Search results for: ion exchange doping
1416 Numerical Study for Improving Performance of Air Cooled Proton Exchange Membrane Fuel Cell on the Cathode Channel
Authors: Mohamed Hassan Gundu, Jaeseung Lee, Muhammad Faizan Chinannai, Hyunchul Ju
Abstract:
In this study, we present the effects of bipolar plate design to control the temperature of the cell and ensure effective water management under an excessive amount of air flow and low humidification conditions in the proton exchange membrane fuel cell (PEMFC). The PEMFC model developed and applied to consider a three type of bipolar plate that is defined by ratio of inlet channel width to outlet channel width. Simulation results show that the design which has narrow gas inlet channel and wide gas outlet channel width (wide coolant inlet channel and narrow coolant outlet channel width) make the relative humidity and water concentration increase in the channel and the catalyst layer. Therefore, this study clearly demonstrates that the dehydration phenomenon can be decreased by using design of bipolar plate with narrow gas inlet channel and wide gas outlet channel width (wide coolant inlet channel and narrow coolant outlet channel width).Keywords: PEMFC, air-cooling, relative humidity, water management, water concentration, oxygen concentration
Procedia PDF Downloads 2941415 Public-Private Partnership in Tourism Development: Kuwait Experience within 2035 Vision
Authors: Obaid Alotaibi
Abstract:
Tourism and recreation have become one of the important and influential sectors in most of the modern economies. This sector has been accepted as one of the alternative sources of national income, employment, and foreign exchange. Kuwait has many potentialities in tourism and recreation, and exploitation of this leads to more diversification of the economy besides augmenting its contribution to the GDP. It is an import-oriented economy; it requires hard currencies (foreign exchange) to meet the import costs as well as to maintain stability in the international market. To compensate for the revenue fall stemmed from fluctuations in oil prices -where the agriculture, fisheries, and industrial sectors are too immune and inelastic- the only alternative solution is the regeneration of the tourism and recreation to surface. This study envisages the characteristics of tourism and recreation, the economic and social importance for the society, the physical and human endowments, as well as the tourist pattern and plans for promoting and sustaining tourism in the country. The study summarizes many recommendations, including the necessity of establishing authority or a council for tourism, linking the planning of tourism development with the comprehensive planning for economic and social development in Kuwait in the shadow of 2035 vision, and to encourage the investors to develop new tourist and recreation projects.Keywords: Kuwait, public-private, partnership, tourism, 2035 vision
Procedia PDF Downloads 1261414 The Role of Tax Management Components in Creating Value or Increasing Risk of Tehran Stock Exchange Firms
Authors: Fereshteh Darash
Abstract:
Reflective tax management corresponds to the Agency Theory since it determines the motivation of managers for tax management actions and short-term and long-term consequences. Therefore, selection of tax strategy contributes to the tax and financial position of the firm in the future. The aim of the present research is to evaluate the effect of tax management components on risk-taking of firms listed in Tehran stock exchange by using regression analysis method. Results show that tax effective rate, tax risk and tax planning have no significant effect on the firm's future risk. Results suggest that stakeholders assess the effective tax rate and delay in tax payment in line with their benefits. They tend to accept the higher risk cost for reduction of tax payments and benefits of higher liquidity in current period. Hence, effective tax rate and tax risk have no significant effect on future risk of the firm. Moreover, tax planning yields no information regarding the predictability of the future profits and as a result, it has no significant effect on the future risk of the firm since specific goals of financial reporting are in priority for the stakeholders and regardless of the firm’s data analysis, they take investment decisions and they less intend to purchase the stocks in a rational manner.Keywords: tax management, tax effective rate, tax risk, tax planning, firm risk
Procedia PDF Downloads 1361413 Synthesized Doped TiO2 Photocatalysts for Mineralization of Quinalphos from Aqueous Streams
Authors: Nidhi Sharotri, Dhiraj Sud
Abstract:
Water pollution by pesticides constitutes a serious ecological problem due to their potential toxicity and bioaccumulation. The widespread use of pesticides in industry and agriculture along with their resistance to natural decomposition, biodegradation, chemical and photochemical degradation under typical environmental conditions has resulted in the emergence of these chemicals and their transformed products in natural water. Among AOP’s, heterogeneous photocatalysis using TiO2 as photocatalyst appears as the most emerging destructive technology for mineralization of the pollutant in aquatic streams. Among the various semiconductors (TiO2, ZnO, CdS, FeTiO3, MnTiO3, SrTiO2 and SnO2), TiO2 has proven to be the most efficient photocatalyst for environmental applications due to its biological and chemical inertness, high photo reactivity, non-toxicity, and photo stability. Semiconductor photocatalysts are characterized by an electronic band structure in which valence band and conduction band are separated by a band gap, i.e. a region of forbidden energy. Semiconductor based photocatalysts produces e-/h+ pairs which have been employed for degradation of organic pollutants. The present paper focuses on modification of TiO2 photocatalyst in order to shift its absorption edge towards longer wavelength to make it active under natural light. Semiconductor TiO2 photocatalysts was prepared by doping with anion (N), cation (Mn) and double doped (Mn, N) using greener approach. Titanium isopropoxide is used as titania precursor and ethanedithiol, hydroxyl amine hydrochloride, manganous chloride as sulphur, nitrogen and manganese precursors respectively. Synthesized doped TiO2 nanomaterials are characterized for surface morphology (SEM, TEM), crystallinity (XRD) and optical properties (absorption spectra and band gap). EPR data confirms the substitutional incorporation of Mn2+ in TiO2 lattice. The doping influences the phase transformation of rutile and anatase phase crystal and thereby the absorption spectrum changes were observed. The effect of variation of reaction parameters such as solvent, reaction time and calcination temperature on the yield, surface morphology and optical properties was also investigated. The TEM studies show the particle size of nanomaterials varies from 10-50 nm. The calculated band gap of nanomaterials varies from 2.30-2.60 eV. The photocatalytic degradation of organic pollutant organophosphate pesticide (Quinalphos) has been investigated by studying the changes in UV absorption spectrum and the promising results were obtained under visible light. The complete mineralization of quinalphos has occurred as no intermediates were recorded after 8 hrs of degradation confirmed from the HPLC studies.Keywords: quinalphos, doped-TiO2, mineralization, EPR
Procedia PDF Downloads 3281412 Performance Analysis of Three Absorption Heat Pump Cycles, Full and Partial Loads Operations
Authors: B. Dehghan, T. Toppi, M. Aprile, M. Motta
Abstract:
The environmental concerns related to global warming and ozone layer depletion along with the growing worldwide demand for heating and cooling have brought an increasing attention toward ecological and efficient Heating, Ventilation, and Air Conditioning (HVAC) systems. Furthermore, since space heating accounts for a considerable part of the European primary/final energy use, it has been identified as one of the sectors with the most challenging targets in energy use reduction. Heat pumps are commonly considered as a technology able to contribute to the achievement of the targets. Current research focuses on the full load operation and seasonal performance assessment of three gas-driven absorption heat pump cycles. To do this, investigations of the gas-driven air-source ammonia-water absorption heat pump systems for small-scale space heating applications are presented. For each of the presented cycles, both full-load under various temperature conditions and seasonal performances are predicted by means of numerical simulations. It has been considered that small capacity appliances are usually equipped with fixed geometry restrictors, meaning that the solution mass flow rate is driven by the pressure difference across the associated restrictor valve. Results show that gas utilization efficiency (GUE) of the cycles varies between 1.2 and 1.7 for both full and partial loads and vapor exchange (VX) cycle is found to achieve the highest efficiency. It is noticed that, for typical space heating applications, heat pumps operate over a wide range of capacities and thermal lifts. Thus, partially, the novelty introduced in the paper is the investigation based on a seasonal performance approach, following the method prescribed in a recent European standard (EN 12309). The overall result is a modest variation in the seasonal performance for analyzed cycles, from 1.427 (single-effect) to 1.493 (vapor-exchange).Keywords: absorption cycles, gas utilization efficiency, heat pump, seasonal performance, vapor exchange cycle
Procedia PDF Downloads 1091411 Electrokinetic Application for the Improvement of Soft Clays
Authors: Abiola Ayopo Abiodun, Zalihe Nalbantoglu
Abstract:
The electrokinetic application (EKA), a relatively modern chemical treatment has a potential for in-situ ground improvement in an open field or under existing structures. It utilizes a low electrical gradient to transport electrolytic chemical ions between bespoke electrodes inserted in the fine-grained, low permeable soft soils. The paper investigates the efficacy of the EKA as a mitigation technique for the soft clay beds. The laboratory model of the EKA comprises of rectangular plexiglass test tank, electrolytes compartments, geosynthetic electrodes and direct electric current supply. Within this setup, the EK effects resulted from the exchange of ions between anolyte (anodic) and catholyte (cathodic) ends through the tested soil were examined by basic experimental laboratory testing methods. As such, the treated soft soil properties were investigated as a function of the anode-to-cathode distances and curing periods. The test results showed that there have been some changes in the physical and engineering properties of the treated soft soils. The significant changes in the physicochemical and electrical properties suggested that their corresponding changes can be utilized as a monitoring technique to evaluate the improvement in the engineering properties EK treated soft clay soils.Keywords: electrokinetic, electrolytes, exchange ions, geosynthetic electrodes, soft soils
Procedia PDF Downloads 3141410 Analysis of BSF Layer N-Gaas/P-Gaas/P+-Gaas Solar Cell
Authors: Abderrahmane Hemmani, Hamid Khachab, Dennai Benmoussa, Hassane Benslimane, Abderrachid Helmaoui
Abstract:
Back surface field GaAs with n -p-p+ structures are found to have better characteristics than the conventional solar cells. A theory, based on the transport of both minority carriers under the charge neutrality condition, has been developed in the present paper which explains behavior of the back surface field solar cells. That is reported with an efficiency of 25,05% (Jsc=33.5mA/cm2, Vco=0.87v and fill factor 86% under AM1.5 global conditions). We present the effect of technological parameters of the p+ layer on the conversion efficiency on the solar cell. Good agreement is achieved between our results and the simulation results given the variation of the equivalent recombination velocity to p+ layer as a function of BSF thickness and BSF doping.Keywords: back surface field, GaAs, solar cell, technological parameters
Procedia PDF Downloads 4331409 Engaging African Youth in Agribusiness through ICT
Authors: Adebola Adedugbe
Abstract:
Agriculture is the mainstay of most countries in Africa. It employs up to 90 per cent of the rural workforce, who are mostly youths and women. Engaging youths in Information and Communications Technology (ICT) in agriculture is critical to economic and agricultural development of the African continent. The objective of this paper is to identify and mobilize the potentials of young Africans in agriculture through ICT and recognize their role as the dominant driver for sustainable agricultural development in Africa. The youth is vibrant, energetic, creative, and innovative and has the potential to play a significant role sustainable agriculture. This paper identifies the role of ICT as a tool for attracting youths in agriculture. The development of ICT is important in stimulating youths in SME’s to compete favorably and effectively as a way to fight poverty through job and wealth creation. It is one of the strategies for promoting entrepreneurship by increasing the availability and diversity of online information. ICT has become a key factor in economic development in most developing countries. The exchange of information is essential for stakeholders in the agricultural sector, as it is the tool to establish, develop and manage efforts to improve performance, productivity and economic competitiveness in local and international markets. In this regard, Information and Communications Technology (ICT) is a powerful tool, fast and innovative to facilitate the exchange of information among all stakeholders in the agricultural sector.Keywords: Africa, agriculture, ICT, tool, youth
Procedia PDF Downloads 4801408 A Method for Solid-Liquid Separation of Cs+ from Radioactive Waste by Using Ionic Liquids and Extractants
Authors: J. W. Choi, S. Y. Cho, H. J. Lee, W. Z. Oh, S. J. Choi
Abstract:
Ionic liquids (ILs), which is alternative to conventional organic solvent, were used for extraction of Cs ions. ILs, as useful environment friendly green solvents, have been recently applied as replacement for traditional volatile organic compounds (VOCs) in liquid/liquid extraction of heavy metal ions as well as organic and inorganic species and pollutants. Thus, Ionic liquids were used for extraction of Cs ions from the liquid radioactive waste. In most cases, Cs ions present in radioactive wastes in very low concentration, approximately less than 1ppm. Therefore, unlike established extraction system the required amount of ILs as extractant is comparatively very small. This extraction method involves cation exchange mechanism in which Cs ion transfers to the organic phase and binds to one crown ether by chelation in exchange of single ILs cation, IL_cation+, transfer to the aqueous phase. In this extraction system showed solid-liquid separation in which the Ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonly)imide (C2mimTf2N) and the crown ether Dicyclohexano-18-crown-6 (DCH18C6) both were used here in very little amount as solvent and as extractant, respectively. 30 mM of CsNO3 was used as simulated waste solution cesium ions. Generally, in liquid-liquid extraction, the molar ratio of CE:Cs+:ILs was 1:5~10:>100, while our applied molar ratio of CE:Cs+:ILs was 1:2:1~10. The quantity of CE and Cs ions were fixed to 0.6 and 1.2 mmol, respectively. The phenomenon of precipitation showed two kinds of separation: solid-liquid separation in the ratio of 1:2:1 and 1:2:2; solid-liquid-liquid separation (3 phase) in the ratio of 1:2:5 and 1:2:10. In the last system, 3 phases were precipitate-ionic liquids-aqueous. The precipitate was verified to consist of Cs+, DCH18C6, Tf2N- based on the cation exchange mechanism. We analyzed precipitate using scanning electron microscopy with X-ray microanalysis (SEM-EDS), an elemental analyser, Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The experimental results showed an easy extraction method and confirmed the composition of solid precipitate. We also obtained information that complex formation ratio of Cs+ to DCH18C6 is 0.88:1 regardless of C2mimTf2N quantities.Keywords: extraction, precipitation, solid-liquid seperation, ionic liquid, precipitate
Procedia PDF Downloads 4211407 A Tool to Provide Advanced Secure Exchange of Electronic Documents through Europe
Authors: Jesus Carretero, Mario Vasile, Javier Garcia-Blas, Felix Garcia-Carballeira
Abstract:
Supporting cross-border secure and reliable exchange of data and documents and to promote data interoperability is critical for Europe to enhance sector (like eFinance, eJustice and eHealth). This work presents the status and results of the European Project MADE, a Research Project funded by Connecting Europe facility Programme, to provide secure e-invoicing and e-document exchange systems among Europe countries in compliance with the eIDAS Regulation (Regulation EU 910/2014 on electronic identification and trust services). The main goal of MADE is to develop six new AS4 Access Points and SMP in Europe to provide secure document exchanges using the eDelivery DSI (Digital Service Infrastructure) amongst both private and public entities. Moreover, the project demonstrates the feasibility and interest of the solution provided by providing several months of interoperability among the providers of the six partners in different EU countries. To achieve those goals, we have followed a methodology setting first a common background for requirements in the partner countries and the European regulations. Then, the partners have implemented access points in each country, including their service metadata publisher (SMP), to allow the access to their clients to the pan-European network. Finally, we have setup interoperability tests with the other access points of the consortium. The tests will include the use of each entity production-ready Information Systems that process the data to confirm all steps of the data exchange. For the access points, we have chosen AS4 instead of other existing alternatives because it supports multiple payloads, native web services, pulling facilities, lightweight client implementations, modern crypto algorithms, and more authentication types, like username-password and X.509 authentication and SAML authentication. The main contribution of MADE project is to open the path for European companies to use eDelivery services with cross-border exchange of electronic documents following PEPPOL (Pan-European Public Procurement Online) based on the e-SENS AS4 Profile. It also includes the development/integration of new components, integration of new and existing logging and traceability solutions and maintenance tool support for PKI. Moreover, we have found that most companies are still not ready to support those profiles. Thus further efforts will be needed to promote this technology into the companies. The consortium includes the following 9 partners. From them, 2 are research institutions: University Carlos III of Madrid (Coordinator), and Universidad Politecnica de Valencia. The other 7 (EDICOM, BIZbrains, Officient, Aksesspunkt Norge, eConnect, LMT group, Unimaze) are private entities specialized in secure delivery of electronic documents and information integration brokerage in their respective countries. To achieve cross-border operativity, they will include AS4 and SMP services in their platforms according to the EU Core Service Platform. Made project is instrumental to test the feasibility of cross-border documents eDelivery in Europe. If successful, not only einvoices, but many other types of documents will be securely exchanged through Europe. It will be the base to extend the network to the whole Europe. This project has been funded under the Connecting Europe Facility Agreement number: INEA/CEF/ICT/A2016/1278042. Action No: 2016-EU-IA-0063.Keywords: security, e-delivery, e-invoicing, e-delivery, e-document exchange, trust
Procedia PDF Downloads 2651406 User Selections on Social Network Applications
Authors: C. C. Liang
Abstract:
MSN used to be the most popular application for communicating among social networks, but Facebook chat is now the most popular. Facebook and MSN have similar characteristics, including usefulness, ease-of-use, and a similar function, which is the exchanging of information with friends. Facebook outperforms MSN in both of these areas. However, the adoption of Facebook and abandonment of MSN have occurred for other reasons. Functions can be improved, but users’ willingness to use does not just depend on functionality. Flow status has been established to be crucial to users’ adoption of cyber applications and to affects users’ adoption of software applications. If users experience flow in using software application, they will enjoy using it frequently, and even change their preferred application from an old to this new one. However, no investigation has examined choice behavior related to switching from Facebook to MSN based on a consideration of flow experiences and functions. This investigation discusses the flow experiences and functions of social-networking applications. Flow experience is found to affect perceived ease of use and perceived usefulness; perceived ease of use influences information ex-change with friends, and perceived usefulness; information exchange influences perceived usefulness, but information exchange has no effect on flow experience.Keywords: consumer behavior, social media, technology acceptance model, flow experience
Procedia PDF Downloads 3551405 Structural and Magnetic Properties of Bi0.82La0.2Fe1-xCrxO3 Nanoparticles
Authors: H. Nematifar, D. Sanavi Khoshnoud, S. Feyz
Abstract:
Bi0.82La0.2Fe1-xCrxO3 (BLFCxO, x = 0.0, 0.02, 0.05 and 0.08) nanoparticles were successfully synthesized by a sol-gel method. The X-ray diffraction (XRD) patterns indicate that the lattice parameters decrease for x ≤ 0.05, firstly, and then they increase for x > 0.05. A transformation from rhombohedral structure to orthorhombic structure occurs at x = 0.08. The transmission electron microscopy (TEM) analysis shows that the average nanoparticle size is about 60-70 nm. The remnant magnetisation (Mr) increases gradually with x to 0.02, then decreases with further increasing x up to 0.05, and finally enchases abruptly in x = 0.08. The coercivity (HC) increases gradually with x to 0.05, and then significantly reduced with increasing Cr substitution. The magnetic ordering temperature (TN) decreases with Cr doping concentration. The M-H curves of all samples exhibit a wasp-waist hysteresis loop in low magnetic region. This property can play an important role for the applications of some multiferroic nano-device.Keywords: BiFeO3, sol-gel preparation, nanoparticles, magnetic materials, thermal analysis
Procedia PDF Downloads 3111404 Enhanced Field Emission from Plasma Treated Graphene and 2D Layered Hybrids
Authors: R. Khare, R. V. Gelamo, M. A. More, D. J. Late, Chandra Sekhar Rout
Abstract:
Graphene emerges out as a promising material for various applications ranging from complementary integrated circuits to optically transparent electrode for displays and sensors. The excellent conductivity and atomic sharp edges of unique two-dimensional structure makes graphene a propitious field emitter. Graphene analogues of other 2D layered materials have emerged in material science and nanotechnology due to the enriched physics and novel enhanced properties they present. There are several advantages of using 2D nanomaterials in field emission based devices, including a thickness of only a few atomic layers, high aspect ratio (the ratio of lateral size to sheet thickness), excellent electrical properties, extraordinary mechanical strength and ease of synthesis. Furthermore, the presence of edges can enhance the tunneling probability for the electrons in layered nanomaterials similar to that seen in nanotubes. Here we report electron emission properties of multilayer graphene and effect of plasma (CO2, O2, Ar and N2) treatment. The plasma treated multilayer graphene shows an enhanced field emission behavior with a low turn on field of 0.18 V/μm and high emission current density of 1.89 mA/cm2 at an applied field of 0.35 V/μm. Further, we report the field emission studies of layered WS2/RGO and SnS2/RGO composites. The turn on field required to draw a field emission current density of 1μA/cm2 is found to be 3.5, 2.3 and 2 V/μm for WS2, RGO and the WS2/RGO composite respectively. The enhanced field emission behavior observed for the WS2/RGO nanocomposite is attributed to a high field enhancement factor of 2978, which is associated with the surface protrusions of the single-to-few layer thick sheets of the nanocomposite. The highest current density of ~800 µA/cm2 is drawn at an applied field of 4.1 V/μm from a few layers of the WS2/RGO nanocomposite. Furthermore, first-principles density functional calculations suggest that the enhanced field emission may also be due to an overlap of the electronic structures of WS2 and RGO, where graphene-like states are dumped in the region of the WS2 fundamental gap. Similarly, the turn on field required to draw an emission current density of 1µA/cm2 is significantly low (almost half the value) for the SnS2/RGO nanocomposite (2.65 V/µm) compared to pristine SnS2 (4.8 V/µm) nanosheets. The field enhancement factor β (~3200 for SnS2 and ~3700 for SnS2/RGO composite) was calculated from Fowler-Nordheim (FN) plots and indicates emission from the nanometric geometry of the emitter. The field emission current versus time plot shows overall good emission stability for the SnS2/RGO emitter. The DFT calculations reveal that the enhanced field emission properties of SnS2/RGO composites are because of a substantial lowering of work function of SnS2 when supported by graphene, which is in response to p-type doping of the graphene substrate. Graphene and 2D analogue materials emerge as a potential candidate for future field emission applications.Keywords: graphene, layered material, field emission, plasma, doping
Procedia PDF Downloads 3611403 Synthesis of LiMₓMn₂₋ₓO₄ Doped Co, Ni, Cr and Its Characterization as Lithium Battery Cathode
Authors: Dyah Purwaningsih, Roto Roto, Hari Sutrisno
Abstract:
Manganese dioxide (MnO₂) and its derivatives are among the most widely used materials for the positive electrode in both primary and rechargeable lithium batteries. The MnO₂ derivative compound of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) is one of the leading candidates for positive electrode materials in lithium batteries as it is abundant, low cost and environmentally friendly. Over the years, synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) has been carried out using various methods including sol-gel, gas condensation, spray pyrolysis, and ceramics. Problems with these various methods persist including high cost (so commercially inapplicable) and must be done at high temperature (environmentally unfriendly). This research aims to: (1) synthesize LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) by reflux technique; (2) develop microstructure analysis method from XRD Powder LiMₓMn₂₋ₓO₄ data with the two-stage method; (3) study the electrical conductivity of LiMₓMn₂₋ₓO₄. This research developed the synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) with reflux. The materials consisting of Mn(CH₃COOH)₂. 4H₂O and Na₂S₂O₈ were refluxed for 10 hours at 120°C to form β-MnO₂. The doping of Co, Ni and Cr were carried out using solid-state method with LiOH to form LiMₓMn₂₋ₓO₄. The instruments used included XRD, SEM-EDX, XPS, TEM, SAA, TG/DTA, FTIR, LCR meter and eight-channel battery analyzer. Microstructure analysis of LiMₓMn₂₋ₓO₄ was carried out on XRD powder data by two-stage method using FullProf program integrated into WinPlotR and Oscail Program as well as on binding energy data from XPS. The morphology of LiMₓMn₂₋ₓO₄ was studied with SEM-EDX, TEM, and SAA. The thermal stability test was performed with TG/DTA, the electrical conductivity was studied from the LCR meter data. The specific capacity of LiMₓMn₂₋ₓO₄ as lithium battery cathode was tested using an eight-channel battery analyzer. The results showed that the synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) was successfully carried out by reflux. The optimal temperature of calcination is 750°C. XRD characterization shows that LiMn₂O₄ has a cubic crystal structure with Fd3m space group. By using the CheckCell in the WinPlotr, the increase of Li/Mn mole ratio does not result in changes in the LiMn₂O₄ crystal structure. The doping of Co, Ni and Cr on LiMₓMn₂₋ₓO₄ (x = 0.02; 0.04; 0; 0.6; 0.08; 0.10) does not change the cubic crystal structure of Fd3m. All the formed crystals are polycrystals with the size of 100-450 nm. Characterization of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) microstructure by two-stage method shows the shrinkage of lattice parameter and cell volume. Based on its range of capacitance, the conductivity obtained at LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) is an ionic conductivity with varying capacitance. The specific battery capacity at a voltage of 4799.7 mV for LiMn₂O₄; Li₁.₀₈Mn₁.₉₂O₄; LiCo₀.₁Mn₁.₉O₄; LiNi₀.₁Mn₁.₉O₄ and LiCr₀.₁Mn₁.₉O₄ are 88.62 mAh/g; 2.73 mAh/g; 89.39 mAh/g; 85.15 mAh/g; and 1.48 mAh/g respectively.Keywords: LiMₓMn₂₋ₓO₄, solid-state, reflux, two-stage method, ionic conductivity, specific capacity
Procedia PDF Downloads 1931402 What Is the Matter of Identity to Leadership Behavior: Leader-Subordinate Relational Identity and Paternalistic Leadership
Authors: Sung-Chun Tsai, Li-Fang Chou, Chun-Jung Tseng
Abstract:
How relational identity of leader-subordinate relationship affects behavior of both parties is getting more and more attentions in recent years. Different from past studies on leader-subordinate relationship taking viewpoint of self-concept or interaction between categories, we took perspective of social cognitive schema with special focus on the cognition structure and category content of the vertical leader-subordinate relationship. This study firstly clarified the dimensions and contents of cognitive structure of vertical leader-subordinate relationship. By using two dimensions of “equal/unequal” and “close/distant”, the contents of the leader-subordinate relational identity (LSRI) are classified into four categories: communal affection RI (equal and close), instrumental exchange RI (equal but distant), care-repay RI (unequal but close), and authority-obedience RI (unequal and distant). Furthermore, according to the four dimensions of leader-subordinate relational identity, we explored: (1) how a leader’s LSRI leads to paternalistic leadership; and (2) how paternalistic leadership affects subordinate’s LSRI. Using 59 work group as sample (59 leaders and 251 subordinates), the results of HLM and regression analysis showed: (1) leader’s LSRI significantly affects leadership behavior: instrumental exchange RI is positively relates to authoritarian leadership behavior, but significantly has negative relationship with benevolent leadership; care-repay RI has significantly positive relationship with authoritative leadership; authority-obedience RI has significantly positive relationship with authoritarian leadership; (2) paternalistic leadership is significantly related to subordinates’ LSRI: benevolent leadership is positively related to subordinate’s communal affection and care-repay RI; authoritative leadership has significantly positive relationship with care-repay and authority-obedience RI; authoritarian leadership has significantly positive relationship with subordinate’s instrumental exchange RI. Finally, the main findings, contributions and limits, future research directions, and implications were also discussed.Keywords: relational identity, leader-subordinate relational identity (LSRI), relational schema, paternalistic leadership
Procedia PDF Downloads 5521401 The Presence of Investor Overconfidence in the South African Exchange Traded Fund Market
Authors: Damien Kunjal, Faeezah Peerbhai
Abstract:
Despite the increasing popularity of exchange-traded funds (ETFs), ETF investment choices may not always be rational. Excess trading volume, misevaluations of securities, and excess return volatility present in financial markets can be attributed to the influence of the overconfidence bias. Whilst previous research has explored the overconfidence bias in stock markets; this study focuses on trading in ETF markets. Therefore, the objective of this study is to investigate the presence of investor overconfidence in the South African ETF market. Using vector autoregressive models, the lead-lag relationship between market turnover and the market return is examined for the market of South African ETFs tracking domestic benchmarks and for the market of South African ETFs tracking international benchmarks over the period November 2000 till August 2019. Consistent with the overconfidence hypothesis, a positive relationship between current market turnover and lagged market return is found for both markets, even after controlling for market volatility and cross-sectional dispersion. This relationship holds for both market and individual ETF turnover suggesting that investors are overconfident when trading in South African ETFs tracking domestic benchmarks and South African ETFs tracking international benchmarks since trading activity depends on past market returns. Additionally, using the global recession as a structural break, this study finds that investor overconfidence is more pronounced after the global recession suggesting that investors perceive ETFs as risk-reducing assets due to their diversification benefits. Overall, the results of this study indicate that the overconfidence bias has a significant influence on ETF investment choices, therefore, suggesting that the South African ETF market is inefficient since investors’ decisions are based on their biases. As a result, the effect of investor overconfidence can account for the difference between the fair value of ETFs and its current market price. This finding has implications for policymakers whose responsibility is to promote the efficiency of the South African ETF market as well as ETF investors and traders who trade in the South African ETF market.Keywords: exchange-traded fund, market return, market turnover, overconfidence, trading activity
Procedia PDF Downloads 1641400 Advanced Humidity Sensors Using Cobalt and Iron-Doped ZnO-rGO Composites
Authors: Wallia Majeed
Abstract:
Humidity sensors based on doped ZnO-rGO composites have shown promise due to their sensitivity to humidity changes. Here, it report on the hydrothermal synthesis of ZnO-rGO and doped ZnO-rGO nanocomposites, incorporating cobalt and iron dopants at 2% concentration. X-ray diffraction confirmed successful doping, while scanning electron microscopy revealed the composite's layered structure with embedded ZnO rods. To evaluate their performance, humidity sensors were fabricated by depositing aluminum electrodes on silicon substrates coated with the composites. The Fe-doped ZnO-rGO sensor exhibited rapid response (27 s) and recovery times (24 s) across a wide humidity range (11% to 97% RH), surpassing ZnO-rGO and Co-doped ZnO-rGO variants in sensitivity (2.2k at 100 Hz). These findings highlight Fe-doped ZnO-rGO composites as ideal candidates for humidity sensing applications, offering enhanced performance crucial for environmental monitoring and industrial processes.Keywords: humidity sensors, nanocomposites, hydrothermal synthesis, sensitivity
Procedia PDF Downloads 351399 Conceptual Model for Massive Open Online Blended Courses Based on Disciplines’ Concepts Capitalization and Obstacles’ Detection
Authors: N. Hammid, F. Bouarab-Dahmani, T. Berkane
Abstract:
Since its appearance, the MOOC (massive open online course) is gaining more and more intention of the educational communities over the world. Apart from the current MOOCs design and purposes, the creators of MOOC focused on the importance of the connection and knowledge exchange between individuals in learning. In this paper, we present a conceptual model for massive open online blended courses where teachers over the world can collaborate and exchange their experience to get a common efficient content designed as a MOOC opened to their students to live a better learning experience. This model is based on disciplines’ concepts capitalization and the detection of the obstacles met by their students when faced with problem situations (exercises, projects, case studies, etc.). This detection is possible by analyzing the frequently of semantic errors committed by the students. The participation of teachers in the design of the course and the attendance by their students can guarantee an efficient and extensive participation (an important number of participants) in the course, the learners’ motivation and the evaluation issues, in the way that the teachers designing the course assess their students. Thus, the teachers review, together with their knowledge, offer a better assessment and efficient connections to their students.Keywords: massive open online course, MOOC, online learning, e-learning
Procedia PDF Downloads 2681398 Chemical Technology Approach for Obtaining Carbon Structures Containing Reinforced Ceramic Materials Based on Alumina
Authors: T. Kuchukhidze, N. Jalagonia, T. Archuadze, G. Bokuchava
Abstract:
The growing scientific-technological progress in modern civilization causes actuality of producing construction materials which can successfully work in conditions of high temperature, radiation, pressure, speed, and chemically aggressive environment. Such extreme conditions can withstand very few types of materials and among them, ceramic materials are in the first place. Corundum ceramics is the most useful material for creation of constructive nodes and products of various purposes for its low cost, easy accessibility to raw materials and good combination of physical-chemical properties. However, ceramic composite materials have one disadvantage; they are less plastics and have lower toughness. In order to increase the plasticity, the ceramics are reinforced by various dopants, that reduces the growth of the cracks. It is shown, that adding of even small amount of carbon fibers and carbon nanotubes (CNT) as reinforcing material significantly improves mechanical properties of the products, keeping at the same time advantages of alundum ceramics. Graphene in composite material acts in the same way as inorganic dopants (MgO, ZrO2, SiC and others) and performs the role of aluminum oxide inhibitor, as it creates shell, that gives possibility to reduce sintering temperature and at the same time it acts as damper, because scattering of a shock wave takes place on carbon structures. Application of different structural modification of carbon (graphene, nanotube and others) as reinforced material, gives possibility to create multi-purpose highly requested composite materials based on alundum ceramics. In the present work offers simplified technology for obtaining of aluminum oxide ceramics, reinforced with carbon nanostructures, during which chemical modification with doping carbon nanostructures will be implemented in the process of synthesis of final powdery composite – Alumina. In charge doping carbon nanostructures connected to matrix substance with C-O-Al bonds, that provide their homogeneous spatial distribution. In ceramic obtained as a result of consolidation of such powders carbon fragments equally distributed in the entire matrix of aluminum oxide, that cause increase of bending strength and crack-resistance. The proposed way to prepare the charge simplifies the technological process, decreases energy consumption, synthesis duration and therefore requires less financial expenses. In the implementation of this work, modern instrumental methods were used: electronic and optical microscopy, X-ray structural and granulometric analysis, UV, IR, and Raman spectroscopy.Keywords: ceramic materials, α-Al₂O₃, carbon nanostructures, composites, characterization, hot-pressing
Procedia PDF Downloads 1191397 Open Innovation for Crowdsourced Product Development: The Case Study of Quirky.com
Authors: Ana Bilandzic, Marcus Foth, Greg Hearn
Abstract:
In a narrow sense, innovation is the invention and commercialisation of a new product or service in the marketplace. The literature suggests places that support knowledge exchange and social interaction, e.g. coffee shops, to nurture innovative ideas. With the widespread success of Internet, interpersonal communication and interaction changed. Online platforms complement physical places for idea exchange and innovation – the rise of hybrid, ‘net localities.’ Further, since its introduction in 2003 by Chesbrough, the concept of open innovation received increased attention as a topic in academic research as well as an innovation strategy applied by companies. Open innovation allows companies to seek and release intellectual property and new ideas from outside of their own company. As a consequence, the innovation process is no longer only managed within the company, but it is pursued in a co-creation process with customers, suppliers, and other stakeholders. Quirky.com (Quirky), a company founded by Ben Kaufman in 2009, recognised the opportunity given by the Internet for knowledge exchange and open innovation. Quirky developed an online platform that makes innovation available to everyone. This paper reports on a study that analysed Quirky’s business process in an extended event-driven process chain (eEPC). The aim was to determine how the platform enabled crowdsourced innovation for physical products on the Internet. The analysis reveals that key elements of the business model are based on open innovation. Quirky is an example of how open innovation can support crowdsourced and crowdfunded product ideation, development and selling. The company opened up various stages in the innovation process to its members to contribute in the product development, e.g. product ideation, design, and market research. Throughout the process, members earn influence through participating in the product development. Based on the influence they receive, shares on the product’s turnover. The outcomes of the study’s analysis highlighted certain benefits of open innovation for product development. The paper concludes with recommendations for future research to look into opportunities of open innovation approaches to be adopted by tertiary institutions as a novel way to commercialise research intellectual property.Keywords: business process, crowdsourced innovation, open innovation, Quirky
Procedia PDF Downloads 2271396 Adsorptive Desulfurization of Tire Pyrolytic Oil Using Cu(I)–Y Zeolite via π-Complexation
Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng
Abstract:
The accelerating requirement to reach 0% sulfur content in liquid fuels demands researchers to seek efficient alternative technologies to challenge the predicament. In this current study, the adsorption capabilities of modified Cu(I)-Y zeolite were tested for removal of organosulfur compounds (OSC) present in TPO. The π-complexation-based adsorbent was obtained by ion exchanging Y-zeolite with Cu+ cation using liquid phase ion exchange (LPIE). Preparation of the adsorbent involved firstly ion-exchange between Na-Y zeolite with a Cu(NO3)2 aqueous solution of 0.5M for 48 hours followed by reduction of Cu2+ to Cu+. Batch studies for TPO in comparison with model diesel comprising of sulfur compounds such as thiophene (TH), benzothiophene (BTH), dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophe (4,6-DMDBT) showed that modified Cu(I)-Y zeolite is an effective adsorbent for removal of OSC in liquid fuels. The effect of multiple operating conditions such as adsorbent dosage, reaction time and temperature were studied to optimize the process. For model diesel fuel, the selectivity for adsorption of sulfur compounds followed the order 4,6-DMDBT> DBT> BTH> TH. Interpretation of the results was justified using the molecular orbital theory and calculations. Langmuir and Freundlich isotherms were used to predict adsorption of the reaction mixture. The Cu(I)-Y zeolite is fully regeneratable and this is achieved by a simple procedure of blowing the adsorbent with air at 350 °C, followed by reactivation at 450 °C in a rich helium surrounding.Keywords: adsorption, desulfurization, TPO, zeolite
Procedia PDF Downloads 2341395 Virtual Container Yard: Assessing the Perceived Impact of Legal Implications to Container Carriers
Authors: L. Edirisinghe, P. Mukherjee, H. Edirisinghe
Abstract:
Virtual Container Yard (VCY) is a modern concept that helps to reduce the empty container repositioning cost of carriers. The concept of VCY is based on container interchange between shipping lines. Although this mechanism has been theoretically accepted by the shipping community as a feasible solution, it has not yet achieved the necessary momentum among container shipping lines (CSL). This paper investigates whether there is any legal influence on this industry myopia about the VCY. It is believed that this is the first publication that focuses on the legal aspects of container exchange between carriers. Not much literature on this subject is available. This study establishes with statistical evidence that there is a phobia prevailing in the shipping industry that exchanging containers with other carriers may lead to various legal implications. The complexity of exchange is two faceted. CSLs assume that offering a container to another carrier (obviously, a competitor in terms of commercial context) or using a container offered by another carrier may lead to undue legal implications. This research reveals that this fear is reflected through four types of perceived components, namely: shipping associate; warehouse associate; network associate; and trading associate. These components carry eighteen subcomponents that comprehensively cover the entire process of a container shipment. The statistical explanation has been supported through regression analysis; INCO terms were used to illustrate the shipping process.Keywords: virtual container yard, legal, maritime law, inventory
Procedia PDF Downloads 1651394 A Hybrid Expert System for Generating Stock Trading Signals
Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour
Abstract:
In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.Keywords: fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange
Procedia PDF Downloads 3321393 Extended Knowledge Exchange with Industrial Partners: A Case Study
Authors: C. Fortin, D. Tokmeninova, O. Ushakova
Abstract:
Among 500 Russian universities Skolkovo Institute of Science and Technology (Skoltech) is one of the youngest (established in 2011), quite small and vastly international, comprising 20 percent of international students and 70 percent of faculty with significant academic experience at top-100 universities (QS, THE). The institute has emerged from close collaboration with MIT and leading Russian universities. Skoltech is an entirely English speaking environment. Skoltech curriculum plans of ten Master programs are based on the CDIO learning outcomes model. However, despite the Institute’s unique focus on industrial innovations and startups, one of the main challenges has become an evident large proportion of nearly half of MSc graduates entering PhD programs at Skoltech or other universities rather than industry or entrepreneurship. In order to increase the share of students joining the industrial sector after graduation, Skoltech started implementing a number of unique practices with a focus on employers’ expectations incorporated into the curriculum redesign. In this sense, extended knowledge exchange with industrial partners via collaboration in learning activities, industrial projects and assessments became essential for students’ headway into industrial and entrepreneurship pathways. Current academic curriculum includes the following types of components based on extended knowledge exchange with industrial partners: innovation workshop, industrial immersion, special industrial tracks, MSc defenses. Innovation workshop is a 4 week full time diving into the Skoltech vibrant ecosystem designed to foster innovators, focuses on teamwork, group projects, and sparks entrepreneurial instincts from the very first days of study. From 2019 the number of mentors from industry and startups significantly increased to guide students across these sectors’ demands. Industrial immersion is an exclusive part of Skoltech curriculum where students after the first year of study spend 8 weeks in an industrial company carrying out an individual or team project and are guided jointly by both Skoltech and company supervisors. The aim of the industrial immersion is to familiarize students with relevant needs of Russian industry and to prepare graduates for job placement. During the immersion a company plays the role of a challenge provider for students. Skoltech has started a special industrial track comprising deep collaboration with IPG Photonics – a leading R&D company and manufacturer of high-performance fiber lasers and amplifiers for diverse applications. The track is aimed to train a new cohort of engineers and includes a variety of activities for students within the “Photonics” MSc program. It is expected to be a successful story and used as an example for similar initiatives with other Russian high-tech companies. One of the pathways of extended knowledge exchange with industrial partners is an active involvement of potential employers in MSc Defense Committees to review and assess MSc thesis projects and to participate in defense procedures. The paper will evaluate the effect and results of the above undertaken measures.Keywords: Curriculum redesign, knowledge exchange model, learning outcomes framework, stakeholder engagement
Procedia PDF Downloads 811392 Analyzing the Effect of Design of Pipe in Shell and Tube Type Heat Exchanger by Measuring Its Heat Transfer Rate by Computation Fluid Dynamics and Thermal Approach
Authors: Dhawal Ladani
Abstract:
Shell and tube type heat exchangers are predominantly used in heat exchange between two fluids and other applications. This paper projects the optimal design of the pipe used in the heat exchanger in such a way to minimize the vibration occurring in the pipe. Paper also consists of the comparison of the different design of the pipe to get the maximize the heat transfer rate by converting laminar flow into the turbulent flow. By the updated design the vibration in the pipe due to the flow is also decreased. Computational Fluid Dynamics and Thermal Heat Transfer analysis are done to justifying the result. Currently, the straight pipe is used in the shell and tube type of heat exchanger where as per the paper the pipe consists of the curvature along with the pipe. Hence, the heat transfer area is also increased and result in the increasing in heat transfer rate. Curvature type design is useful to create turbulence and minimizing the vibration, also. The result will give the output comparison of the effect of laminar flow and the turbulent flow in the heat exchange mechanism, as well as, inverse effect of the boundary layer in heat exchanger is also justified.Keywords: heat exchanger, heat transfer rate, laminar and turbulent effect, shell and tube
Procedia PDF Downloads 3071391 Design of Tube Expanders with Groove Shapes to Reduce Deformation of Tube Inner Grooves in Copper Tube Expansion
Authors: I. Sin, H. Kim, S. Park
Abstract:
Fin-tube heat exchangers have grooves inside tubes to improve heat exchange performance. However, during the tube expansion process, heat exchange efficiency is decreased due to large deformation of tube inner grooves. Therefore, the objective of this study is to design a tube expander with groove shapes on its outer surface to minimize deformation of the inner grooves in copper tube expansion for fin-tube heat exchangers. In order to achieve this goal, first, we have tried to calculate tube inner groove deformation by the currently used tube expander without groove shapes on its surface. The tube inner groove deformation was acquired by elastoplastic finite element analysis from the boundary conditions with one tube end fixed and friction between the tube and tube expander (friction coefficient: 0.15). The tube expansion process was simulated by inserting the tube expander into the tube with a speed of 90 mm/s. The analysis results showed that tube inner groove heights were decreased by approximately 8 % from 0.15 mm to 0.138 mm with stress concentrations observed at the groove end, consistent with experimental results. Based on the current results, we are trying to design a novel shape of the tube expander with grooves to further reduce deformation tube inner grooves in copper tube expansion. For this, we will select major design variables of tube expander groove shapes by conducting sensitivity analysis and then optimize the design variables using the Taguchi method.Keywords: tube expansion, tube expander, heat exchanger, finite element
Procedia PDF Downloads 3261390 Nanostructured Pt/MnO2 Catalysts and Their Performance for Oxygen Reduction Reaction in Air Cathode Microbial Fuel Cell
Authors: Maksudur Rahman Khan, Kar Min Chan, Huei Ruey Ong, Chin Kui Cheng, Wasikur Rahman
Abstract:
Microbial fuel cells (MFCs) represent a promising technology for simultaneous bioelectricity generation and wastewater treatment. Catalysts are significant portions of the cost of microbial fuel cell cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. The sluggish oxygen reduction reaction (ORR) rate at air cathode necessitates efficient electrocatalyst such as carbon supported platinum catalyst (Pt/C) which is very costly. Manganese oxide (MnO2) was a representative metal oxide which has been studied as a promising alternative electrocatalyst for ORR and has been tested in air-cathode MFCs. However, the single MnO2 has poor electric conductivity and low stability. In the present work, the MnO2 catalyst has been modified by doping Pt nanoparticle. The goal of the work was to improve the performance of the MFC with minimum Pt loading. MnO2 and Pt nanoparticles were prepared by hydrothermal and sol-gel methods, respectively. Wet impregnation method was used to synthesize Pt/MnO2 catalyst. The catalysts were further used as cathode catalysts in air-cathode cubic MFCs, in which anaerobic sludge was inoculated as biocatalysts and palm oil mill effluent (POME) was used as the substrate in the anode chamber. The as-prepared Pt/MnO2 was characterized comprehensively through field emission scanning electron microscope (FESEM), X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) where its surface morphology, crystallinity, oxidation state and electrochemical activity were examined, respectively. XPS revealed Mn (IV) oxidation state and Pt (0) nanoparticle metal, indicating the presence of MnO2 and Pt. Morphology of Pt/MnO2 observed from FESEM shows that the doping of Pt did not cause change in needle-like shape of MnO2 which provides large contacting surface area. The electrochemical active area of the Pt/MnO2 catalysts has been increased from 276 to 617 m2/g with the increase in Pt loading from 0.2 to 0.8 wt%. The CV results in O2 saturated neutral Na2SO4 solution showed that MnO2 and Pt/MnO2 catalysts could catalyze ORR with different catalytic activities. MFC with Pt/MnO2 (0.4 wt% Pt) as air cathode catalyst generates a maximum power density of 165 mW/m3, which is higher than that of MFC with MnO2 catalyst (95 mW/m3). The open circuit voltage (OCV) of the MFC operated with MnO2 cathode gradually decreased during 14 days of operation, whereas the MFC with Pt/MnO2 cathode remained almost constant throughout the operation suggesting the higher stability of the Pt/MnO2 catalyst. Therefore, Pt/MnO2 with 0.4 wt% Pt successfully demonstrated as an efficient and low cost electrocatalyst for ORR in air cathode MFC with higher electrochemical activity, stability and hence enhanced performance.Keywords: microbial fuel cell, oxygen reduction reaction, Pt/MnO2, palm oil mill effluent, polarization curve
Procedia PDF Downloads 5571389 To Investigate the Effects of Potassium Ion Doping and Oxygen Vacancies in Thin-Film Transistors of Gallium Oxide-Indium Oxide on Their Electrical
Authors: Peihao Huang, Chun Zhao
Abstract:
Thin-film transistors(TFTs) have the advantages of low power consumption, short reaction time, and have high research value in the field of semiconductors, based on this reason, people have focused on gallium oxide-indium oxide thin-film transistors, a relatively common thin-film transistor, elaborated and analyzed his production process, "aqueous solution method", explained the purpose of each step of operation, and finally explored the influence of potassium ions doped in the channel layer on the electrical properties of the device, as well as the effect of oxygen vacancies on its switching ratio and memory, and summarized the conclusions.Keywords: aqueous solution, oxygen vacancies, switch ratio, thin-film transistor(TFT)
Procedia PDF Downloads 1151388 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning
Abstract:
Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.Keywords: machine learning, ETF prediction, dynamic trading, asset allocation
Procedia PDF Downloads 981387 Impact of Macroeconomic Variables on Indian Mutual Funds: A Time Series Analysis
Authors: Sonali Agarwal
Abstract:
The investor perception about investment avenues is affected to a great degree by the current happenings, within the country, and on the global stage. The influencing events can range from government policies, bilateral trade agreements, election agendas, to changing exchange rates, appreciation and depreciation of currency, recessions, meltdowns, bankruptcies etc. The current research attempts to discover and unravel the effect of various macroeconomic variables (crude oil price, gold price, silver price and USD exchange rate) on the Indian mutual fund industry in general and the chosen funds (Axis Gold Fund, BSL Gold Fund, Kotak Gold Fund & SBI gold fund) in particular. Cointegration tests and Vector error correction equations prove that the chosen variables have strong effect on the NAVs (net asset values) of the mutual funds. However, the greatest influence is felt from the fund’s own past and current information and it is found that when an innovation of fund’s own lagged NAVs is given, variance caused is high that changes the current NAVs markedly. The study helps to highlight the interplay of macroeconomic variables and their repercussion on mutual fund industry.Keywords: cointegration, Granger causality, impulse response, macroeconomic variables, mutual funds, stationarity, unit root test, variance decomposition, VECM
Procedia PDF Downloads 244