Search results for: time series classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21403

Search results for: time series classification

20953 Application of Principle Component Analysis for Classification of Random Doppler-Radar Targets during the Surveillance Operations

Authors: G. C. Tikkiwal, Mukesh Upadhyay

Abstract:

During the surveillance operations at war or peace time, the Radar operator gets a scatter of targets over the screen. This may be a tracked vehicle like tank vis-à-vis T72, BMP etc, or it may be a wheeled vehicle like ALS, TATRA, 2.5Tonne, Shaktiman or moving army, moving convoys etc. The Radar operator selects one of the promising targets into Single Target Tracking (STT) mode. Once the target is locked, the operator gets a typical audible signal into his headphones. With reference to the gained experience and training over the time, the operator then identifies the random target. But this process is cumbersome and is solely dependent on the skills of the operator, thus may lead to misclassification of the object. In this paper we present a technique using mathematical and statistical methods like Fast Fourier Transformation (FFT) and Principal Component Analysis (PCA) to identify the random objects. The process of classification is based on transforming the audible signature of target into music octave-notes. The whole methodology is then automated by developing suitable software. This automation increases the efficiency of identification of the random target by reducing the chances of misclassification. This whole study is based on live data.

Keywords: radar target, fft, principal component analysis, eigenvector, octave-notes, dsp

Procedia PDF Downloads 345
20952 Using Power Flow Analysis for Understanding UPQC’s Behaviors

Authors: O. Abdelkhalek, A. Naimi, M. Rami, M. N. Tandjaoui, A. Kechich

Abstract:

This paper deals with the active and reactive power flow analysis inside the unified power quality conditioner (UPQC) during several cases. The UPQC is a combination of shunt and series active power filter (APF). It is one of the best solutions towards the mitigation of voltage sags and swells problems on distribution network. This analysis can provide the helpful information to well understanding the interaction between the series filter, the shunt filter, the DC bus link and electrical network. The mathematical analysis is based on active and reactive power flow through the shunt and series active power filter. Wherein series APF can absorb or deliver the active power to mitigate a swell or sage voltage where in the both cases it absorbs a small reactive power quantity whereas the shunt active power absorbs or releases the active power for stabilizing the storage capacitor’s voltage as well as the power factor correction. The voltage sag and voltage swell are usually interpreted through the DC bus voltage curves. These two phenomena are introduced in this paper with a new interpretation based on the active and reactive power flow analysis inside the UPQC. For simplifying this study, a linear load is supposed in this digital simulation. The simulation results are carried out to confirm the analysis done.

Keywords: UPQC, Power flow analysis, shunt filter, series filter.

Procedia PDF Downloads 570
20951 Radar Track-based Classification of Birds and UAVs

Authors: Altilio Rosa, Chirico Francesco, Foglia Goffredo

Abstract:

In recent years, the number of Unmanned Aerial Vehicles (UAVs) has significantly increased. The rapid development of commercial and recreational drones makes them an important part of our society. Despite the growing list of their applications, these vehicles pose a huge threat to civil and military installations: detection, classification and neutralization of such flying objects become an urgent need. Radar is an effective remote sensing tool for detecting and tracking flying objects, but scenarios characterized by the presence of a high number of tracks related to flying birds make especially challenging the drone detection task: operator PPI is cluttered with a huge number of potential threats and his reaction time can be severely affected. Flying birds compared to UAVs show similar velocity, RADAR cross-section and, in general, similar characteristics. Building from the absence of a single feature that is able to distinguish UAVs and birds, this paper uses a multiple features approach where an original feature selection technique is developed to feed binary classifiers trained to distinguish birds and UAVs. RADAR tracks acquired on the field and related to different UAVs and birds performing various trajectories were used to extract specifically designed target movement-related features based on velocity, trajectory and signal strength. An optimization strategy based on a genetic algorithm is also introduced to select the optimal subset of features and to estimate the performance of several classification algorithms (Neural network, SVM, Logistic regression…) both in terms of the number of selected features and misclassification error. Results show that the proposed methods are able to reduce the dimension of the data space and to remove almost all non-drone false targets with a suitable classification accuracy (higher than 95%).

Keywords: birds, classification, machine learning, UAVs

Procedia PDF Downloads 218
20950 Using Scale Invariant Feature Transform Features to Recognize Characters in Natural Scene Images

Authors: Belaynesh Chekol, Numan Çelebi

Abstract:

The main purpose of this work is to recognize individual characters extracted from natural scene images using scale invariant feature transform (SIFT) features as an input to K-nearest neighbor (KNN); a classification learner algorithm. For this task, 1,068 and 78 images of English alphabet characters taken from Chars74k data set is used to train and test the classifier respectively. For each character image, We have generated describing features by using SIFT algorithm. This set of features is fed to the learner so that it can recognize and label new images of English characters. Two types of KNN (fine KNN and weighted KNN) were trained and the resulted classification accuracy is 56.9% and 56.5% respectively. The training time taken was the same for both fine and weighted KNN.

Keywords: character recognition, KNN, natural scene image, SIFT

Procedia PDF Downloads 279
20949 On the Fractional Integration of Generalized Mittag-Leffler Type Functions

Authors: Christian Lavault

Abstract:

In this paper, the generalized fractional integral operators of two generalized Mittag-Leffler type functions are investigated. The special cases of interest involve the generalized M-series and K-function, both introduced by Sharma. The two pairs of theorems established herein generalize recent results about left- and right-sided generalized fractional integration operators applied here to the M-series and the K-function. The note also results in important applications in physics and mathematical engineering.

Keywords: Fox–Wright Psi function, generalized hypergeometric function, generalized Riemann– Liouville and Erdélyi–Kober fractional integral operators, Saigo's generalized fractional calculus, Sharma's M-series and K-function

Procedia PDF Downloads 437
20948 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record

Authors: Raghavi C. Janaswamy

Abstract:

In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.

Keywords: electronic health record, graph neural network, heterogeneous data, prediction

Procedia PDF Downloads 85
20947 Performance Comparison of Outlier Detection Techniques Based Classification in Wireless Sensor Networks

Authors: Ayadi Aya, Ghorbel Oussama, M. Obeid Abdulfattah, Abid Mohamed

Abstract:

Nowadays, many wireless sensor networks have been distributed in the real world to collect valuable raw sensed data. The challenge is to extract high-level knowledge from this huge amount of data. However, the identification of outliers can lead to the discovery of useful and meaningful knowledge. In the field of wireless sensor networks, an outlier is defined as a measurement that deviates from the normal behavior of sensed data. Many detection techniques of outliers in WSNs have been extensively studied in the past decade and have focused on classic based algorithms. These techniques identify outlier in the real transaction dataset. This survey aims at providing a structured and comprehensive overview of the existing researches on classification based outlier detection techniques as applicable to WSNs. Thus, we have identified key hypotheses, which are used by these approaches to differentiate between normal and outlier behavior. In addition, this paper tries to provide an easier and a succinct understanding of the classification based techniques. Furthermore, we identified the advantages and disadvantages of different classification based techniques and we presented a comparative guide with useful paradigms for promoting outliers detection research in various WSN applications and suggested further opportunities for future research.

Keywords: bayesian networks, classification-based approaches, KPCA, neural networks, one-class SVM, outlier detection, wireless sensor networks

Procedia PDF Downloads 496
20946 The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption and GDP for Israel: Time Series Analysis, 1980-2010

Authors: Jinhoa Lee

Abstract:

The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of CO2 emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, electricity), carbon dioxide (CO2) emissions and gross domestic product (GDP) for Israel using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Phillips–Perron (PP) test for stationarity, Johansen maximum likelihood method for cointegration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. The long-run equilibrium in the VECM suggests significant positive impacts of coal and natural gas consumptions on GDP in Israel. In the short run, GDP positively affects coal consumption. While there exists a positive unidirectional causality running from coal consumption to consumption of petroleum products and the direct combustion of crude oil, there exists a negative unidirectional causality running from natural gas consumption to consumption of petroleum products and the direct combustion of crude oil in the short run. Overall, the results support arguments that there are relationships among environmental quality, energy use and economic output but the associations can to be differed by the sources of energy in the case of Israel over of period 1980-2010.

Keywords: CO2 emissions, energy consumption, GDP, Israel, time series analysis

Procedia PDF Downloads 648
20945 Recycling of End of Life Concrete Based on C2CA Method

Authors: Somayeh Lotfi, Manuel Eggimann, Eckhard Wagner, Radosław Mróz, Jan Deja

Abstract:

One of the main environmental challenges in the construction industry is a strong social force to decrease the bulk transport of the building materials in urban environments. Considering this fact, applying more in-situ recycling technologies for Construction and Demolition Waste (CDW) is an urgent need. The European C2CA project develops a novel concrete recycling technology that can be performed purely mechanically and in situ. The technology consists of a combination of smart demolition, gentle grinding of the crushed concrete in an autogenous mill, and a novel dry classification technology called ADR to remove the fines. The feasibility of this recycling process was examined in demonstration projects involving in total 20,000 tons of End of Life (EOL) concrete from two office towers in Groningen, The Netherlands. This paper concentrates on the second demonstration project of C2CA, where EOL concrete was recycled on an industrial site. After recycling, the properties of the produced Recycled Aggregate (RA) were investigated, and results are presented. An experimental study was carried out on mechanical and durability properties of produced Recycled Aggregate Concrete (RAC) compared to those of the Natural Aggregate Concrete (NAC). The aim was to understand the importance of RA substitution, w/c ratio and type of cement to the properties of RAC. In this regard, two series of reference concrete with strength classes of C25/30 and C45/55 were produced using natural coarse aggregates (rounded and crushed) and natural sand. The RAC series were created by replacing parts of the natural aggregate, resulting in series of concrete with 0%, 20%, 50% and 100% of RA. Results show that the concrete mix design and type of cement have a decisive effect on the properties of RAC. On the other hand, the substitution of RA even at a high percentage replacement level has a minor and manageable impact on the performance of RAC. This result is a good indication towards the feasibility of using RA in structural concrete by modifying the mix design and using a proper type of cement.

Keywords: C2CA, ADR, concrete recycling, recycled aggregate, durability

Procedia PDF Downloads 390
20944 Deep Learning Approach to Trademark Design Code Identification

Authors: Girish J. Showkatramani, Arthi M. Krishna, Sashi Nareddi, Naresh Nula, Aaron Pepe, Glen Brown, Greg Gabel, Chris Doninger

Abstract:

Trademark examination and approval is a complex process that involves analysis and review of the design components of the marks such as the visual representation as well as the textual data associated with marks such as marks' description. Currently, the process of identifying marks with similar visual representation is done manually in United States Patent and Trademark Office (USPTO) and takes a considerable amount of time. Moreover, the accuracy of these searches depends heavily on the experts determining the trademark design codes used to catalog the visual design codes in the mark. In this study, we explore several methods to automate trademark design code classification. Based on recent successes of convolutional neural networks in image classification, we have used several different convolutional neural networks such as Google’s Inception v3, Inception-ResNet-v2, and Xception net. The study also looks into other techniques to augment the results from CNNs such as using Open Source Computer Vision Library (OpenCV) to pre-process the images. This paper reports the results of the various models trained on year of annotated trademark images.

Keywords: trademark design code, convolutional neural networks, trademark image classification, trademark image search, Inception-ResNet-v2

Procedia PDF Downloads 231
20943 Impact of Infrastructural Development on Socio-Economic Growth: An Empirical Investigation in India

Authors: Jonardan Koner

Abstract:

The study attempts to find out the impact of infrastructural investment on state economic growth in India. It further tries to determine the magnitude of the impact of infrastructural investment on economic indicator, i.e., per-capita income (PCI) in Indian States. The study uses panel regression technique to measure the impact of infrastructural investment on per-capita income (PCI) in Indian States. Panel regression technique helps incorporate both the cross-section and time-series aspects of the dataset. In order to analyze the difference in impact of the explanatory variables on the explained variables across states, the study uses Fixed Effect Panel Regression Model. The conclusions of the study are that infrastructural investment has a desirable impact on economic development and that the impact is different for different states in India. We analyze time series data (annual frequency) ranging from 1991 to 2010. The study reveals that the infrastructural investment significantly explains the variation of economic indicators.

Keywords: infrastructural investment, multiple regression, panel regression techniques, economic development, fixed effect dummy variable model

Procedia PDF Downloads 370
20942 A World Map of Seabed Sediment Based on 50 Years of Knowledge

Authors: T. Garlan, I. Gabelotaud, S. Lucas, E. Marchès

Abstract:

Production of a global sedimentological seabed map has been initiated in 1995 to provide the necessary tool for searches of aircraft and boats lost at sea, to give sedimentary information for nautical charts, and to provide input data for acoustic propagation modelling. This original approach had already been initiated one century ago when the French hydrographic service and the University of Nancy had produced maps of the distribution of marine sediments of the French coasts and then sediment maps of the continental shelves of Europe and North America. The current map of the sediment of oceans presented was initiated with a UNESCO's general map of the deep ocean floor. This map was adapted using a unique sediment classification to present all types of sediments: from beaches to the deep seabed and from glacial deposits to tropical sediments. In order to allow good visualization and to be adapted to the different applications, only the granularity of sediments is represented. The published seabed maps are studied, if they present an interest, the nature of the seabed is extracted from them, the sediment classification is transcribed and the resulted map is integrated in the world map. Data come also from interpretations of Multibeam Echo Sounder (MES) imagery of large hydrographic surveys of deep-ocean. These allow a very high-quality mapping of areas that until then were represented as homogeneous. The third and principal source of data comes from the integration of regional maps produced specifically for this project. These regional maps are carried out using all the bathymetric and sedimentary data of a region. This step makes it possible to produce a regional synthesis map, with the realization of generalizations in the case of over-precise data. 86 regional maps of the Atlantic Ocean, the Mediterranean Sea, and the Indian Ocean have been produced and integrated into the world sedimentary map. This work is permanent and permits a digital version every two years, with the integration of some new maps. This article describes the choices made in terms of sediment classification, the scale of source data and the zonation of the variability of the quality. This map is the final step in a system comprising the Shom Sedimentary Database, enriched by more than one million punctual and surface items of data, and four series of coastal seabed maps at 1:10,000, 1:50,000, 1:200,000 and 1:1,000,000. This step by step approach makes it possible to take into account the progresses in knowledge made in the field of seabed characterization during the last decades. Thus, the arrival of new classification systems for seafloor has improved the recent seabed maps, and the compilation of these new maps with those previously published allows a gradual enrichment of the world sedimentary map. But there is still a lot of work to enhance some regions, which are still based on data acquired more than half a century ago.

Keywords: marine sedimentology, seabed map, sediment classification, world ocean

Procedia PDF Downloads 231
20941 ICT-Driven Cataloguing and Classification Practical Classes: Perception of Nigerian Library and Information Science Students on Motivational Factors

Authors: Abdulsalam Abiodun Salman, Abdulmumin Isah

Abstract:

The study investigated the motivational factors that could enhance the teaching and understanding of ICT-driven cataloguing and classification (Cat and Class) practical classes among students of library and information science (LIS) in Kwara State Library Schools, Nigeria. It deployed a positivist research paradigm using a quantitative method by deploying the use of questionnaires for data collection. The population of the study is one thousand, one hundred and twenty-five (1,125) which was obtained from the department of each respective library school (the University of Ilorin, Ilorin (Unilorin); Federal Polytechnic Offa, (Fedpoffa); and Kwara State University (KWASU). The sample size was determined using the research advisor table. Hence, the study sample of one hundred and ten (110) was used. The findings revealed that LIS students were averagely motivated toward ICT-driven Cataloguing and Classification practical classes. The study recommended that modern cataloguing and classification tools for practical classes should be made available in the laboratories as motivational incentives for students. It was also recommended that library schools should motivate the students beyond the provision of these ICT-driven tools but also extend the practical class periods. Availability and access to medical treatment in case of injuries during the practical classes should be made available. Technologists/Tutors of Cat and Class practical classes should also be exposed to further training in modern trends, especially emerging digital knowledge and skills in cataloguing and classification. This will keep both the tutors and students abreast of the new development in the technological arena.

Keywords: cataloguing and classification, motivational factors, ICT-driven practical classes, LIS students, Nigeria

Procedia PDF Downloads 134
20940 Significance of Square Non-Spiral Microcoils for Biomedical Applications

Authors: Himanshu Chandrakar, Krishnapriya S., Rama Komaragiri, Suja K. J.

Abstract:

Micro coils are significant components for micro magnetic sensors and actuators especially in biomedical devices. Non-spiral planar microcoils of square, hexagonal and octagonal shapes are introduced for the first time in this paper. Comparison between different planar spiral and non-spiral coils are also discussed. The fabrication advantages and low power dissipation of non-spiral structures make them a strong alternative for conventional spiral planar coils. Series resistance of non-spiral coil is lesser than that of spiral coils though magnetic field is slightly lesser for non-spiral coils. Comparison of different planar microcoils shows that the proposed square non-spiral coil gives better performance than other structures.

Keywords: non-spiral planar microcoil, power dissipation, series resistance, spiral

Procedia PDF Downloads 165
20939 One Period Loops of Memristive Circuits with Mixed-Mode Oscillations

Authors: Wieslaw Marszalek, Zdzislaw Trzaska

Abstract:

Interesting properties of various one-period loops of singularly perturbed memristive circuits with mixed-mode oscillations (MMOs) are analyzed in this paper. The analysis is mixed, both analytical and numerical and focused on the properties of pinched hysteresis of the memristive element and other one-period loops formed by pairs of time-series solutions for various circuits' variables. The memristive element is the only nonlinear element in the two circuits. A theorem on periods of mixed-mode oscillations of the circuits is formulated and proved. Replacements of memristors by parallel G-C or series R-L circuits for a MMO response with equivalent RMS values is also discussed.

Keywords: mixed-mode oscillations, memristive circuits, pinched hysteresis, one-period loops, singularly perturbed circuits

Procedia PDF Downloads 469
20938 A Comparative Study on Automatic Feature Classification Methods of Remote Sensing Images

Authors: Lee Jeong Min, Lee Mi Hee, Eo Yang Dam

Abstract:

Geospatial feature extraction is a very important issue in the remote sensing research. In the meantime, the image classification based on statistical techniques, but, in recent years, data mining and machine learning techniques for automated image processing technology is being applied to remote sensing it has focused on improved results generated possibility. In this study, artificial neural network and decision tree technique is applied to classify the high-resolution satellite images, as compared to the MLC processing result is a statistical technique and an analysis of the pros and cons between each of the techniques.

Keywords: remote sensing, artificial neural network, decision tree, maximum likelihood classification

Procedia PDF Downloads 345
20937 The Types of Annuities with Flexible Premium

Authors: Deniz Ünal Özpalamutcu, Burcu Altman

Abstract:

Actuaria uses mathematics, statistic and financial information when analyzing the financial impacts of uncertainties, risks, insurance and pension related issues. In other words, it deals with the likelihood of potential risks, their financial impacts and especially the financial measures. Handling these measures require some long-term payment and investments. So, it is obvious it is inevitable to plan the periodic payments with equal time intervals considering also the changing value of money over time. These series of payment made specific intervals of time is called annuity or rant. In literature, rants are classified based on start and end dates, start times, payments times, payments amount or frequency. Classification of rants based on payment amounts changes based on the constant, descending or ascending payment methods. The literature about handling the annuity is very limited. Yet in a daily life, especially in today’s world where the economic issues gained a prominence, it is very crucial to use the variable annuity method in line with the demands of the customers. In this study, the types of annuities with flexible payment are discussed. In other words, we focus on calculating payment amount of a period by adding a certain percentage of previous period payment was studied. While studying this problem, formulas were created considering both start and end period payments for cash value and accumulated. Also increase of each period payment by r interest rate each period payments calculated with previous periods increases. And the problem of annuities (rants) of which each period payment increased with previous periods’ increase by r interest rate has been analyzed. Cash value and accumulated value calculation of this problem were studied separately based on the period start/end and their relations were expressed by formulas.

Keywords: actuaria, annuity, flexible payment, rant

Procedia PDF Downloads 219
20936 Mediation of the Middle Eastern Crises and Economic Growth: An Application of Times Series Analysis

Authors: Gokhan Erkal, Gulsen Aydin, Muge Yuce, Lokman Sahin

Abstract:

This study aims to analyze the impacts of involving in mediation of conflicts in the Middle East from the perspective of the economic growth of the mediators. The Middle East is a highly volatile region of the world with rampant crises whose affects spill beyond its borders. Therefore, management and resolution of the conflicts in the region are of great significance. Mediation is an instrument used for abating violence and settling dispute. The recourse to mediation has grown to an important degree in recent years. However, for mediators, it is a daunting task to involve in the mediation of the deadlocks in the Middle East. This study tries to shed light on the positive correlation between economic growth of the mediator and the successful outcome of the mediation process to provide motivation for mediators. To this end, first, it briefly introduces the conflicts ongoing in the region and their negative impacts. Second, the methodology, time series analysis, and the data to be used, International Crisis Behavior Project Data, are presented. Third, the empirical test is carried out and the findings are evaluated. The conclusion highlights the benefits of successful mediation for the economic growth of the mediators of Middle Eastern crises.

Keywords: international crises, mediation, Middle East, times series analysis

Procedia PDF Downloads 174
20935 Use of Hierarchical Temporal Memory Algorithm in Heart Attack Detection

Authors: Tesnim Charrad, Kaouther Nouira, Ahmed Ferchichi

Abstract:

In order to reduce the number of deaths due to heart problems, we propose the use of Hierarchical Temporal Memory Algorithm (HTM) which is a real time anomaly detection algorithm. HTM is a cortical learning algorithm based on neocortex used for anomaly detection. In other words, it is based on a conceptual theory of how the human brain can work. It is powerful in predicting unusual patterns, anomaly detection and classification. In this paper, HTM have been implemented and tested on ECG datasets in order to detect cardiac anomalies. Experiments showed good performance in terms of specificity, sensitivity and execution time.

Keywords: cardiac anomalies, ECG, HTM, real time anomaly detection

Procedia PDF Downloads 227
20934 Comparison of Machine Learning and Deep Learning Algorithms for Automatic Classification of 80 Different Pollen Species

Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie

Abstract:

Palynology is a field of interest in many disciplines due to its multiple applications: chronological dating, climatology, allergy treatment, and honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time consuming task that requires the intervention of experts in the field, which are becoming increasingly rare due to economic and social conditions. That is why the need for automation of this task is urgent. A lot of studies have investigated the subject using different standard image processing descriptors and sometimes hand-crafted ones.In this work, we make a comparative study between classical feature extraction methods (Shape, GLCM, LBP, and others) and Deep Learning (CNN, Autoencoders, Transfer Learning) to perform a recognition task over 80 regional pollen species. It has been found that the use of Transfer Learning seems to be more precise than the other approaches

Keywords: pollens identification, features extraction, pollens classification, automated palynology

Procedia PDF Downloads 135
20933 Recurrent Neural Networks with Deep Hierarchical Mixed Structures for Chinese Document Classification

Authors: Zhaoxin Luo, Michael Zhu

Abstract:

In natural languages, there are always complex semantic hierarchies. Obtaining the feature representation based on these complex semantic hierarchies becomes the key to the success of the model. Several RNN models have recently been proposed to use latent indicators to obtain the hierarchical structure of documents. However, the model that only uses a single-layer latent indicator cannot achieve the true hierarchical structure of the language, especially a complex language like Chinese. In this paper, we propose a deep layered model that stacks arbitrarily many RNN layers equipped with latent indicators. After using EM and training it hierarchically, our model solves the computational problem of stacking RNN layers and makes it possible to stack arbitrarily many RNN layers. Our deep hierarchical model not only achieves comparable results to large pre-trained models on the Chinese short text classification problem but also achieves state of art results on the Chinese long text classification problem.

Keywords: nature language processing, recurrent neural network, hierarchical structure, document classification, Chinese

Procedia PDF Downloads 65
20932 A Systematic Review of Situational Awareness and Cognitive Load Measurement in Driving

Authors: Aly Elshafei, Daniela Romano

Abstract:

With the development of autonomous vehicles, a human-machine interaction (HMI) system is needed for a safe transition of control when a takeover request (TOR) is required. An important part of the HMI system is the ability to monitor the level of situational awareness (SA) of any driver in real-time, in different scenarios, and without any pre-calibration. Presenting state-of-the-art machine learning models used to measure SA is the purpose of this systematic review. Investigating the limitations of each type of sensor, the gaps, and the most suited sensor and computational model that can be used in driving applications. To the author’s best knowledge this is the first literature review identifying online and offline classification methods used to measure SA, explaining which measurements are subject or session-specific, and how many classifications can be done with each classification model. This information can be very useful for researchers measuring SA to identify the most suited model to measure SA for different applications.

Keywords: situational awareness, autonomous driving, gaze metrics, EEG, ECG

Procedia PDF Downloads 117
20931 Application of Generalized Autoregressive Score Model to Stock Returns

Authors: Katleho Daniel Makatjane, Diteboho Lawrence Xaba, Ntebogang Dinah Moroke

Abstract:

The current study investigates the behaviour of time-varying parameters that are based on the score function of the predictive model density at time t. The mechanism to update the parameters over time is the scaled score of the likelihood function. The results revealed that there is high persistence of time-varying, as the location parameter is higher and the skewness parameter implied the departure of scale parameter from the normality with the unconditional parameter as 1.5. The results also revealed that there is a perseverance of the leptokurtic behaviour in stock returns which implies the returns are heavily tailed. Prior to model estimation, the White Neural Network test exposed that the stock price can be modelled by a GAS model. Finally, we proposed further researches specifically to model the existence of time-varying parameters with a more detailed model that encounters the heavy tail distribution of the series and computes the risk measure associated with the returns.

Keywords: generalized autoregressive score model, South Africa, stock returns, time-varying

Procedia PDF Downloads 499
20930 The Employment of Unmanned Aircraft Systems for Identification and Classification of Helicopter Landing Zones and Airdrop Zones in Calamity Situations

Authors: Marielcio Lacerda, Angelo Paulino, Elcio Shiguemori, Alvaro Damiao, Lamartine Guimaraes, Camila Anjos

Abstract:

Accurate information about the terrain is extremely important in disaster management activities or conflict. This paper proposes the use of the Unmanned Aircraft Systems (UAS) at the identification of Airdrop Zones (AZs) and Helicopter Landing Zones (HLZs). In this paper we consider the AZs the zones where troops or supplies are dropped by parachute, and HLZs areas where victims can be rescued. The use of digital image processing enables the automatic generation of an orthorectified mosaic and an actual Digital Surface Model (DSM). This methodology allows obtaining this fundamental information to the terrain’s comprehension post-disaster in a short amount of time and with good accuracy. In order to get the identification and classification of AZs and HLZs images from DJI drone, model Phantom 4 have been used. The images were obtained with the knowledge and authorization of the responsible sectors and were duly registered in the control agencies. The flight was performed on May 24, 2017, and approximately 1,300 images were obtained during approximately 1 hour of flight. Afterward, new attributes were generated by Feature Extraction (FE) from the original images. The use of multispectral images and complementary attributes generated independently from them increases the accuracy of classification. The attributes of this work include the Declivity Map and Principal Component Analysis (PCA). For the classification four distinct classes were considered: HLZ 1 – small size (18m x 18m); HLZ 2 – medium size (23m x 23m); HLZ 3 – large size (28m x 28m); AZ (100m x 100m). The Decision Tree method Random Forest (RF) was used in this work. RF is a classification method that uses a large collection of de-correlated decision trees. Different random sets of samples are used as sampled objects. The results of classification from each tree and for each object is called a class vote. The resulting classification is decided by a majority of class votes. In this case, we used 200 trees for the execution of RF in the software WEKA 3.8. The classification result was visualized on QGIS Desktop 2.12.3. Through the methodology used, it was possible to classify in the study area: 6 areas as HLZ 1, 6 areas as HLZ 2, 4 areas as HLZ 3; and 2 areas as AZ. It should be noted that an area classified as AZ covers the classifications of the other classes, and may be used as AZ, HLZ of large size (HLZ3), medium size (HLZ2) and small size helicopters (HLZ1). Likewise, an area classified as HLZ for large rotary wing aircraft (HLZ3) covers the smaller area classifications, and so on. It was concluded that images obtained through small UAV are of great use in calamity situations since they can provide data with high accuracy, with low cost, low risk and ease and agility in obtaining aerial photographs. This allows the generation, in a short time, of information about the features of the terrain in order to serve as an important decision support tool.

Keywords: disaster management, unmanned aircraft systems, helicopter landing zones, airdrop zones, random forest

Procedia PDF Downloads 176
20929 A Novel PSO Based Decision Tree Classification

Authors: Ali Farzan

Abstract:

Classification of data objects or patterns is a major part in most of Decision making systems. One of the popular and commonly used classification methods is Decision Tree (DT). It is a hierarchical decision making system by which a binary tree is constructed and starting from root, at each node some of the classes is rejected until reaching the leaf nods. Each leaf node is a representative of one specific class. Finding the splitting criteria in each node for constructing or training the tree is a major problem. Particle Swarm Optimization (PSO) has been adopted as a metaheuristic searching method for finding the best splitting criteria. Result of evaluating the proposed method over benchmark datasets indicates the higher accuracy of the new PSO based decision tree.

Keywords: decision tree, particle swarm optimization, splitting criteria, metaheuristic

Procedia PDF Downloads 405
20928 Remote Sensing through Deep Neural Networks for Satellite Image Classification

Authors: Teja Sai Puligadda

Abstract:

Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.

Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss

Procedia PDF Downloads 158
20927 Keyloggers Prevention with Time-Sensitive Obfuscation

Authors: Chien-Wei Hung, Fu-Hau Hsu, Chuan-Sheng Wang, Chia-Hao Lee

Abstract:

Nowadays, the abuse of keyloggers is one of the most widespread approaches to steal sensitive information. In this paper, we propose an On-Screen Prompts Approach to Keyloggers (OSPAK) and its analysis, which is installed in public computers. OSPAK utilizes a canvas to cue users when their keystrokes are going to be logged or ignored by OSPAK. This approach can protect computers against recoding sensitive inputs, which obfuscates keyloggers with letters inserted among users' keystrokes. It adds a canvas below each password field in a webpage and consists of three parts: two background areas, a hit area and a moving foreground object. Letters at different valid time intervals are combined in accordance with their time interval orders, and valid time intervals are interleaved with invalid time intervals. It utilizes animation to visualize valid time intervals and invalid time intervals, which can be integrated in a webpage as a browser extension. We have tested it against a series of known keyloggers and also performed a study with 95 users to evaluate how easily the tool is used. Experimental results made by volunteers show that OSPAK is a simple approach.

Keywords: authentication, computer security, keylogger, privacy, information leakage

Procedia PDF Downloads 121
20926 Empirical Roughness Progression Models of Heavy Duty Rural Pavements

Authors: Nahla H. Alaswadko, Rayya A. Hassan, Bayar N. Mohammed

Abstract:

Empirical deterministic models have been developed to predict roughness progression of heavy duty spray sealed pavements for a dataset representing rural arterial roads. The dataset provides a good representation of the relevant network and covers a wide range of operating and environmental conditions. A sample with a large size of historical time series data for many pavement sections has been collected and prepared for use in multilevel regression analysis. The modelling parameters include road roughness as performance parameter and traffic loading, time, initial pavement strength, reactivity level of subgrade soil, climate condition, and condition of drainage system as predictor parameters. The purpose of this paper is to report the approaches adopted for models development and validation. The study presents multilevel models that can account for the correlation among time series data of the same section and to capture the effect of unobserved variables. Study results show that the models fit the data very well. The contribution and significance of relevant influencing factors in predicting roughness progression are presented and explained. The paper concludes that the analysis approach used for developing the models confirmed their accuracy and reliability by well-fitting to the validation data.

Keywords: roughness progression, empirical model, pavement performance, heavy duty pavement

Procedia PDF Downloads 167
20925 Application of Support Vector Machines in Fault Detection and Diagnosis of Power Transmission Lines

Authors: I. A. Farhat, M. Bin Hasan

Abstract:

A developed approach for the protection of power transmission lines using Support Vector Machines (SVM) technique is presented. In this paper, the SVM technique is utilized for the classification and isolation of faults in power transmission lines. Accurate fault classification and location results are obtained for all possible types of short circuit faults. As in distance protection, the approach utilizes the voltage and current post-fault samples as inputs. The main advantage of the method introduced here is that the method could easily be extended to any power transmission line.

Keywords: fault detection, classification, diagnosis, power transmission line protection, support vector machines (SVM)

Procedia PDF Downloads 556
20924 Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs

Authors: Queen Suraajini Rajendran, Sai Hung Cheung

Abstract:

Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented.

Keywords: statistical downscaling, global climate model, climate change, uncertainty

Procedia PDF Downloads 367