Search results for: finite difference time domain
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23842

Search results for: finite difference time domain

23392 The Physics of Turbulence Generation in a Fluid: Numerical Investigation Using a 1D Damped-MNLS Equation

Authors: Praveen Kumar, R. Uma, R. P. Sharma

Abstract:

This study investigates the generation of turbulence in a deep-fluid environment using a damped 1D-modified nonlinear Schrödinger equation model. The well-known damped modified nonlinear Schrödinger equation (d-MNLS) is solved using numerical methods. Artificial damping is added to the MNLS equation, and turbulence generation is investigated through a numerical simulation. The numerical simulation employs a finite difference method for temporal evolution and a pseudo-spectral approach to characterize spatial patterns. The results reveal a recurring periodic pattern in both space and time when the nonlinear Schrödinger equation is considered. Additionally, the study shows that the modified nonlinear Schrödinger equation disrupts the localization of structure and the recurrence of the Fermi-Pasta-Ulam (FPU) phenomenon. The energy spectrum exhibits a power-law behavior, closely following Kolmogorov's spectra steeper than k⁻⁵/³ in the inertial sub-range.

Keywords: water waves, modulation instability, hydrodynamics, nonlinear Schrödinger's equation

Procedia PDF Downloads 43
23391 New Approach to Interactional Dynamics of E-mail Correspondence

Authors: Olga Karamalak

Abstract:

The paper demonstrates a research about theoretical understanding of writing in the electronic environment as dynamic, interactive, dialogical, and distributed activity aimed at “other-orientation” and consensual domain creation. The purpose is to analyze the personal e-mail correspondence in the academic environment from this perspective. The focus is made on the dynamics of interaction between the correspondents such as contact setting, orientation and co-functions; and the text of an e-letter is regarded as indices of the write’s state or affordances in terms of ecological linguistics. The establishment of consensual domain of interaction brings about a new stage of cognition emergence which may lead to distributed learning. The research can play an important part in the series of works dedicated to writing in the electronic environment.

Keywords: consensual domain of interactions, distributed writing and learning, e-mail correspondence, interaction, orientation, co-function

Procedia PDF Downloads 563
23390 Maximum Distance Separable b-Symbol Repeated-Root γ-Constacylic Codes over a Finite Chain Ring of Length 2

Authors: Jamal Laaouine, Mohammed Elhassani Charkani

Abstract:

Let p be a prime and let b be an integer. MDS b-symbol codes are a direct generalization of MDS codes. The γ-constacyclic codes of length pˢ over the finite commutative chain ring Fₚm [u]/ < u² > had been classified into four distinct types, where is a nonzero element of the field Fₚm. Let C₃ be a code of Type 3. In this paper, we obtain the b-symbol distance db(C₃) of the code C₃. Using this result, necessary and sufficient conditions under which C₃ is an MDS b-symbol code are given.

Keywords: constacyclic code, repeated-root code, maximum distance separable, MDS codes, b-symbol distance, finite chain rings

Procedia PDF Downloads 119
23389 Formulating the Stochastic Finite Elements for Free Vibration Analysis of Plates with Variable Elastic Modulus

Authors: Mojtaba Aghamiri Esfahani, Mohammad Karkon, Seyed Majid Hosseini Nezhad, Reza Hosseini-Ara

Abstract:

In this study, the effect of uncertainty in elastic modulus of a plate on free vibration response is investigated. For this purpose, the elastic modulus of the plate is modeled as stochastic variable with normal distribution. Moreover, the distance autocorrelation function is used for stochastic field. Then, by applying the finite element method and Monte Carlo simulation, stochastic finite element relations are extracted. Finally, with a numerical test, the effect of uncertainty in the elastic modulus on free vibration response of a plate is studied. The results show that the effect of uncertainty in elastic modulus of the plate cannot play an important role on the free vibration response.

Keywords: stochastic finite elements, plate bending, free vibration, Monte Carlo, Neumann expansion method.

Procedia PDF Downloads 367
23388 The Competing Roles of Educator, Music Teacher, and Musician in Professional Identity Development: A Longitudinal Autoethnography

Authors: Thomas LaRocca

Abstract:

This study explores the development of a public-school music teacher’s professional identity within three domains: as an educator in the profession at large, as a music teacher in a school, and as a professional musician. An autoethnographic method is employed by calling upon undergraduate student teaching reflections, graduate writing assignments and presentations, cover letters for employment, professional correspondence, and reflective memos. These artifacts provide a reference for phenomenological insights into the values, hopes, and criticisms within each domain over time –all of which provide a window into the overall ontological perspective of one’s professional life at different moments in their career. While the topic of music teacher identity has been examined using autoethnographical methods before, by accessing materials over the course of ten years, the study is able to investigate the ‘how’ of identity development in a temporal context; from undergraduate student to established professional. Additionally, while the field offers a considerable amount of work surrounding the child and adolescent identity development, there are unmined opportunities to examine identity development in the adult years, especially surrounding adult professional life. Employing a postpositivist approach with social constructionism as a backdrop, this study examines adult identity formation and the contradictions, resonances, and priorities within each domain, between each domain, and perceived expectations of the professional community. What is revealed is a journey of self-improvement motivated by failure and success, marked by negotiation and sacrifice; as each domain competes for mental and temporal resources, identity is viewed as not just who one is, but also as what one leaves behind. These insights offer a window into the ontology of identity of a music educator and may provide considerations for differentiating professional development based on what stage educators are at in their careers.

Keywords: identity, longitudinal autoethnography, music teacher education, music teacher ontology

Procedia PDF Downloads 114
23387 Domain Adaptive Dense Retrieval with Query Generation

Authors: Rui Yin, Haojie Wang, Xun Li

Abstract:

Recently, mainstream dense retrieval methods have obtained state-of-the-art results on some datasets and tasks. However, they require large amounts of training data, which is not available in most domains. The severe performance degradation of dense retrievers on new data domains has limited the use of dense retrieval methods to only a few domains with large training datasets. In this paper, we propose an unsupervised domain-adaptive approach based on query generation. First, a generative model is used to generate relevant queries for each passage in the target corpus, and then, the generated queries are used for mining negative passages. Finally, the query-passage pairs are labeled with a cross-encoder and used to train a domain-adapted dense retriever. We also explore contrastive learning as a method for training domain-adapted dense retrievers and show that it leads to strong performance in various retrieval settings. Experiments show that our approach is more robust than previous methods in target domains that require less unlabeled data.

Keywords: dense retrieval, query generation, contrastive learning, unsupervised training

Procedia PDF Downloads 70
23386 LiDAR Based Real Time Multiple Vehicle Detection and Tracking

Authors: Zhongzhen Luo, Saeid Habibi, Martin v. Mohrenschildt

Abstract:

Self-driving vehicle require a high level of situational awareness in order to maneuver safely when driving in real world condition. This paper presents a LiDAR based real time perception system that is able to process sensor raw data for multiple target detection and tracking in dynamic environment. The proposed algorithm is nonparametric and deterministic that is no assumptions and priori knowledge are needed from the input data and no initializations are required. Additionally, the proposed method is working on the three-dimensional data directly generated by LiDAR while not scarifying the rich information contained in the domain of 3D. Moreover, a fast and efficient for real time clustering algorithm is applied based on a radially bounded nearest neighbor (RBNN). Hungarian algorithm procedure and adaptive Kalman filtering are used for data association and tracking algorithm. The proposed algorithm is able to run in real time with average run time of 70ms per frame.

Keywords: lidar, segmentation, clustering, tracking

Procedia PDF Downloads 391
23385 Bidirectional Dynamic Time Warping Algorithm for the Recognition of Isolated Words Impacted by Transient Noise Pulses

Authors: G. Tamulevičius, A. Serackis, T. Sledevič, D. Navakauskas

Abstract:

We consider the biggest challenge in speech recognition – noise reduction. Traditionally detected transient noise pulses are removed with the corrupted speech using pulse models. In this paper we propose to cope with the problem directly in Dynamic Time Warping domain. Bidirectional Dynamic Time Warping algorithm for the recognition of isolated words impacted by transient noise pulses is proposed. It uses simple transient noise pulse detector, employs bidirectional computation of dynamic time warping and directly manipulates with warping results. Experimental investigation with several alternative solutions confirms effectiveness of the proposed algorithm in the reduction of impact of noise on recognition process – 3.9% increase of the noisy speech recognition is achieved.

Keywords: transient noise pulses, noise reduction, dynamic time warping, speech recognition

Procedia PDF Downloads 532
23384 A Study of Non Linear Partial Differential Equation with Random Initial Condition

Authors: Ayaz Ahmad

Abstract:

In this work, we present the effect of noise on the solution of a partial differential equation (PDE) in three different setting. We shall first consider random initial condition for two nonlinear dispersive PDE the non linear Schrodinger equation and the Kortteweg –de vries equation and analyse their effect on some special solution , the soliton solutions.The second case considered a linear partial differential equation , the wave equation with random initial conditions allow to substantially decrease the computational and data storage costs of an algorithm to solve the inverse problem based on the boundary measurements of the solution of this equation. Finally, the third example considered is that of the linear transport equation with a singular drift term, when we shall show that the addition of a multiplicative noise term forbids the blow up of solutions under a very weak hypothesis for which we have finite time blow up of a solution in the deterministic case. Here we consider the problem of wave propagation, which is modelled by a nonlinear dispersive equation with noisy initial condition .As observed noise can also be introduced directly in the equations.

Keywords: drift term, finite time blow up, inverse problem, soliton solution

Procedia PDF Downloads 193
23383 Numerical and Experimental Analysis of Temperature Distribution and Electric Field in a Natural Rubber Glove during Microwave Heating

Authors: U. Narumitbowonkul, P. Keangin, P. Rattanadecho

Abstract:

Both numerical and experimental investigation of the temperature distribution and electric field in a natural rubber glove (NRG) during microwave heating are studied. A three-dimensional model of NRG and microwave oven are considered in this work. The influences of position, heating time and rotation angle of NRG on temperature distribution and electric field are presented in details. The coupled equations of electromagnetic wave propagation and heat transfer are solved using the finite element method (FEM). The numerical model is validated with an experimental study at a frequency of 2.45 GHz. The results show that the numerical results closely match the experimental results. Furthermore, it is found that the temperature distribution and electric field increases with increasing heating time. The hot spot zone appears in NRG at the tip of middle finger while the maximum temperature occurs in case of rotation angle of NRG = 60 degree. This investigation provides the essential aspects for a fundamental understanding of heat transport of NRG using microwave energy in industry.

Keywords: electric field, finite element method, microwave energy, natural rubber glove

Procedia PDF Downloads 244
23382 Texture-Based Image Forensics from Video Frame

Authors: Li Zhou, Yanmei Fang

Abstract:

With current technology, images and videos can be obtained more easily than ever. It is so easy to manipulate these digital multimedia information when obtained, and that the content or source of the image and video could be easily tampered. In this paper, we propose to identify the image and video frame by the texture-based approach, e.g. Markov Transition Probability (MTP), which is in space domain, DCT domain and DWT domain, respectively. In the experiment, image and video frame database is constructed, and is used to train and test the classifier Support Vector Machine (SVM). Experiment results show that the texture-based approach has good performance. In order to verify the experiment result, and testify the universality and robustness of algorithm, we build a random testing dataset, the random testing result is in keeping with above experiment.

Keywords: multimedia forensics, video frame, LBP, MTP, SVM

Procedia PDF Downloads 404
23381 Development of an Implicit Physical Influence Upwind Scheme for Cell-Centered Finite Volume Method

Authors: Shidvash Vakilipour, Masoud Mohammadi, Rouzbeh Riazi, Scott Ormiston, Kimia Amiri, Sahar Barati

Abstract:

An essential component of a finite volume method (FVM) is the advection scheme that estimates values on the cell faces based on the calculated values on the nodes or cell centers. The most widely used advection schemes are upwind schemes. These schemes have been developed in FVM on different kinds of structured and unstructured grids. In this research, the physical influence scheme (PIS) is developed for a cell-centered FVM that uses an implicit coupled solver. Results are compared with the exponential differencing scheme (EDS) and the skew upwind differencing scheme (SUDS). Accuracy of these schemes is evaluated for a lid-driven cavity flow at Re = 1000, 3200, and 5000 and a backward-facing step flow at Re = 800. Simulations show considerable differences between the results of EDS scheme with benchmarks, especially for the lid-driven cavity flow at high Reynolds numbers. These differences occur due to false diffusion. Comparing SUDS and PIS schemes shows relatively close results for the backward-facing step flow and different results in lid-driven cavity flow. The poor results of SUDS in the lid-driven cavity flow can be related to its lack of sensitivity to the pressure difference between cell face and upwind points, which is critical for the prediction of such vortex dominant flows.

Keywords: cell-centered finite volume method, coupled solver, exponential differencing scheme (EDS), physical influence scheme (PIS), pressure weighted interpolation method (PWIM), skew upwind differencing scheme (SUDS)

Procedia PDF Downloads 256
23380 Die Design for Flashless Forging of a Polymer Insulator Fitting

Authors: Pedram Khazaie, Sajjad Moein

Abstract:

In the conventional hot forging of Tongue, which is a fitting for polymer insulator, the material wasted to flash accounts for 20-30% of workpiece. In order to reduce the cost of forged products, this waste material must be minimized. In this study, a flashless forging die is designed and simulated using the finite element method (FEM). A solution to avoid overloading the die with a simple preform is also presented. Moreover, since in flashless forging, burr is formed on the edge of workpiece, a controlled flash forging method is proposed to solve this problem. The simulation results have been validated by experiments; achieving close agreement between simulated and experimental data. It was shown that numerical modeling is helpful in reducing cost and time in the manufacturing process.

Keywords: burr formation, die design, finite element method, flashless forging

Procedia PDF Downloads 142
23379 High Temperature Creep Analysis for Lower Head of Reactor Pressure Vessel

Authors: Dongchuan Su, Hai Xie, Naibin Jiang

Abstract:

Under severe accident cases, the nuclear reactor core may meltdown inside the lower head of the reactor pressure vessel (RPV). Retaining the melt pool inside the RPV is an important strategy of severe accident management. During this process, the inner wall of the lower head will be heated to high temperature of a thousand centigrade, and the outer wall is immersed in a large amount of cooling water. The material of the lower head will have serious creep damage under the high temperature and the temperature difference, and this produces a great threat to the integrity of the RPV. In this paper, the ANSYS program is employed to build the finite element method (FEM) model of the lower head, the creep phenomena is simulated under the severe accident case, the time dependent strain and stress distribution is obtained, the creep damage of the lower head is investigated, the integrity of the RPV is evaluated and the theoretical basis is provided for the optimized design and safety assessment of the RPV.

Keywords: severe accident, lower head of RPV, creep, FEM

Procedia PDF Downloads 208
23378 Evaluation of Progesterone and Estradiol17-ß Levels in Ewes Induced with Different Methods

Authors: E. Sinem Ozdemir Salci, Nazmiye Gunes, Guven Ozkaya, Gulsen Goncagul, Kamil Seyrek Intas

Abstract:

The aim of this study was to show the effects of progesterone and estrogen concentrations in ewes induced with different induction of parturition methods. Twenty-four healthy ewes (n=24) on 138th gestation day were randomly separated according to induction methods (group I (n=6), (0.09% NaCl), group II (n=6) (dexamethasone, 16 mg im.), group III (n=6) (aglepristone 5mg/kg sc.) and group IV (n=6) (aglepristone, 2,5 mg/kg sc.+dexamethasone 8 mg im.). The blood samples of the ewes were collected at 12 hours intervals from induction time to the postpartum 2nd day in order to determine progesterone and estradiol 17-ß levels. These hormone concentrations were determined by ELISA, and obtained results were statistically analyzed with Kruskal Wallis and Dunn tests between the groups, and Friedman and Wilcoxon test within the groups. The results pointed out that there was no significant difference within the groups in terms of estradiol 17-ß (group 1, p=0.508; group 2, p=0.054; group 3, p=0.672; group 4, p=0,170). And there was only a significant difference at 138th day (p=0,019) between groups II and IV (p=0,010). There was a significant difference in terms of progesterone concentration within group 1, 2 and 4 (p=0.000). And there was a significant difference at all times except 138th day between the groups (p<0.05). As a conclusion, the induction of parturition methods could be performed successfully. These methods have no effect on estradiol 17-ß concentration but also make changings on progesterone concentrations as in groups 3 and 4.

Keywords: ewe, estradiol 17-ß, induction of parturition, progesterone

Procedia PDF Downloads 197
23377 Finite Element Modeling of Friction Stir Welding of Dissimilar Alloys

Authors: Fadi Al-Badour, Nesar Merah, Abdelrahman Shuaib, Abdelaziz Bazoune

Abstract:

In the current work, a Coupled Eulerian Lagrangian (CEL) model is developed to simulate the friction stir welding (FSW) process of dissimilar Aluminum alloys (Al 6061-T6 with Al 5083-O). The model predicts volumetric defects, material flow, developed temperatures, and stresses in addition to tool reaction loads. Simulation of welding phase is performed by employing a control volume approach, whereas the welding speed is defined as inflow and outflow over Eulerian domain boundaries. Only material softening due to inelastic heat generation is considered and material behavior is assumed to obey Johnson-Cook’s Model. The model was validated using published experimentally measured temperatures, at similar welding conditions, and by qualitative comparison of dissimilar weld microstructure. The FE results showed that most of developed temperatures were below melting and that the bulk of the deformed material in solid state. The temperature gradient on AL6061-T6 side was found to be less than that of Al 5083-O. Changing the position Al 6061-T6 from retreating (Ret.) side to advancing (Adv.) side led to a decrease in maximum process temperature and strain rate. This could be due to the higher resistance of Al 6061-T6 to flow as compared to Al 5083-O.

Keywords: friction stir welding, dissimilar metals, finite element modeling, coupled Eulerian Lagrangian Analysis

Procedia PDF Downloads 309
23376 Modeling SET Effect on Charge Pump Phase Locked Loop

Authors: Varsha Prasad, S. Sandya

Abstract:

Cosmic Ray effects in microelectronics such as single event effect (SET) and total dose ionization (TID) have been of major concern in space electronics since 1970. Advanced CMOS technologies have demonstrated reduced sensitivity to TID effect. However, charge pump Phase Locked Loop is very much vulnerable to single event transient effect. This paper presents an SET analysis model, where the SET is modeled as a double exponential pulse. The time domain analysis reveals that the settling time of the voltage controlled oscillator (VCO) depends on the SET pulse strength, setting the time constant and the damping factor. The analysis of the proposed SET analysis model is confirmed by the simulation results.

Keywords: charge pump, phase locked loop, SET, VCO

Procedia PDF Downloads 415
23375 A Semi-Implicit Phase Field Model for Droplet Evolution

Authors: M. H. Kazemi, D. Salac

Abstract:

A semi-implicit phase field method for droplet evolution is proposed. Using the phase field Cahn-Hilliard equation, we are able to track the interface in multiphase flow. The idea of a semi-implicit finite difference scheme is reviewed and employed to solve two nonlinear equations, including the Navier-Stokes and the Cahn-Hilliard equations. The use of a semi-implicit method allows us to have larger time steps compared to explicit schemes. The governing equations are coupled and then solved by a GMRES solver (generalized minimal residual method) using modified Gram-Schmidt orthogonalization. To show the validity of the method, we apply the method to the simulation of a rising droplet, a leaky dielectric drop and the coalescence of drops. The numerical solutions to the phase field model match well with existing solutions over a defined range of variables.

Keywords: coalescence, leaky dielectric, numerical method, phase field, rising droplet, semi-implicit method

Procedia PDF Downloads 452
23374 Numerical Simulations of Fire in Typical Air Conditioned Railway Coach

Authors: Manoj Sarda, Abhishek Agarwal, Juhi Kaushik, Vatsal Sanjay, Arup Kumar Das

Abstract:

Railways in India remain primary mode of transport having one of the largest networks in the world and catering to billions of transits yearly. Catastrophic economic damage and loss to life is encountered over the past few decades due to fire to locomotives. Study of fire dynamics and fire propagation plays an important role in evacuation planning and reducing losses. Simulation based study of propagation of fire and soot inside an air conditioned coach of Indian locomotive is done in this paper. Finite difference based solver, Fire Dynamic Simulator (FDS) version 6 has been used for analysis. A single air conditioned 3 tier coupe closed to ambient surroundings by glass windows having occupancy for 8 people is the basic unit of the domain. A system of three such coupes combined is taken to be fundamental unit for the entire study to resemble effect to an entire coach. Analysis of flame and soot contours and concentrations is done corresponding to variations in heat release rate per unit volume (HRRPUA) of fire source, variations in conditioned air velocity being circulated inside coupes by vents and an alternate fire initiation and propagation mechanism via ducts. Quantitative results of fractional area in top and front view of the three coupes under fire and smoke are obtained using MATLAB (IMT). Present simulations and its findings will be useful for organizations like Commission of Railway Safety and others in designing and implementing safety and evacuation measures.

Keywords: air conditioned coaches, fire propagation, flame contour, soot flow, train fire

Procedia PDF Downloads 260
23373 Failure Pressure Prediction of a Corroded Pipeline Using a Finite Element Method

Authors: Lounes Aouane, Omar Bouledroua

Abstract:

Sonatrach uses 24,000 kilometers of pipelines to transport gas and oil. Over time, these pipes run the risk of bursting due to corrosion inside and/or outside the pipeline. For this reason, a check must be made with the help of an equipped scraper. This intelligent tool provides a detailed picture of all errors in the pipeline. Based on the ERF values, these wear defects are divided into two parts: acceptable defect and unacceptable defect. The objective of this work is to conduct a comparative study of the different methods of calculating the marginal pressure found in the literature (DNV RP F-101, SHELL, P-CORRC, NETTO and CSA Z662). This comparison will be made from a database of 329 burst tests published in the literature. Finally, we will propose a new approach based on the finite element method using the commercial software ANSYS.

Keywords: hydrogen embrittlement, pipelines, hydrogen, transient flow, cyclic pressure, fatigue crack growth

Procedia PDF Downloads 45
23372 Subjective Time as a Marker of the Present Consciousness

Authors: Anastasiya Paltarzhitskaya

Abstract:

Subjective time plays an important role in consciousness processes and self-awareness at the moment. The concept of intrinsic neural timescales (INT) explains the difference in perceiving various time intervals. The capacity to experience the present builds on the fundamental properties of temporal cognition. The challenge that both philosophy and neuroscience try to answer is how the brain differentiates the present from the past and future. In our work, we analyze papers which describe mechanisms involved in the perception of ‘present’ and ‘non-present’, i.e., future and past moments. Taking into account that we perceive time intervals even during rest or relaxation, we suppose that the default-mode network activity can code time features, including the present moment. We can compare some results of time perceptual studies, where brain activity was shown in states with different flows of time, including resting states and during “mental time travel”. According to the concept of mental traveling, we employ a range of scenarios which demand episodic memory. However, some papers show that the hippocampal region does not activate during time traveling. It is a controversial result that is further complicated by the phenomenological aspect that includes a holistic set of information about the individual’s past and future.

Keywords: temporal consciousness, time perception, memory, present

Procedia PDF Downloads 47
23371 Postbuckling Analysis of End Supported Rods under Self-Weight Using Intrinsic Coordinate Finite Elements

Authors: C. Juntarasaid, T. Pulngern, S. Chucheepsakul

Abstract:

A formulation of postbuckling analysis of end supported rods under self-weight has been presented by the variational method. The variational formulation involving the strain energy due to bending and the potential energy of the self-weight, are expressed in terms of the intrinsic coordinates. The variational formulation is accomplished by introducing the Lagrange multiplier technique to impose the boundary conditions. The finite element method is used to derive a system of nonlinear equations resulting from the stationary of the total potential energy and then Newton-Raphson iterative procedure is applied to solve this system of equations. The numerical results demonstrate the postbluckled configurations of end supported rods under self-weight. This finite element method based on variational formulation expressed in term of intrinsic coordinate is highly recommended for postbuckling analysis of end-supported rods under self-weight.

Keywords: postbuckling, finite element method, variational method, intrinsic coordinate

Procedia PDF Downloads 130
23370 On Privacy-Preserving Search in the Encrypted Domain

Authors: Chun-Shien Lu

Abstract:

Privacy-preserving query has recently received considerable attention in the signal processing and multimedia community. It is also a critical step in wireless sensor network for retrieval of sensitive data. The purposes of privacy-preserving query in both the areas of signal processing and sensor network are the same, but the similarity and difference of the adopted technologies are not fully explored. In this paper, we first review the recently developed methods of privacy-preserving query, and then describe in a comprehensive manner what we can learn from the mutual of both areas.

Keywords: encryption, privacy-preserving, search, security

Procedia PDF Downloads 234
23369 Equal Channel Angular Pressing of Al1050 Sheets: Experimental and Finite Element Survey

Authors: P. M. Keshtiban, M. Zdshakoyan, G. Faragi

Abstract:

Different severe plastic deformation (SPD) methods are the most successful ways to build nano-structural materials from coarse grain samples without changing the cross-sectional area. One of the most widely used methods in the SPD process is equal channel angler pressing (ECAP). In this paper, ECAP process on Al1050 sheets was evaluated at room temperature by both experiments and finite element method. Since, one of the main objectives of SPD processes is to achieve high equivalent plastic strain (PEEQ) in one cycle, the values of PEEQ obtained by finite element simulation. Also, force-displacement curve achieved by FEM. To study the changes of mechanical properties, micro-hardness tests were conducted on samples and improvement in the mechanical properties were investigated. Results show that there is the good proportion between FEM, theory and experimental results.

Keywords: AL1050, experiments, finite element method, severe plastic deformation

Procedia PDF Downloads 391
23368 Statistical Inferences for GQARCH-It\^{o} - Jumps Model Based on The Realized Range Volatility

Authors: Fu Jinyu, Lin Jinguan

Abstract:

This paper introduces a novel approach that unifies two types of models: one is the continuous-time jump-diffusion used to model high-frequency data, and the other is discrete-time GQARCH employed to model low-frequency financial data by embedding the discrete GQARCH structure with jumps in the instantaneous volatility process. This model is named “GQARCH-It\^{o} -Jumps mode.” We adopt the realized range-based threshold estimation for high-frequency financial data rather than the realized return-based volatility estimators, which entail the loss of intra-day information of the price movement. Meanwhile, a quasi-likelihood function for the low-frequency GQARCH structure with jumps is developed for the parametric estimate. The asymptotic theories are mainly established for the proposed estimators in the case of finite activity jumps. Moreover, simulation studies are implemented to check the finite sample performance of the proposed methodology. Specifically, it is demonstrated that how our proposed approaches can be practically used on some financial data.

Keywords: It\^{o} process, GQARCH, leverage effects, threshold, realized range-based volatility estimator, quasi-maximum likelihood estimate

Procedia PDF Downloads 134
23367 Photoelastic Analysis and Finite Elements Analysis of a Stress Field Developed in a Double Edge Notched Specimen

Authors: A. Bilek, M. Beldi, T. Cherfi, S. Djebali, S. Larbi

Abstract:

Finite elements analysis and photoelasticity are used to determine the stress field developed in a double edge notched specimen loaded in tension. The specimen is cut in a birefringent plate. Experimental isochromatic fringes are obtained with circularly polarized light on the analyzer of a regular polariscope. The fringes represent the loci of points of equal maximum shear stress. In order to obtain the stress values corresponding to the fringe orders recorded in the notched specimen, particularly in the neighborhood of the notches, a calibrating disc made of the same material is loaded in compression along its diameter in order to determine the photoelastic fringe value. This fringe value is also used in the finite elements solution in order to obtain the simulated photoelastic fringes, the isochromatics as well as the isoclinics. A color scale is used by the software to represent the simulated fringes on the whole model. The stress concentration factor can be readily obtained at the notches. Good agreements are obtained between the experimental and the simulated fringe patterns and between the graphs of the shear stress particularly in the neighborhood of the notches. The purpose in this paper is to show that one can obtain rapidly and accurately, by the finite element analysis, the isochromatic and the isoclinic fringe patterns in a stressed model as the experimental procedure can be time consuming. Stress fields can therefore be analyzed in three dimensional models as long as the meshing and the limit conditions are properly set in the program.

Keywords: isochromatic fringe, isoclinic fringe, photoelasticity, stress concentration factor

Procedia PDF Downloads 207
23366 Optimization of Element Type for FE Model and Verification of Analyses with Physical Tests

Authors: Mustafa Tufekci, Caner Guven

Abstract:

In Automotive Industry, sliding door systems that are also used as body closures, are safety members. Extreme product tests are realized to prevent failures in a design process, but these tests realized experimentally result in high costs. Finite element analysis is an effective tool used for the design process. These analyses are used before production of a prototype for validation of design according to customer requirement. In result of this, the substantial amount of time and cost is saved. Finite element model is created for geometries that are designed in 3D CAD programs. Different element types as bar, shell and solid, can be used for creating mesh model. The cheaper model can be created by the selection of element type, but combination of element type that was used in model, number and geometry of element and degrees of freedom affects the analysis result. Sliding door system is a good example which used these methods for this study. Structural analysis was realized for sliding door mechanism by using FE models. As well, physical tests that have same boundary conditions with FE models were realized. Comparison study for these element types, were done regarding test and analyses results then the optimum combination was achieved.

Keywords: finite element analysis, sliding door mechanism, element type, structural analysis

Procedia PDF Downloads 301
23365 Similarity Solutions of Nonlinear Stretched Biomagnetic Flow and Heat Transfer with Signum Function and Temperature Power Law Geometries

Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows

Abstract:

Biomagnetic fluid dynamics is an interdisciplinary field comprising engineering, medicine, and biology. Bio fluid dynamics is directed towards finding and developing the solutions to some of the human body related diseases and disorders. This article describes the flow and heat transfer of two dimensional, steady, laminar, viscous and incompressible biomagnetic fluid over a non-linear stretching sheet in the presence of magnetic dipole. Our model is consistent with blood fluid namely biomagnetic fluid dynamics (BFD). This model based on the principles of ferrohydrodynamic (FHD). The temperature at the stretching surface is assumed to follow a power law variation, and stretching velocity is assumed to have a nonlinear form with signum function or sign function. The governing boundary layer equations with boundary conditions are simplified to couple higher order equations using usual transformations. Numerical solutions for the governing momentum and energy equations are obtained by efficient numerical techniques based on the common finite difference method with central differencing, on a tridiagonal matrix manipulation and on an iterative procedure. Computations are performed for a wide range of the governing parameters such as magnetic field parameter, power law exponent temperature parameter, and other involved parameters and the effect of these parameters on the velocity and temperature field is presented. It is observed that for different values of the magnetic parameter, the velocity distribution decreases while temperature distribution increases. Besides, the finite difference solutions results for skin-friction coefficient and rate of heat transfer are discussed. This study will have an important bearing on a high targeting efficiency, a high magnetic field is required in the targeted body compartment.

Keywords: biomagnetic fluid, FHD, MHD, nonlinear stretching sheet

Procedia PDF Downloads 139
23364 Method of Cluster Based Cross-Domain Knowledge Acquisition for Biologically Inspired Design

Authors: Shen Jian, Hu Jie, Ma Jin, Peng Ying Hong, Fang Yi, Liu Wen Hai

Abstract:

Biologically inspired design inspires inventions and new technologies in the field of engineering by mimicking functions, principles, and structures in the biological domain. To deal with the obstacles of cross-domain knowledge acquisition in the existing biologically inspired design process, functional semantic clustering based on functional feature semantic correlation and environmental constraint clustering composition based on environmental characteristic constraining adaptability are proposed. A knowledge cell clustering algorithm and the corresponding prototype system is developed. Finally, the effectiveness of the method is verified by the visual prosthetic device design.

Keywords: knowledge clustering, knowledge acquisition, knowledge based engineering, knowledge cell, biologically inspired design

Procedia PDF Downloads 406
23363 Hyaluronic Acid Binding to Link Domain of Stabilin-2 Receptor

Authors: Aleksandra Twarda, Dobrosława Krzemień, Grzegorz Dubin, Tad A. Holak

Abstract:

Stabilin-2 belongs to the group of scavenger receptors and plays a crucial role in clearance of more than 10 ligands from the bloodstream, including hyaluronic acid, products of degradation of extracellular matrix and metabolic products. The Link domain, a defining feature of stabilin-2, has a sequence similar to Link domains in other hyaluronic acid receptors, such as CD44 or TSG-6, and is responsible for most of ligands binding. Present knowledge of signal transduction by stabilin-2, as well as ligands’ recognition and binding mechanism, is limited. Until now, no experimental structures have been solved for any segments of stabilin-2. It has recently been demonstrated that the stabilin-2 knock-out or blocking of the receptor by an antibody effectively opposes cancer metastasis by elevating the level of circulating hyaluronic acid. Moreover, loss of expression of stabilin-2 in a peri-tumourous liver correlates with increased survival. Solving of the crystal structure of stabilin-2 and elucidation of the binding mechanism of hyaluronic acid could enable the precise characterization of the interactions in the binding site. These results may allow for designing specific small-molecule inhibitors of stabilin-2 that could be used in cancer therapy. To carry out screening for crystallization of stabilin-2, we cloned constructs of the Link domain of various lengths with or without surrounding domains. The folding properties of the constructs were checked by nuclear magnetic resonance (NMR). It is planned to show the binding of hyaluronic acid to the Link domain using several biochemical methods, i.a. NMR, isothermal titration calorimetry and fluorescence polarization assay.

Keywords: stabilin-2, Link domain, X-ray crystallography, NMR, hyaluronic acid, cancer

Procedia PDF Downloads 382