Search results for: minimum root mean square (RMS) error matching algorithm
8873 QSRR Analysis of 17-Picolyl and 17-Picolinylidene Androstane Derivatives Based on Partial Least Squares and Principal Component Regression
Authors: Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Lidija Jevrić, Evgenija Djurendić, Jovana Ajduković
Abstract:
There are several methods for determination of the lipophilicity of biologically active compounds, however chromatography has been shown as a very suitable method for this purpose. Chromatographic (C18-RP-HPLC) analysis of a series of 24 17-picolyl and 17-picolinylidene androstane derivatives was carried out. The obtained retention indices (logk, methanol (90%) / water (10%)) were correlated with calculated physicochemical and lipophilicity descriptors. The QSRR analysis was carried out applying principal component regression (PCR) and partial least squares regression (PLS). The PCR and PLS model were selected on the basis of the highest variance and the lowest root mean square error of cross-validation. The obtained PCR and PLS model successfully correlate the calculated molecular descriptors with logk parameter indicating the significance of the lipophilicity of compounds in chromatographic process. On the basis of the obtained results it can be concluded that the obtained logk parameters of the analyzed androstane derivatives can be considered as their chromatographic lipophilicity. These results are the part of the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina and CMST COST Action CM1105.Keywords: androstane derivatives, chromatography, molecular structure, principal component regression, partial least squares regression
Procedia PDF Downloads 2768872 Error Detection and Correction for Onboard Satellite Computers Using Hamming Code
Authors: Rafsan Al Mamun, Md. Motaharul Islam, Rabana Tajrin, Nabiha Noor, Shafinaz Qader
Abstract:
In an attempt to enrich the lives of billions of people by providing proper information, security and a way of communicating with others, the need for efficient and improved satellites is constantly growing. Thus, there is an increasing demand for better error detection and correction (EDAC) schemes, which are capable of protecting the data onboard the satellites. The paper is aimed towards detecting and correcting such errors using a special algorithm called the Hamming Code, which uses the concept of parity and parity bits to prevent single-bit errors onboard a satellite in Low Earth Orbit. This paper focuses on the study of Low Earth Orbit satellites and the process of generating the Hamming Code matrix to be used for EDAC using computer programs. The most effective version of Hamming Code generated was the Hamming (16, 11, 4) version using MATLAB, and the paper compares this particular scheme with other EDAC mechanisms, including other versions of Hamming Codes and Cyclic Redundancy Check (CRC), and the limitations of this scheme. This particular version of the Hamming Code guarantees single-bit error corrections as well as double-bit error detections. Furthermore, this version of Hamming Code has proved to be fast with a checking time of 5.669 nanoseconds, that has a relatively higher code rate and lower bit overhead compared to the other versions and can detect a greater percentage of errors per length of code than other EDAC schemes with similar capabilities. In conclusion, with the proper implementation of the system, it is quite possible to ensure a relatively uncorrupted satellite storage system.Keywords: bit-flips, Hamming code, low earth orbit, parity bits, satellite, single error upset
Procedia PDF Downloads 1308871 The Tracking and Hedging Performances of Gold ETF Relative to Some Other Instruments in the UK
Authors: Abimbola Adedeji, Ahmad Shauqi Zubir
Abstract:
This paper examines the profitability and risk between investing in gold exchange traded funds (ETFs) and gold mutual funds compares to gold prices. The main focus in determining whether there are similarities or differences between those financial products is the tracking error. The importance of understanding the similarities or differences between the gold ETFs, gold mutual funds and gold prices is derived from the fact that gold ETFs and gold mutual funds are used as substitutions for investors who are looking to profit from gold prices although they are short in capital. 10 hypotheses were tested. There are 3 types of tracking error used. Tracking error 1 and 3 gives results that differentiate between types of ETFs and mutual funds, hence yielding the answers in answering the hypotheses that were developed. However, tracking error 2 failed to give the answer that could shed light on the questions raised in this study. All of the results in tracking error 2 technique only telling us that the difference between the ups and downs of the financial instruments are similar, statistically to the physical gold prices movement.Keywords: gold etf, gold mutual funds, tracking error
Procedia PDF Downloads 4228870 Approximation of Geodesics on Meshes with Implementation in Rhinoceros Software
Authors: Marian Sagat, Mariana Remesikova
Abstract:
In civil engineering, there is a problem how to industrially produce tensile membrane structures that are non-developable surfaces. Nondevelopable surfaces can only be developed with a certain error and we want to minimize this error. To that goal, the non-developable surfaces are cut into plates along to the geodesic curves. We propose a numerical algorithm for finding approximations of open geodesics on meshes and surfaces based on geodesic curvature flow. For practical reasons, it is important to automatize the choice of the time step. We propose a method for automatic setting of the time step based on the diagonal dominance criterion for the matrix of the linear system obtained by discretization of our partial differential equation model. Practical experiments show reliability of this method. Because approximation of the model is made by numerical method based on classic derivatives, it is necessary to solve obstacles which occur for meshes with sharp corners. We solve this problem for big family of meshes with sharp corners via special rotations which can be seen as partial unfolding of the mesh. In practical applications, it is required that the approximation of geodesic has its vertices only on the edges of the mesh. This problem is solved by a specially designed pointing tracking algorithm. We also partially solve the problem of finding geodesics on meshes with holes. We implemented the whole algorithm in Rhinoceros (commercial 3D computer graphics and computer-aided design software ). It is done by using C# language as C# assembly library for Grasshopper, which is plugin in Rhinoceros.Keywords: geodesic, geodesic curvature flow, mesh, Rhinoceros software
Procedia PDF Downloads 1488869 Establishing Econometric Modeling Equations for Lumpy Skin Disease Outbreaks in the Nile Delta of Egypt under Current Climate Conditions
Authors: Abdelgawad, Salah El-Tahawy
Abstract:
This paper aimed to establish econometrical equation models for the Nile delta region in Egypt, which will represent a basement for future predictions of Lumpy skin disease outbreaks and its pathway in relation to climate change. Data of lumpy skin disease (LSD) outbreaks were collected from the cattle farms located in the provinces representing the Nile delta region during 1 January, 2015 to December, 2015. The obtained results indicated that there was a significant association between the degree of the LSD outbreaks and the investigated climate factors (temperature, wind speed, and humidity) and the outbreaks peaked during the months of June, July, and August and gradually decreased to the lowest rate in January, February, and December. The model obtained depicted that the increment of these climate factors were associated with evidently increment on LSD outbreaks on the Nile Delta of Egypt. The model validation process was done by the root mean square error (RMSE) and means bias (MB) which compared the number of LSD outbreaks expected with the number of observed outbreaks and estimated the confidence level of the model. The value of RMSE was 1.38% and MB was 99.50% confirming that this established model described the current association between the LSD outbreaks and the change on climate factors and also can be used as a base for predicting the of LSD outbreaks depending on the climatic change on the future.Keywords: LSD, climate factors, Nile delta, modeling
Procedia PDF Downloads 2888868 South African Mandatory Minimum Sentencing: Causes and Consequences
Authors: Alphonso Augustine Goliath
Abstract:
In 1997 South Africa adopted legislation introducing severe mandatory minimum sentences. This was a political response to counter the escalating violent crime the country experienced when it transitioned to democracy. Despite minimum sentences being fully operational for more than two decades, violent crimes like murder and rape have not abated. This paper provides a critique of the efficacy of minimums sentences with a primary focus on the legislation’s main aim of preventing or curbing crime, its relationship with prison overcrowding, and its continued constitutionality.Keywords: constitutionality, deterrence, incapacitation, minimum sentencing legislation, prison overcrowding, rehabilitation, recidivism, retribution, violent crime
Procedia PDF Downloads 828867 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest
Procedia PDF Downloads 2318866 An Enhanced AODV Routing Protocol for Wireless Sensor and Actuator Networks
Authors: Apidet Booranawong, Wiklom Teerapabkajorndet
Abstract:
An enhanced ad-hoc on-demand distance vector routing (E-AODV) protocol for control system applications in wireless sensor and actuator networks (WSANs) is proposed. Our routing algorithm is designed by considering both wireless network communication and the control system aspects. Control system error and network delay are the main selection criteria in our routing protocol. The control and communication performance is evaluated on multi-hop IEEE 802.15.4 networks for building-temperature control systems. The Gilbert-Elliott error model is employed to simulate packet loss in wireless networks. The simulation results demonstrate that the E-AODV routing approach can significantly improve the communication performance better than an original AODV routing under various packet loss rates. However, the control performance result by our approach is not much improved compared with the AODV routing solution.Keywords: WSANs, building temperature control, AODV routing protocol, control system error, settling time, delay, delivery ratio
Procedia PDF Downloads 3368865 Application of Hybrid Honey Bees Mating Optimization Algorithm in Multiuser Detection of Wireless Communication Systems
Abstract:
Wireless communication systems have changed dramatically and shown spectacular evolution over the past two decades. These radio technologies are engaged in a quest endless high-speed transmission coupled to a constant need to improve transmission quality. Various radio communication systems being developed use code division multiple access (CDMA) technique. This work analyses a hybrid honey bees mating optimization algorithm (HBMO) applied to multiuser detection (MuD) in CDMA communication systems. The HBMO is a swarm-based optimization algorithm, which simulates the mating process of real honey bees. We apply a hybridization of HBMO with simulated annealing (SA) in order to improve the solution generated by the HBMO. Simulation results show that the detection based on Hybrid HBMO, in term of bit error rate (BER), is viable option when compared with the classic detectors from literature under Rayleigh flat fading channel.Keywords: BER, DS-CDMA multiuser detection, genetic algorithm, hybrid HBMO, simulated annealing
Procedia PDF Downloads 4358864 A Computer-Aided System for Tooth Shade Matching
Authors: Zuhal Kurt, Meral Kurt, Bilge T. Bal, Kemal Ozkan
Abstract:
Shade matching and reproduction is the most important element of success in prosthetic dentistry. Until recently, shade matching procedure was implemented by dentists visual perception with the help of shade guides. Since many factors influence visual perception; tooth shade matching using visual devices (shade guides) is highly subjective and inconsistent. Subjective nature of this process has lead to the development of instrumental devices. Nowadays, colorimeters, spectrophotometers, spectroradiometers and digital image analysing systems are used for instrumental shade selection. Instrumental devices have advantages that readings are quantifiable, can obtain more rapidly and simply, objectively and precisely. However, these devices have noticeable drawbacks. For example, translucent structure and irregular surfaces of teeth lead to defects on measurement with these devices. Also between the results acquired by devices with different measurement principles may make inconsistencies. So, its obligatory to search for new methods for dental shade matching process. A computer-aided system device; digital camera has developed rapidly upon today. Currently, advances in image processing and computing have resulted in the extensive use of digital cameras for color imaging. This procedure has a much cheaper process than the use of traditional contact-type color measurement devices. Digital cameras can be taken by the place of contact-type instruments for shade selection and overcome their disadvantages. Images taken from teeth show morphology and color texture of teeth. In last decades, a new method was recommended to compare the color of shade tabs taken by a digital camera using color features. This method showed that visual and computer-aided shade matching systems should be used as concatenated. Recently using methods of feature extraction techniques are based on shape description and not used color information. However, color is mostly experienced as an essential property in depicting and extracting features from objects in the world around us. When local feature descriptors with color information are extended by concatenating color descriptor with the shape descriptor, that descriptor will be effective on visual object recognition and classification task. Therefore, the color descriptor is to be used in combination with a shape descriptor it does not need to contain any spatial information, which leads us to use local histograms. This local color histogram method is remain reliable under variation of photometric changes, geometrical changes and variation of image quality. So, coloring local feature extraction methods are used to extract features, and also the Scale Invariant Feature Transform (SIFT) descriptor used to for shape description in the proposed method. After the combination of these descriptors, the state-of-art descriptor named by Color-SIFT will be used in this study. Finally, the image feature vectors obtained from quantization algorithm are fed to classifiers such as Nearest Neighbor (KNN), Naive Bayes or Support Vector Machines (SVM) to determine label(s) of the visual object category or matching. In this study, SVM are used as classifiers for color determination and shade matching. Finally, experimental results of this method will be compared with other recent studies. It is concluded from the study that the proposed method is remarkable development on computer aided tooth shade determination system.Keywords: classifiers, color determination, computer-aided system, tooth shade matching, feature extraction
Procedia PDF Downloads 4448863 Model-Based Software Regression Test Suite Reduction
Authors: Shiwei Deng, Yang Bao
Abstract:
In this paper, we present a model-based regression test suite reducing approach that uses EFSM model dependence analysis and probability-driven greedy algorithm to reduce software regression test suites. The approach automatically identifies the difference between the original model and the modified model as a set of elementary model modifications. The EFSM dependence analysis is performed for each elementary modification to reduce the regression test suite, and then the probability-driven greedy algorithm is adopted to select the minimum set of test cases from the reduced regression test suite that cover all interaction patterns. Our initial experience shows that the approach may significantly reduce the size of regression test suites.Keywords: dependence analysis, EFSM model, greedy algorithm, regression test
Procedia PDF Downloads 4278862 Load Balancing and Resource Utilization in Cloud Computing
Authors: Gagandeep Kaur
Abstract:
Cloud computing uses various computing resources such as CPU, memory, processor etc. which is used to deliver service over the network and is one of the emerging fields for large scale distributed computing. In cloud computing, execution of large number of tasks with available resources to achieve high performance, minimal total time for completion, minimum response time, effective utilization of resources etc. are the major research areas. In the proposed research, an algorithm has been proposed to achieve high performance in load balancing and resource utilization. The proposed algorithm is used to reduce the makespan, increase the resource utilization and performance cost for independent tasks. Further scheduling metrics based on algorithm in cloud computing has been proposed.Keywords: resource utilization, response time, load balancing, performance cost
Procedia PDF Downloads 1828861 Effect of Silicon in Mitigating Cadmium Toxicity in Maize
Authors: Ghulam Hasan Abbasi, Moazzam Jamil, M. Anwar-Ul-Haq
Abstract:
Heavy metals are significant pollutants in environment and their toxicity is a problem for survival of living things while Silicon (Si) is one of the most ubiquitous macroelements, performing an essential function in healing plants in response to environmental stresses. A hydroponic experiment was conducted to investigate the role of exogenous application of silicon under cadmium stress in six different maize hybrids with five treatments comprising of control, 7.5 µM Cd + 5 mM Si, 7.5 µM Cd + 10 mM Si, 15 µM Cd + 5 mM Si and 15 µM Cd + 10 mM Si. Results revealed that treatments of plants with 10mM Si application under both 7.5µM Cd and 15 µM Cd stress resulted in maximum improvement in plant morphological attributes (root and shoot length, root and shoot fresh and dry weight, leaf area and relative water contents) and antioxidant enzymes (POD and CAT) relative to 5 mM Si application in all maize hybrids. Results regarding Cd concentrations showed that Cd was more retained in roots followed by shoots and then leaves and maximum reduction in Cd uptake was observed at 10mM Si application. Maize hybrid 6525 showed maximum growth and least concentration of Cd whereas maize hybrid 1543 showed the minimum growth and maximum Cd concentration among all maize hybrids.Keywords: antioxidant, cadmium, maize, silicon
Procedia PDF Downloads 5188860 Bruch’s Membrane Opening in High Myopia and Its Correlation with Axial Length
Authors: Sanjeeb Kumar Mishra, Aartee Jha, Madhu Thapa, Pragati Gautam
Abstract:
Introduction: High myopia has become a matter of global concern as it is a major risk factor for glaucoma. Various optic nerve head changes occur in high myopia over time. This might lead to difficulty in detecting pathologies associated with high myopia through conventional funduscopy examinations only. Bruch’s Membrane Opening (Area and Minimum Rim Width) is considered an anatomically more accurate and reliable landmark than the conventional clinical disc margin. Study Design: It was a hospital based cross-sectional and non-interventional type of study. Purpose: The purpose of our study was to measure Bruch’s Membrane Opening (area and Minimum Rim Width) in high myopic eyes and correlate it with axial length. Methods: A cross-sectional study was conducted at B.P Koirala Lions Center for Ophthalmic Studies, a tertiary-level eye center in Nepal. 80 eyes of 40 subjects (40% male and 60% female) aged 18-35 years with high myopia (Spherical Equivalent (SE) ≥ -6D) were taken as cases. Among them, RE of 39 and LE of 34 myopic subjects were included in the study. Spectral Domain-Optical Coherence Tomography of both the eyes of myopic patients was performed using Glaucoma Module Premiere Edition (GMPE) with Anatomic Positioning System (APS) to measure Bruch’s Membrane Opening (Area and Minimum Rim Width). Axial length in myopic patients was measured using Partial Coherence Interferometry (IOL Master). Results: Among 40 myopic subjects, 16 (40%) were males, whereas 24 (60%) were females. The mean age of myopic subjects was 24.64 ± 5.10 years, with minimum and maximum ages of 18 years and 35 years, respectively. The mean BMO area was 2.28 0.48 mm² in right eye and 2.15 0.59 mm² in left eye. BMO area in high myopic patient was significantly correlated with axial length. The correlation analysis of BMO area with axial length in RE and LE was found to be statistically significant at (r=0.465, p<0.003) and (r=0.374, p< 0.029), respectively. Likewise, the mean BMO-MRW was 325.69 ± 96µm in right eye and 339.20 ± 79.50µm in left eye. There was a significant correlation of BMO-MRW with axial length in both the eyes of myopic subjects. Moreover, a significant negative correlation of Inferior temporal, Nasal, and Inferior nasal quadrants (p<0.05) of BMO-MRW of right eye was found with axial length of right eye, whereas all the BMO-MRW quadrants of left eye were negatively correlated (p<0.05) with axial length in left eye. No significant differences were found between right eye and left eye on comparing means of refractive error, axial length, BMO area, and BMO-MRW. Conclusion: From this study, it can be concluded that BMO area enlarges in high myopia with an increase in axial length. Additionally, BMO-MRW thinning occurs along with the BMO enlargement and increases with axial length. There were no significant differences in refractive error, axial length, BMO area, and BMO-MRW between right eye and left eye.Keywords: high myopia, Bruch’s membrane opening, Bruch’s membrane opening minimum rim width, spectral domain optical coherence tomography
Procedia PDF Downloads 138859 Improving the Performance of Back-Propagation Training Algorithm by Using ANN
Authors: Vishnu Pratap Singh Kirar
Abstract:
Artificial Neural Network (ANN) can be trained using backpropagation (BP). It is the most widely used algorithm for supervised learning with multi-layered feed-forward networks. Efficient learning by the BP algorithm is required for many practical applications. The BP algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a two-term algorithm consisting of a learning rate (LR) and a momentum factor (MF). The major drawbacks of the two-term BP learning algorithm are the problems of local minima and slow convergence speeds, which limit the scope for real-time applications. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and criteria for evaluating convergence are required to facilitate the application of the three terms BP algorithm. Although these two seem to be closely related, as described later, we summarize various improvements to overcome the drawbacks. Here we compare the different methods of convergence of the new three-term BP algorithm.Keywords: neural network, backpropagation, local minima, fast convergence rate
Procedia PDF Downloads 4988858 Oil Reservoir Asphalting Precipitation Estimating during CO2 Injection
Authors: I. Alhajri, G. Zahedi, R. Alazmi, A. Akbari
Abstract:
In this paper, an Artificial Neural Network (ANN) was developed to predict Asphaltene Precipitation (AP) during the injection of carbon dioxide into crude oil reservoirs. In this study, the experimental data from six different oil fields were collected. Seventy percent of the data was used to develop the ANN model, and different ANN architectures were examined. A network with the Trainlm training algorithm was found to be the best network to estimate the AP. To check the validity of the proposed model, the model was used to predict the AP for the thirty percent of the data that was unevaluated. The Mean Square Error (MSE) of the prediction was 0.0018, which confirms the excellent prediction capability of the proposed model. In the second part of this study, the ANN model predictions were compared with modified Hirschberg model predictions. The ANN was found to provide more accurate estimates compared to the modified Hirschberg model. Finally, the proposed model was employed to examine the effect of different operating parameters during gas injection on the AP. It was found that the AP is mostly sensitive to the reservoir temperature. Furthermore, the carbon dioxide concentration in liquid phase increases the AP.Keywords: artificial neural network, asphaltene, CO2 injection, Hirschberg model, oil reservoirs
Procedia PDF Downloads 3648857 High-Accuracy Satellite Image Analysis and Rapid DSM Extraction for Urban Environment Evaluations (Tripoli-Libya)
Authors: Abdunaser Abduelmula, Maria Luisa M. Bastos, José A. Gonçalves
Abstract:
The modeling of the earth's surface and evaluation of urban environment, with 3D models, is an important research topic. New stereo capabilities of high-resolution optical satellites images, such as the tri-stereo mode of Pleiades, combined with new image matching algorithms, are now available and can be applied in urban area analysis. In addition, photogrammetry software packages gained new, more efficient matching algorithms, such as SGM, as well as improved filters to deal with shadow areas, can achieve denser and more precise results. This paper describes a comparison between 3D data extracted from tri-stereo and dual stereo satellite images, combined with pixel based matching and Wallis filter. The aim was to improve the accuracy of 3D models especially in urban areas, in order to assess if satellite images are appropriate for a rapid evaluation of urban environments. The results showed that 3D models achieved by Pleiades tri-stereo outperformed, both in terms of accuracy and detail, the result obtained from a Geo-eye pair. The assessment was made with reference digital surface models derived from high-resolution aerial photography. This could mean that tri-stereo images can be successfully used for the proposed urban change analyses.Keywords: 3D models, environment, matching, pleiades
Procedia PDF Downloads 3308856 Field Application of Trichoderma Harzianum for Biological Control of Root-Knot Nematodes in Summer Tomatoes
Authors: Baharullah Khattak, Saifullah
Abstract:
To study the efficacy of the selected Trichoderma isolates, field trials were conducted in the root-knot nematode-infested areas of Dargai and Swat, Pakistan. Four isolates of T. harzianum viz, Th-1, Th-2, Th-9 and Th-15 were tested against root knot nematodes on summer tomatoes under field conditions. The T. harzianum isolates, grown on wheat grains substrate, were applied @ 8 g plant-1, either alone or in different combinations. Root weight of tomato plants was reduced Th-9 as compared to 26.37 g in untreated control. Isolate Th-1 was found to enhance shoot and root lengths to the maximum levels of 78.76 cm and 19.59 cm, respectively. Tomato shoot weight was significantly increased (65.36g) in Th-1-treated plots as compared to 49.66 g in control. Maximum (156) number of flowers plant-1 and highest (48.18%) fruit set plant-1 was observed in Th-1 treated plots, while there were 87 flowers and 35.50% fruit set in the untreated control. Maximum fruit weight (70.97 g) plant-1 and highest (17.99 t ha-1) marketable yield were recorded in the treatments where T. harzianum isolate Th-1 was used, in comparison to 51.33 g tomato fruit weight and 9.90 t ha-1 yield was noted in the control plots. It was observed that T. harzianum isolates significantly reduced the nematode populations. The fungus enhanced plant growth and yield in all the treated plots. Jabban isolate (Th-1) was found as the most effective in nematode suppression followed by Shamozai (Th-9) isolate. It was concluded from the present findings that T. harzianum has a potential bio control capability against root-knot nematodes.Keywords: biological control, Trichoderma harzianum, root-knot nematode, meloidogyne
Procedia PDF Downloads 4968855 Efficiency of Robust Heuristic Gradient Based Enumerative and Tunneling Algorithms for Constrained Integer Programming Problems
Authors: Vijaya K. Srivastava, Davide Spinello
Abstract:
This paper presents performance of two robust gradient-based heuristic optimization procedures based on 3n enumeration and tunneling approach to seek global optimum of constrained integer problems. Both these procedures consist of two distinct phases for locating the global optimum of integer problems with a linear or non-linear objective function subject to linear or non-linear constraints. In both procedures, in the first phase, a local minimum of the function is found using the gradient approach coupled with hemstitching moves when a constraint is violated in order to return the search to the feasible region. In the second phase, in one optimization procedure, the second sub-procedure examines 3n integer combinations on the boundary and within hypercube volume encompassing the result neighboring the result from the first phase and in the second optimization procedure a tunneling function is constructed at the local minimum of the first phase so as to find another point on the other side of the barrier where the function value is approximately the same. In the next cycle, the search for the global optimum commences in both optimization procedures again using this new-found point as the starting vector. The search continues and repeated for various step sizes along the function gradient as well as that along the vector normal to the violated constraints until no improvement in optimum value is found. The results from both these proposed optimization methods are presented and compared with one provided by popular MS Excel solver that is provided within MS Office suite and other published results.Keywords: constrained integer problems, enumerative search algorithm, Heuristic algorithm, Tunneling algorithm
Procedia PDF Downloads 3258854 A Fast and Cost-Effective Method to Monitor Microplastics in Compost and Soiduration of Enterococcus Faecalis Penetration in Environmentally Exposed Root Canals Obturated With Lateral Condensation Technique
Authors: N. Thawornwisit, P. Pradoo, S. Nuypree, L. Jarukasetrporn, S. Jitpukdeebodintra
Abstract:
Objective: The aim of this study was to evaluate the duration of the Enterococcus faecalis (E. faecalis) penetration into the gap between root canal wall and filling material at a 3 to 6 mm distance from the cementoenamel junction (CEJ) in the dislodged temporary filling, in vitro. Material and methods: Thirty-four single root canal mandibular premolars were divided into two experimental groups (N = 15) and one negative control (N = 4). Root canals were prepared and obturated with gutta-percha using lateral condensation technique, X-ray checked, and sterilized. Leakages were set up using the modified bacterial leakage model, and E. faecalis was used as a microbial marker. Leakages were evaluated at 3 and 7 days by culturing gutta-percha and dentine drilled from a 3-6 mm distance from CEJ. Broth turbidity was recorded and compared. Result: All four negative control and the 3-day experimental group showed no broth turbidity. For the 7-day experimental group, there was 33.3% leakage. Conclusion: Penetration of E. faecalis into the gap between root canal wall and filling material at a 3 to 6 mm distance from CEJ in the dislodged temporary filling were not found at three days. However, at seven days of exposure, bacteria could penetrate into the interface of the root canal and filling materials.Keywords: coronal leakage, bacterial leakage model, enterococcus faecalis
Procedia PDF Downloads 948853 Multiloop Fractional Order PID Controller Tuned Using Cuckoo Algorithm for Two Interacting Conical Tank Process
Authors: U. Sabura Banu, S. K. Lakshmanaprabu
Abstract:
The improvement of meta-heuristic algorithm encourages control engineer to design an optimal controller for industrial process. Most real-world industrial processes are non-linear multivariable process with high interaction. Even in sub-process unit, thousands of loops are available mostly interacting in nature. Optimal controller design for such process are still challenging task. Closed loop controller design by multiloop PID involves a tedious procedure by performing interaction study and then PID auto-tuning the loop with higher interaction. Finally, detuning the controller to accommodate the effects of the other process variables. Fractional order PID controllers are replacing integer order PID controllers recently. Design of Multiloop Fractional Order (MFO) PID controller is still more complicated. Cuckoo algorithm, a swarm intelligence technique is used to optimally tune the MFO PID controller with easiness minimizing Integral Time Absolute Error. The closed loop performance is tested under servo, regulatory and servo-regulatory conditions.Keywords: Cuckoo algorithm, mutliloop fractional order PID controller, two Interacting conical tank process
Procedia PDF Downloads 4988852 Tabu Random Algorithm for Guiding Mobile Robots
Authors: Kevin Worrall, Euan McGookin
Abstract:
The use of optimization algorithms is common across a large number of diverse fields. This work presents the use of a hybrid optimization algorithm applied to a mobile robot tasked with carrying out a search of an unknown environment. The algorithm is then applied to the multiple robots case, which results in a reduction in the time taken to carry out the search. The hybrid algorithm is a Random Search Algorithm fused with a Tabu mechanism. The work shows that the algorithm locates the desired points in a quicker time than a brute force search. The Tabu Random algorithm is shown to work within a simulated environment using a validated mathematical model. The simulation was run using three different environments with varying numbers of targets. As an algorithm, the Tabu Random is small, clear and can be implemented with minimal resources. The power of the algorithm is the speed at which it locates points of interest and the robustness to the number of robots involved. The number of robots can vary with no changes to the algorithm resulting in a flexible algorithm.Keywords: algorithms, control, multi-agent, search and rescue
Procedia PDF Downloads 2398851 Allelopathic Effects of Eucalyptus camaldulensis and E. gomphocephala on Seed Germination and Seedling Growth of Barley
Authors: Sallah S. El-Ammari, Mona. S. Hasan
Abstract:
This research is aimed to study allelopathic effects of two wind breakers Eucalyptus camaldulensis and E.gomphocephala on germination and growth of barley using aqueous extracts of leaves at 0.5, 1, 5, and 10% concentrations for treatment of barley caryopsis in petri dishes incubated in growth chamber. Distilled water was used in the experiment as a control. Seed germination was recorded on daily basis for five days. After ten days measurements of root length, shoot length, fresh and dry weight of root and shoot were taken. With the exception of 0.5% E. gomphocephala extract effect on length and dry weight of barley root, all the tested extract concentrations for both eucalyptus species significantly decreased the percent and speed of germination, root and shoot length, fresh and dry weight of root and shoot of barley compared to the control. For both species the allelopathic effect was significantly increasing with the increase of the extract concentration. Although, higher allelopathic effect was shown by E. camaldulensis, the results indicating that both eucalyptus species should not be recommended as wind breakers for barley fields.Keywords: allelopathy, eucalyptus, barley, Libya
Procedia PDF Downloads 3488850 Improving Load Frequency Control of Multi-Area Power System by Considering Uncertainty by Using Optimized Type 2 Fuzzy Pid Controller with the Harmony Search Algorithm
Authors: Mehrdad Mahmudizad, Roya Ahmadi Ahangar
Abstract:
This paper presents the method of designing the type 2 fuzzy PID controllers in order to solve the problem of Load Frequency Control (LFC). The Harmony Search (HS) algorithm is used to regulate the measurement factors and the effect of uncertainty of membership functions of Interval Type 2 Fuzzy Proportional Integral Differential (IT2FPID) controllers in order to reduce the frequency deviation resulted from the load oscillations. The simulation results implicitly show that the performance of the proposed IT2FPID LFC in terms of error, settling time and resistance against different load oscillations is more appropriate and preferred than PID and Type 1 Fuzzy Proportional Integral Differential (T1FPID) controllers.Keywords: load frequency control, fuzzy-pid controller, type 2 fuzzy system, harmony search algorithm
Procedia PDF Downloads 2788849 Design of Compact UWB Multilayered Microstrip Filter with Wide Stopband
Authors: N. Azadi-Tinat, H. Oraizi
Abstract:
Design of compact UWB multilayered microstrip filter with E-shape resonator is presented, which provides wide stopband up to 20 GHz and arbitrary impedance matching. The design procedure is developed based on the method of least squares and theory of N-coupled transmission lines. The dimensions of designed filter are about 11 mm × 11 mm and the three E-shape resonators are placed among four dielectric layers. The average insertion loss in the passband is less than 1 dB and in the stopband is about 30 dB up to 20 GHz. Its group delay in the UWB region is about 0.5 ns. The performance of the optimized filter design perfectly agrees with the microwave simulation softwares.Keywords: method of least square, multilayer microstrip filter, n-coupled transmission lines, ultra-wideband
Procedia PDF Downloads 3928848 Minimum Data of a Speech Signal as Special Indicators of Identification in Phonoscopy
Authors: Nazaket Gazieva
Abstract:
Voice biometric data associated with physiological, psychological and other factors are widely used in forensic phonoscopy. There are various methods for identifying and verifying a person by voice. This article explores the minimum speech signal data as individual parameters of a speech signal. Monozygotic twins are believed to be genetically identical. Using the minimum data of the speech signal, we came to the conclusion that the voice imprint of monozygotic twins is individual. According to the conclusion of the experiment, we can conclude that the minimum indicators of the speech signal are more stable and reliable for phonoscopic examinations.Keywords: phonogram, speech signal, temporal characteristics, fundamental frequency, biometric fingerprints
Procedia PDF Downloads 1428847 Machine Learning Approach for Automating Electronic Component Error Classification and Detection
Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski
Abstract:
The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.Keywords: augmented reality, machine learning, object recognition, virtual laboratories
Procedia PDF Downloads 1348846 The Best Prediction Data Mining Model for Breast Cancer Probability in Women Residents in Kabul
Authors: Mina Jafari, Kobra Hamraee, Saied Hossein Hosseini
Abstract:
The prediction of breast cancer disease is one of the challenges in medicine. In this paper we collected 528 records of women’s information who live in Kabul including demographic, life style, diet and pregnancy data. There are many classification algorithm in breast cancer prediction and tried to find the best model with most accurate result and lowest error rate. We evaluated some other common supervised algorithms in data mining to find the best model in prediction of breast cancer disease among afghan women living in Kabul regarding to momography result as target variable. For evaluating these algorithms we used Cross Validation which is an assured method for measuring the performance of models. After comparing error rate and accuracy of three models: Decision Tree, Naive Bays and Rule Induction, Decision Tree with accuracy of 94.06% and error rate of %15 is found the best model to predicting breast cancer disease based on the health care records.Keywords: decision tree, breast cancer, probability, data mining
Procedia PDF Downloads 1388845 The Amount of Conformity of Persian Subject Headlines with Users' Social Tagging
Authors: Amir Reza Asnafi, Masoumeh Kazemizadeh, Najmeh Salemi
Abstract:
Due to the diversity of information resources in the web0.2 environment, which is increasing in number from time to time, the social tagging system should be used to discuss Internet resources. Studying the relevance of social tags to thematic headings can help enrich resources and make them more accessible to resources. The present research is of applied-theoretical type and research method of content analysis. In this study, using the listing method and content analysis, the level of accurate, approximate, relative, and non-conformity of social labels of books available in the field of information science and bibliography of Kitabrah website with Persian subject headings was determined. The exact matching of subject headings with social tags averaged 22 items, the approximate matching of subject headings with social tags averaged 36 items, the relative matching of thematic headings with social tags averaged 36 social items, and the average matching titles did not match the title. The average is 116. According to the findings, the exact matching of subject headings with social labels is the lowest and the most inconsistent. This study showed that the average non-compliance of subject headings with social labels is even higher than the sum of the three types of exact, relative, and approximate matching. As a result, the relevance of thematic titles to social labels is low. Due to the fact that the subject headings are in the form of static text and users are not allowed to interact and insert new selected words and topics, and on the other hand, in websites based on Web 2 and based on the social classification system, this possibility is available for users. An important point of the present study and the studies that have matched the syntactic and semantic matching of social labels with thematic headings is that the degree of conformity of thematic headings with social labels is low. Therefore, these two methods can complement each other and create a hybrid cataloging that includes subject headings and social tags. The low level of conformity of thematic headings with social tags confirms the results of backgrounds and writings that have compared the social tags of books with the thematic headings of the Library of Congress. It is not enough to match social labels with thematic headings. It can be said that these two methods can be complementary.Keywords: Web 2/0, social tags, subject headings, hybrid cataloging
Procedia PDF Downloads 1598844 Energy Management Method in DC Microgrid Based on the Equivalent Hydrogen Consumption Minimum Strategy
Authors: Ying Han, Weirong Chen, Qi Li
Abstract:
An energy management method based on equivalent hydrogen consumption minimum strategy is proposed in this paper aiming at the direct-current (DC) microgrid consisting of photovoltaic cells, fuel cells, energy storage devices, converters and DC loads. The rational allocation of fuel cells and battery devices is achieved by adopting equivalent minimum hydrogen consumption strategy with the full use of power generated by photovoltaic cells. Considering the balance of the battery’s state of charge (SOC), the optimal power of the battery under different SOC conditions is obtained and the reference output power of the fuel cell is calculated. And then a droop control method based on time-varying droop coefficient is proposed to realize the automatic charge and discharge control of the battery, balance the system power and maintain the bus voltage. The proposed control strategy is verified by RT-LAB hardware-in-the-loop simulation platform. The simulation results show that the designed control algorithm can realize the rational allocation of DC micro-grid energy and improve the stability of system.Keywords: DC microgrid, equivalent minimum hydrogen consumption strategy, energy management, time-varying droop coefficient, droop control
Procedia PDF Downloads 303