated at 4 C was used. Several gases emitted from a coal power plant (i.e. CO2, SO2, NO, NO2 and CO) were mixed with humid air, and then introduced into the cooler to observe its effect. Concentrations of SO2, NO, NO2 and CO were made as 200 ppm. The CO2 concentration was 8%. The inlet absolute humidity was produced as 12.5% at 100 C using a bubbling method. It was found that the reduction rate of SO2 was the highest (~21%), followed by NO2 (~17%), CO2 (~11%) and CO (~10%). In contrast, the cooler was not affected by NO gas. The result indicated that the cooler caused a significant effect on the water soluble gases due to condensate water in the cooler. To overcome this problem, a correction factor may be applied. However, water vapor might be different, and emissions of target gases are also various. Therefore, the correction factor is not only a solution, but also a better available method should be employed.

Keywords: cooler, CEMS, monitoring, reproductive, sampling

Procedia PDF Downloads 361
3712 Generation of Quasi-Measurement Data for On-Line Process Data Analysis

Authors: Hyun-Woo Cho

Abstract:

For ensuring the safety of a manufacturing process one should quickly identify an assignable cause of a fault in an on-line basis. To this end, many statistical techniques including linear and nonlinear methods have been frequently utilized. However, such methods possessed a major problem of small sample size, which is mostly attributed to the characteristics of empirical models used for reference models. This work presents a new method to overcome the insufficiency of measurement data in the monitoring and diagnosis tasks. Some quasi-measurement data are generated from existing data based on the two indices of similarity and importance. The performance of the method is demonstrated using a real data set. The results turn out that the presented methods are able to handle the insufficiency problem successfully. In addition, it is shown to be quite efficient in terms of computational speed and memory usage, and thus on-line implementation of the method is straightforward for monitoring and diagnosis purposes.

Keywords: data analysis, diagnosis, monitoring, process data, quality control

Procedia PDF Downloads 482