Search results for: energy based method
43573 Reliability Based Optimal Design of Laterally Loaded Pile with Limited Residual Strain Energy Capacity
Authors: M. Movahedi Rad
Abstract:
In this study, a general approach to the reliability based limit analysis of laterally loaded piles is presented. In engineering practice, the uncertainties play a very important role. The aim of this study is to evaluate the lateral load capacity of free head and fixed-head long pile when the plastic limit analysis is considered. In addition to the plastic limit analysis to control the plastic behaviour of the structure, uncertain bound on the complementary strain energy of the residual forces is also applied. This bound has a significant effect for the load parameter. The solution to reliability-based problems is obtained by a computer program which is governed by the reliability index calculation.Keywords: reliability, laterally loaded pile, residual strain energy, probability, limit analysis
Procedia PDF Downloads 34943572 Efficient Use of Energy through Incorporation of a Gas Turbine in Methanol Plant
Authors: M. Azadi, N. Tahouni, M. H. Panjeshahi
Abstract:
A techno-economic evaluation for efficient use of energy in a large scale industrial plant of methanol is carried out. This assessment is based on integration of a gas turbine with an existing plant of methanol in which the outlet gas products of exothermic reactor is expanded to power generation. Also, it is decided that methanol production rate is constant through addition of power generation system to the existing methanol plant. Having incorporated a gas turbine with the existing plant, the economic results showed total investment of MUSD 16.9, energy saving of 3.6 MUSD/yr with payback period of approximately 4.7 years.Keywords: energy saving, methanol, gas turbine, power generation
Procedia PDF Downloads 46943571 Investigation on the Energy Impact of Spatial Geometry in a Residential Building Using Building Information Modeling Technology
Authors: Shashank. S. Bagane, H. N. Rajendra Prasad
Abstract:
Building Information Modeling (BIM) has currently developed into a potent solution. The consistent development of BIM technology in the sphere of Architecture, Engineering, and Construction (AEC) industry has enhanced the effectiveness of construction and decision making. However, aggrandized global warming and energy crisis has impacted on building energy analysis. It is now becoming an important factor to be considered in the AEC industry. Amalgamating energy analysis in the planning and design phase of a structure has become a necessity. In the current construction industry, estimating energy usage and reducing its footprint is of high priority. The construction industry is giving more prominence to sustainability alongside energy efficiency. This demand is compelling the designers, planners, and engineers to inspect the sustainable performance throughout the building's life cycle. The current study primarily focuses on energy consumption, space arrangement, and spatial geometry of a residential building. Most commonly residential structures in India are constructed considering Vastu Shastra. Vastu designs are intended to integrate architecture with nature and utilizing geometric patterns, symmetry, and directional alignments. In the current study, a residential brick masonry structure is considered for BIM analysis, Architectural model of the structure will be created using Revit software, later the orientation and spatial arrangement will be finalized based on Vastu principles. Furthermore, the structure will be investigated for the impact of building orientation and spatial arrangements on energy using Green Building Studio software. Based on the BIM analysis of the structure, energy consumption of subsequent building orientations will be understood. A well-orientated building having good spatial arrangement can save a considerable amount of energy throughout its life cycle and reduces the need for heating and lighting which will prove to diminish energy usage and improve the energy efficiency of the residential building.Keywords: building information modeling, energy impact, spatial geometry, vastu
Procedia PDF Downloads 16043570 Dielectric, Energy Storage and Impedance Spectroscopic Studies of Tin Doped Ba₀.₉₈Ca₀.₀₂TiO₃ Lead-Free Ceramics
Authors: Ramovatar, Neeraj Panwar
Abstract:
Lead free Ba₀.₉₈Ca₀.₀₂SnxTi₁₋ₓO₃ (x = 0.01 and 0.05 mole %) ferroelectric ceramics have been synthesized by the solid-state reaction method with sintering at 1400 °C for 2 h. The room temperature x-ray diffraction (XRD) patterns identified the tetragonal phase for x = 0.01 composition whereas co-existence of tetragonal and orthorhombic phases for x =0.05 composition. Raman spectroscopy results corroborated with the XRD results at room temperature. The maximum dielectric properties (ɛm ~ 8591, tanδ ~ 0.018) were obtained for the compound with x = 0.01 at 5 kHz. Further, the tetragonal to cubic (TC) transition temperature was observed at 122 °C and 102 °C for the ceramics with x =0.01 and x = 0.05, respectively. The temperature dependent P-E loops also revealed the existence of TC at these particular temperature values. The energy storage density (Ed) of both compounds was calculated from room temperature P – E loops at an applied electric field of 20 kV/cm. The maximum Ed ~ 224 kJ/m³ was achieved for the sample with x = 0.01 as compared to 164 kJ/m³ for the x =0.05 composition. The value of Ed is comparable to other BaTiO₃ based lead free ferroelectric systems. Impedance spectroscopy analysis exhibited the bulk and grain boundary contributions above 300 °C under the frequency range 100 Hz to 1 MHz. The above properties make these ceramics suitable for energy storage devices.Keywords: dielectric properties, energy storage properties, impedance spectroscopy, lead free ceramics
Procedia PDF Downloads 15243569 A Thermographic and Energy Based Approach to Define High Cycle Fatigue Strength of Flax Fiber Reinforced Thermoset Composites
Authors: Md. Zahirul Islam, Chad A. Ulven
Abstract:
Fiber-reinforced polymer matrix composites have a wide range of applications in the sectors of automotive, aerospace, sports utilities, among others, due to their high specific strength, stiffness as well as reduced weight. In addition to those favorable properties, composites composed of natural fibers and bio-based resins (i.e., biocomposites) have eco-friendliness and biodegradability. However, the applications of biocomposites are limited due to the lack of knowledge about their long-term reliability under fluctuating loads. In order to explore the long-term reliability of flax fiber reinforced composites under fluctuating loads through high cycle fatigue strength (HCFS), fatigue test were conducted on unidirectional flax fiber reinforced thermoset composites at different percentage loads of ultimate tensile strength (UTS) with a loading frequency of 5 Hz. Change of temperature of the sample during cyclic loading was captured using an IR camera. Initially, the temperature increased rapidly, but after a certain time, it stabilized. A mathematical model was developed to predict the fatigue life from the data of stabilized temperature. Stabilized temperature and dissipated energy per cycle were compared with applied stress. Both showed bilinear behavior and the intersection of those curves were used to determine HCFS. HCFS for unidirectional flax fiber reinforced composites is around 45% of UTS for a loading frequency of 5Hz. Unlike fatigue life, stabilized temperature and dissipated energy-based models are convenient to define HCFS as they have little variation from sample to sample.Keywords: energy method, fatigue, flax fiber reinforced composite, HCFS, thermographic approach
Procedia PDF Downloads 10543568 Water End-Use Classification with Contemporaneous Water-Energy Data and Deep Learning Network
Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang
Abstract:
‘Water-related energy’ is energy use which is directly or indirectly influenced by changes to water use. Informatics applying a range of mathematical, statistical and rule-based approaches can be used to reveal important information on demand from the available data provided at second, minute or hourly intervals. This study aims to combine these two concepts to improve the current water end use disaggregation problem through applying a wide range of most advanced pattern recognition techniques to analyse the concurrent high-resolution water-energy consumption data. The obtained results have shown that recognition accuracies of all end-uses have significantly increased, especially for mechanised categories, including clothes washer, dishwasher and evaporative air cooler where over 95% of events were correctly classified.Keywords: deep learning network, smart metering, water end use, water-energy data
Procedia PDF Downloads 30643567 The Eco-Efficient Construction: A Review of Embodied Energy in Building Materials
Authors: Francesca Scalisi, Cesare Sposito
Abstract:
The building construction industry consumes a large amount of resources and energy, both during construction (embodied energy) and during the operational phase (operating energy). This paper presents a review of the literature on low carbon and low embodied energy materials in buildings. The embodied energy comprises the energy consumed during the extraction, processing, transportation, construction, and demolition of building materials. While designing a nearly zero energy building, it is necessary to choose and use materials, components, and technologies that allow to reduce the consumption of energy and also to reduce the emissions in the atmosphere during all the Life Cycle Assessment phases. The appropriate choice of building materials can contribute decisively to reduce the energy consumption of the building sector. The increasing worries for the environmental impact of construction materials are witnessed by a lot of studies. The mentioned worries have brought again the attention towards natural materials. The use of more sustainable construction materials and construction techniques represent a major contribution to the eco-efficiency of the construction industry and thus to a more sustainable development.Keywords: embodied energy, embodied carbon, life cycle assessment, architecture, sustainability, material construction
Procedia PDF Downloads 34343566 Energy Trends in Rural South Africa: A Case Study of the Mnweni Rural Community in the Province of Kwazulu-Natal
Authors: Noel Chellan
Abstract:
Energy is the life-blood of development. All human societies have been and still are dependent on energy – some societies more than others. With regard to energy in South Africa, previous policies of the apartheid regime neglected the energy needs of poor black communities in general – and rural communities in particular. Since South Africa’s first democratic elections in 1994 – whilst millions of South African households have received electricity from the national electricity grid, there are still many rural communities that are still experiencing challenges in relation to both electricity deprivation as well as provision. This paper looks at the energy-mix of the Mnweni rural community in South Africa and argues that understanding energy is key to understanding the nature and forms of development of any community or country, for that matter. The paper engages with the energy trends in the rural community of Mnweni from the days of apartheid until 2021. It also looks at agricultural practises from an energy perspective. Such an energy perspective will enable one to assess the pace and scale of development in rural Mnweni.Keywords: rural, energy, development, apartheid
Procedia PDF Downloads 24443565 Financial Analysis of Feasibility for a Heat Utilization System Using Rice Straw Pellets: Heating Energy Demand and the Collection and Storage Method in Nanporo, Japan
Authors: K.Ishii, T. Furuichi, A. Fujiyama, S. Hariya
Abstract:
Rice straw pellets are a promising fuel as a renewable energy source. Financial analysis is needed to make a utilization system using rise straw pellets financially feasible, considering all regional conditions including stakeholders related to the collection and storage, production, transportation and heat utilization. We conducted the financial analysis of feasibility for a heat utilization system using rice straw pellets which has been developed for the first time in Nanporo, Hokkaido, Japan. Especially, we attempted to clarify the effect of factors required for the system to be financial feasibility, such as the heating energy demand and collection and storage method of rice straw. The financial feasibility was found to improve when increasing the heating energy demand and collecting wheat straw in August separately from collection of rice straw in November because the costs of storing rice straw and producing pellets were reduced. However, the system remained financially unfeasible. This study proposed a contractor program funded by a subsidy from Nanporo local government where a contracted company, instead of farmers, collects and transports rice straw in order to ensure the financial feasibility of the system, contributing to job creation in the region.Keywords: rice straw, pellets, heating energy demand, collection, storage
Procedia PDF Downloads 40443564 How to Evaluate Resting and Walking Energy Expenditures of Individuals with Different Body Mass Index
Authors: Zeynep Altinkaya, Ugur Dal, Figen Dag, Dilan D. Koyuncu, Merve Turkegun
Abstract:
Obesity is defined as abnormal fat-tissue accumulation as a result of imbalance between energy intake and expenditure. Since 50-70% daily energy expenditure of sedantary individuals is consumed as resting energy expenditure (REE), it takes an important place in the evaluation of new methods for obesity treatment. Also, it is known that walking is a prevalent activity in the prevention of obesity. The primary purpose of this study is to evaluate and compare the resting and walking energy expenditures of individuals with different body mass index (BMI). In this research, 4 groups are formed as underweight (BMI < 18,5 kg/m2), normal (BMI=18,5-24,9 kg/m2), overweight (BMI=25-29,9 kg/m2), and obese (BMI ≥ 30) according to BMI of individuals. 64 healthy young adults (8 man and 8 woman per group, age 18-30 years) with no known gait disabilities were recruited in this study. The body compositions of all participants were measured via bioelectric empedance analysis method. The energy expenditure of individuals was measured with indirect calorimeter method as inspired and expired gas samples are collected breath-by-breath through a special facemask. The preferred walking speed (PWS) of each subject was determined by using infrared sensors placed in 2nd and 12th meters of 14 m walkway. The REE was measured for 15 min while subjects were lying, and walking energy expenditure was measured during subjects walk in their PWS on treadmill. The gross REE was significantly higher in obese subjects compared to underweight and normal subjects (p < 0,0001). When REE was normalized to body weight, it was higher in underweight and normal groups than overweight and obese groups (p < 0,0001). However, when REE was normalized to fat-free mass, it did not differ significantly between groups. The gross walking energy expenditure in PWS was higher in obese and overweight groups than underweight and normal groups (p < 0,0001). The regression coefficient between gross walking energy expenditure and body weight was significiant among normal and obese groups (p < 0.05). It accounted for 70,5% of gross walking energy expenditure in normal group, and 57,9% of gross walking energy expenditure in obese group. It is known that obese individuals have more metabolically inactive fat-tissue compared to other groups. While excess fat-tissue increases total body weight, it does not contribute much to REE. Therefore, REE results normalized to body weight could lead to misleading results. In order to eliminate fat-mass effect on REE of obese individuals, REE normalized to fat-free mass should be used to acquire more accurate results. On the other hand, the fat-mass increasement raises energy requirement while walking to retain the body balance. Thus, gross walking energy expenditure should be taken into consideration for the evaluating energy expenditure of walking.Keywords: body composition, obesity, resting energy expenditure, walking energy expenditure
Procedia PDF Downloads 38843563 An Electrode Material for Ultracapacitors: Hydrothermal Synthesis of Neodymium Oxide/Manganese Oxide/Nitrogen Doped Reduced Graphene Oxide Ternary Nanocomposites
Authors: K. Saravanan, K. A.Rameshkumar, P. Maadeswaran
Abstract:
The depletion of fossil resources and the rise in global temperatures are two of the most important concerns we confront today. There are numerous renewable energy sources like solar power, tidal power, wind energy, radiant energy, hydroelectricity, geothermal energy, and biomass available to generate the needed energy demand. Engineers and scientists around the world are facing a massive barrier in the development of storage technologies for the energy developed from renewable energy sources. The development of electrochemical capacitors as a future energy storage technology is at the forefront of current research and development. This is due to the fact that the electrochemical capacitors have a significantly higher energy density, a faster charging-discharging rate, and a longer life span than capacitors, and they also have a higher power density than batteries, making them superior to both. In this research, electrochemical capacitors using the Nd2O3/Mn3O4/ N-rGO electrode material is chosen since the of hexagonal and tetragonal crystal structures of Nd2O3 and Mn3O4 and also has cycling stability of 68% over a long time at 50mVs-1 and a high coulombic efficiency of 99.64% at 5 Ag-1. This approach may also be used to create novel electrode materials with improved electrochemical and cyclic stability for high-performance supercapacitors.Keywords: Nd2O3/Mn3O4/N-rGO, nanocomposites, hydrothermal method, electrode material, specific capacitance, use of supercapacitors
Procedia PDF Downloads 9643562 Influence of Scalable Energy-Related Sensor Parameters on Acoustic Localization Accuracy in Wireless Sensor Swarms
Authors: Joyraj Chakraborty, Geoffrey Ottoy, Jean-Pierre Goemaere, Lieven De Strycker
Abstract:
Sensor swarms can be a cost-effectieve and more user-friendly alternative for location based service systems in different application like health-care. To increase the lifetime of such swarm networks, the energy consumption should be scaled to the required localization accuracy. In this paper we have investigated some parameter for energy model that couples localization accuracy to energy-related sensor parameters such as signal length,Bandwidth and sample frequency. The goal is to use the model for the localization of undetermined environmental sounds, by means of wireless acoustic sensors. we first give an overview of TDOA-based localization together with the primary sources of TDOA error (including reverberation effects, Noise). Then we show that in localization, the signal sample rate can be under the Nyquist frequency, provided that enough frequency components remain present in the undersampled signal. The resulting localization error is comparable with that of similar localization systems.Keywords: sensor swarms, localization, wireless sensor swarms, scalable energy
Procedia PDF Downloads 42243561 Evaluation of Research in the Field of Energy Efficiency and MCA Methods Using Publications Databases
Authors: Juan Sepúlveda
Abstract:
Energy is a fundamental component in sustainability, the access and use of this resource is related with economic growth, social improvements, and environmental impacts. In this sense, energy efficiency has been studied as a factor that enhances the positive impacts of energy in communities; however, the implementation of efficiency requires strong policy and strategies that usually rely on individual measures focused in independent dimensions. In this paper, the problem of energy efficiency as a multi-objective problem is studied, using scientometric analysis to discover trends and patterns that allow to identify the main variables and study approximations related with a further development of models to integrate energy efficiency and MCA into policy making for small communities.Keywords: energy efficiency, MCA, scientometric, trends
Procedia PDF Downloads 37043560 The Effect of Photovoltaic Integrated Shading Devices on the Energy Performance of Apartment Buildings in a Mediterranean Climate
Authors: Jenan Abu Qadourah
Abstract:
With the depletion of traditional fossil resources and the growing human population, it is now more important than ever to reduce our energy usage and harmful emissions. In the Mediterranean region, the intense solar radiation contributes to summertime overheating, which raises energy costs and building carbon footprints, alternatively making it suitable for the installation of solar energy systems. In urban settings, where multi-story structures predominate and roof space is limited, photovoltaic integrated shading devices (PVSD) are a clean solution for building designers. However, incorporating photovoltaic (PV) systems into a building's envelope is a complex procedure that, if not executed correctly, might result in the PV system failing. As a result, potential PVSD design solutions must be assessed based on their overall energy performance from the project's early design stage. Therefore, this paper aims to investigate and compare the possible impact of various PVSDs on the energy performance of new apartments in the Mediterranean region, with a focus on Amman, Jordan. To achieve the research aim, computer simulations were performed to assess and compare the energy performance of different PVSD configurations. Furthermore, an energy index was developed by taking into account all energy aspects, including the building's primary energy demand and the PVSD systems' net energy production. According to the findings, the PVSD system can meet 12% to 43% of the apartment building's electricity needs. By highlighting the potential interest in PVSD systems, this study aids the building designer in producing more energy-efficient buildings and encourages building owners to install PV systems on the façade of their buildings.Keywords: photovoltaic integrated shading device, solar energy, architecture, energy performance, simulation, overall energy index, Jordan
Procedia PDF Downloads 8443559 InP Nanocrystals Core and Surface Electronic Structure from Ab Initio Calculations
Authors: Hamad R. Jappor, Zeyad Adnan Saleh, Mudar A. Abdulsattar
Abstract:
The ab initio restricted Hartree-Fock method is used to simulate the electronic structure of indium phosphide (InP) nanocrystals (NCs) (216-738 atoms) with sizes ranging up to about 2.5 nm in diameter. The calculations are divided into two parts, surface, and core. The oxygenated (001)-(1×1) facet that expands with larger sizes of nanocrystals is investigated to determine the rule of the surface in nanocrystals electronic structure. Results show that lattice constant and ionicity of the core part show decreasing order as nanocrystals grow up in size. The smallest investigated nanocrystal is 1.6% larger in lattice constant and 131.05% larger in ionicity than the converged value of largest investigated nanocrystal. Increasing nanocrystals size also resulted in an increase of core cohesive energy (absolute value), increase of core energy gap, and increase of core valence. The surface states are found mostly non-degenerated because of the effect of surface discontinuity and oxygen atoms. Valence bandwidth is wider on the surface due to splitting and oxygen atoms. The method also shows fluctuations in the converged energy gap, valence bandwidth and cohesive energy of core part of nanocrystals duo to shape variation. The present work suggests the addition of ionicity and lattice constant to the quantities that are affected by quantum confinement phenomenon. The method of the present model has threefold results; it can be used to approach the electronic structure of crystals bulk, surface, and nanocrystals.Keywords: InP, nanocrystals core, ionicity, Hartree-Fock method, large unit cell
Procedia PDF Downloads 39943558 Advantages and Disadvantages of Hydroelectric Energy
Authors: Esther Ushike Akashie
Abstract:
No matter who you are, where you are from and irrespective of age and gender, there is a universal need for power and energy. Every year, this need grows even more urgent the more scientific and technological inventions advance. Due to this fact, we find that majority of the research related to energy and power has been focused on finding new and innovative ways to produce power. Furthermore, we observe that because of the environmental state of our world today and the impact of climate change, one of the most explored routes of study has been the use of renewable energies. In this paper, we will be looking at one of the oldest forms of renewable energy, hydroelectric energy. First off, an overview of its history, sources, technical aspects, and applications will be evaluated. After which, we will then proceed to understand the main benefits and drawbacks of this form of renewable energy and offer insights on how it can be better utilized in our world today.Keywords: hydropower, hydroelectric energy, advantages, disadvantages
Procedia PDF Downloads 14343557 Overview of Smart Grid Applications in Turkey
Authors: Onur Elma, Giray E. Kıral, Ugur S. Selamoğuları, Mehmet Uzunoğlu, Bulent Vural
Abstract:
Electrical energy has become indispensable for people's lives and with rapidly developing technology and continuously changing living standards the need for the electrical energy has been on the rise. Therefore, both energy generation and efficient use of energy are very important topics. Smart grid concept has been introduced to provide monitoring, energy efficiency, reliability and energy quality. Under smart grid concept, smart homes, which can be considered as key component in smart grid operation, have appeared as another research area. In this study, first, smart grid research in the world will be reviewed. Then, overview of smart grid applications in Turkey will be given.Keywords: energy efficiency, smart grids, smart home, applications
Procedia PDF Downloads 49743556 Comparison of Finite-Element and IEC Methods for Cable Thermal Analysis under Various Operating Environments
Authors: M. S. Baazzim, M. S. Al-Saud, M. A. El-Kady
Abstract:
In this paper, steady-state ampacity (current carrying capacity) evaluation of underground power cable system by using analytical and numerical methods for different conditions (depth of cable, spacing between phases, soil thermal resistivity, ambient temperature, wind speed), for two system voltage level were used 132 and 380 kV. The analytical method or traditional method that was used is based on the thermal analysis method developed by Neher-McGrath and further enhanced by International Electrotechnical Commission (IEC) and published in standard IEC 60287. The numerical method that was used is finite element method and it was recourse commercial software based on finite element method.Keywords: cable ampacity, finite element method, underground cable, thermal rating
Procedia PDF Downloads 37843555 The Application of the Analytic Basis Function Expansion Triangular-z Nodal Method for Neutron Diffusion Calculation
Authors: Kunpeng Wang, Hongchun, Wu, Liangzhi Cao, Chuanqi Zhao
Abstract:
The distributions of homogeneous neutron flux within a node were expanded into a set of analytic basis functions which satisfy the diffusion equation at any point in a triangular-z node for each energy group, and nodes were coupled with each other with both the zero- and first-order partial neutron current moments across all the interfaces of the triangular prism at the same time. Based this method, a code TABFEN has been developed and applied to solve the neutron diffusion equation in a complicated geometry. In addition, after a series of numerical derivation, one can get the neutron adjoint diffusion equations in matrix form which is the same with the neutron diffusion equation; therefore, it can be solved by TABFEN, and the low-high scan strategy is adopted to improve the efficiency. Four benchmark problems are tested by this method to verify its feasibility, the results show good agreement with the references which demonstrates the efficiency and feasibility of this method.Keywords: analytic basis function expansion method, arbitrary triangular-z node, adjoint neutron flux, complicated geometry
Procedia PDF Downloads 44543554 Uncertainty in Building Energy Performance Analysis at Different Stages of the Building’s Lifecycle
Authors: Elham Delzendeh, Song Wu, Mustafa Al-Adhami, Rima Alaaeddine
Abstract:
Over the last 15 years, prediction of energy consumption has become a common practice and necessity at different stages of the building’s lifecycle, particularly, at the design and post-occupancy stages for planning and maintenance purposes. This is due to the ever-growing response of governments to address sustainability and reduction of CO₂ emission in the building sector. However, there is a level of uncertainty in the estimation of energy consumption in buildings. The accuracy of energy consumption predictions is directly related to the precision of the initial inputs used in the energy assessment process. In this study, multiple cases of large non-residential buildings at design, construction, and post-occupancy stages are investigated. The energy consumption process and inputs, and the actual and predicted energy consumption of the cases are analysed. The findings of this study have pointed out and evidenced various parameters that cause uncertainty in the prediction of energy consumption in buildings such as modelling, location data, and occupant behaviour. In addition, unavailability and insufficiency of energy-consumption-related inputs at different stages of the building’s lifecycle are classified and categorized. Understanding the roots of uncertainty in building energy analysis will help energy modellers and energy simulation software developers reach more accurate energy consumption predictions in buildings.Keywords: building lifecycle, efficiency, energy analysis, energy performance, uncertainty
Procedia PDF Downloads 13743553 Feasibility Study of the Quadcopter Propeller Vibrations for the Energy Production
Authors: Nneka Osuchukwu, Leonid Shpanin
Abstract:
The concept of converting the kinetic energy of quadcopter propellers into electrical energy is considered in this contribution following the feasibility study of the propeller vibrations, theoretical energy conversion, and simulation techniques. Analysis of the propeller vibration performance is presented via graphical representation of calculated and simulated parameters, in order to demonstrate the possibility of recovering the harvested energy from the propeller vibrations of the quadcopter while the quadcopter is in operation. Consideration of using piezoelectric materials in such concept, converting the mechanical energy of the propeller into the electrical energy, is given. Photographic evidence of the propeller in operation is presented and discussed together with experimental results to validate the theoretical concept.Keywords: energy harvesting, piezoelectric material, propeller vibration, unmanned aerial vehicle
Procedia PDF Downloads 47343552 Status Check: Journey of India’s Energy Sustainability through Renewable Sources
Authors: Santosh Ghosh, Vinod Kumar Yadav, Vivekananda Mukherjee, Ishta Garg
Abstract:
India, akin to the rest of the world today, is grappling with balancing act between ever increasing demand for energy and alarmingly high level of green house gas emission, which is inevitable corollary of energy production in the conventional way. Researchers and energy policy makers around the world are now focusing on renewable energy (RE) technologies to find solution to this crisis. In India various agencies at both national and state level has been set up and bestowed with responsibility of development of renewable energy technologies, viz. Ministry of New Renewable Energy (MNRE), National Vidyut Vyapar Nigam Ltd. (NVVNL), Indian Renewable Energy Development Agency Limited (IREDA) and RE Development Agencies in respective states. In the present work, the preparedness of India in terms of forming institutional and policy frame work briefly discussed. Status of implementation of RE technologies state wise and of India as a whole, critically reviewed.Keywords: energy policy, energy sustainability, renewable energy, IREDA
Procedia PDF Downloads 63343551 Feasibility Study of Tidal Current of the Bay of Bengal to Generate Electricity as a Renewable Energy
Authors: Myisha Ahmad, G. M. Jahid Hasan
Abstract:
Electricity is the pinnacle of human civilization. At present, the growing concerns over significant climate change have intensified the importance of the use of renewable energy technologies for electricity generation. The interest is primarily due to better energy security, smaller environmental impact and providing a sustainable alternative compared to the conventional energy sources. Solar power, wind, biomass, tidal power, and wave power are some of the most reliable sources of renewable energy. Ocean approximately holds 2×10³ TW of energy and has the largest renewable energy resource on the planet. Ocean energy has many forms namely, encompassing tides, ocean circulation, surface waves, salinity and thermal gradients. Ocean tide in particular, associates both potential and kinetic energy. The study is focused on the latter concept that deals with tidal current energy conversion technologies. Tidal streams or marine currents generate kinetic energy that can be extracted by marine current energy devices and converted into transmittable energy form. The principle of technology development is very comparable to that of wind turbines. Conversion of marine tidal resources into substantial electrical power offers immense opportunities to countries endowed with such resources and this work is aimed at addressing such prospects of Bangladesh. The study analyzed the extracted current velocities from numerical model works at several locations in the Bay of Bengal. Based on current magnitudes, directions and available technologies the most fitted locations were adopted and possible annual generation capacity was estimated. The paper also examines the future prospects of tidal current energy along the Bay of Bengal and establishes a constructive approach that could be adopted in future project developments.Keywords: bay of Bengal, energy potential, renewable energy, tidal current
Procedia PDF Downloads 37543550 Performance Augmentation of a Combined Cycle Power Plant with Waste Heat Recovery and Solar Energy
Authors: Mohammed A. Elhaj, Jamal S. Yassin
Abstract:
In the present time, energy crises are considered a severe problem across the world. For the protection of global environment and maintain ecological balance, energy saving is considered one of the most vital issues from the view point of fuel consumption. As the industrial sectors everywhere continue efforts to improve their energy efficiency, recovering waste heat losses provides an attractive opportunity for an emission free and less costly energy resource. In the other hand the using of solar energy has become more insistent particularly after the high gross of prices and running off the conventional energy sources. Therefore, it is essential that we should endeavor for waste heat recovery as well as solar energy by making significant and concrete efforts. For these reasons this investigation is carried out to study and analyze the performance of a power plant working by a combined cycle in which Heat Recovery System Generator (HRSG) gets its energy from the waste heat of a gas turbine unit. Evaluation of the performance of the plant is based on different thermal efficiencies of the main components in addition to the second law analysis considering the exergy destructions for the whole components. The contribution factors including the solar as well as the wasted energy are considered in the calculations. The final results have shown that there is significant exergy destruction in solar concentrator and the combustion chamber of the gas turbine unit. Other components such as compressor, gas turbine, steam turbine and heat exchangers having insignificant exergy destruction. Also, solar energy can contribute by about 27% of the input energy to the plant while the energy lost with exhaust gases can contribute by about 64% at maximum cases.Keywords: solar energy, environment, efficiency, waste heat, steam generator, performance, exergy destruction
Procedia PDF Downloads 29843549 Copula Autoregressive Methodology for Simulation of Solar Irradiance and Air Temperature Time Series for Solar Energy Forecasting
Authors: Andres F. Ramirez, Carlos F. Valencia
Abstract:
The increasing interest in renewable energies strategies application and the path for diminishing the use of carbon related energy sources have encouraged the development of novel strategies for integration of solar energy into the electricity network. A correct inclusion of the fluctuating energy output of a photovoltaic (PV) energy system into an electric grid requires improvements in the forecasting and simulation methodologies for solar energy potential, and the understanding not only of the mean value of the series but the associated underlying stochastic process. We present a methodology for synthetic generation of solar irradiance (shortwave flux) and air temperature bivariate time series based on copula functions to represent the cross-dependence and temporal structure of the data. We explore the advantages of using this nonlinear time series method over traditional approaches that use a transformation of the data to normal distributions as an intermediate step. The use of copulas gives flexibility to represent the serial variability of the real data on the simulation and allows having more control on the desired properties of the data. We use discrete zero mass density distributions to assess the nature of solar irradiance, alongside vector generalized linear models for the bivariate time series time dependent distributions. We found that the copula autoregressive methodology used, including the zero mass characteristics of the solar irradiance time series, generates a significant improvement over state of the art strategies. These results will help to better understand the fluctuating nature of solar energy forecasting, the underlying stochastic process, and quantify the potential of a photovoltaic (PV) energy generating system integration into a country electricity network. Experimental analysis and real data application substantiate the usage and convenience of the proposed methodology to forecast solar irradiance time series and solar energy across northern hemisphere, southern hemisphere, and equatorial zones.Keywords: copula autoregressive, solar irradiance forecasting, solar energy forecasting, time series generation
Procedia PDF Downloads 32343548 Application of Building Information Modeling in Energy Management of Individual Departments Occupying University Facilities
Authors: Kung-Jen Tu, Danny Vernatha
Abstract:
To assist individual departments within universities in their energy management tasks, this study explores the application of Building Information Modeling in establishing the ‘BIM based Energy Management Support System’ (BIM-EMSS). The BIM-EMSS consists of six components: (1) sensors installed for each occupant and each equipment, (2) electricity sub-meters (constantly logging lighting, HVAC, and socket electricity consumptions of each room), (3) BIM models of all rooms within individual departments’ facilities, (4) data warehouse (for storing occupancy status and logged electricity consumption data), (5) building energy management system that provides energy managers with various energy management functions, and (6) energy simulation tool (such as eQuest) that generates real time 'standard energy consumptions' data against which 'actual energy consumptions' data are compared and energy efficiency evaluated. Through the building energy management system, the energy manager is able to (a) have 3D visualization (BIM model) of each room, in which the occupancy and equipment status detected by the sensors and the electricity consumptions data logged are displayed constantly; (b) perform real time energy consumption analysis to compare the actual and standard energy consumption profiles of a space; (c) obtain energy consumption anomaly detection warnings on certain rooms so that energy management corrective actions can be further taken (data mining technique is employed to analyze the relation between space occupancy pattern with current space equipment setting to indicate an anomaly, such as when appliances turn on without occupancy); and (d) perform historical energy consumption analysis to review monthly and annually energy consumption profiles and compare them against historical energy profiles. The BIM-EMSS was further implemented in a research lab in the Department of Architecture of NTUST in Taiwan and implementation results presented to illustrate how it can be used to assist individual departments within universities in their energy management tasks.Keywords: database, electricity sub-meters, energy anomaly detection, sensor
Procedia PDF Downloads 30743547 Performance Improvement of Electric Vehicle Using K - Map Constructed Rule Based Energy Management Strategy for Battery/Ultracapacitor Hybrid Energy Storage System
Authors: Jyothi P. Phatak, L. Venkatesha, C. S. Raviprasad
Abstract:
The performance improvement of Hybrid Energy Storage System (HESS) in Electric Vehicle (EV) has been in discussion over the last decade. The important issues in terms of performance parameters addressed are, range of vehicle and battery (BA) peak current. Published literature has either addressed battery peak current reduction or range improvement in EV. Both the issues have not been specifically discussed and analyzed. This paper deals with both range improvement in EV and battery peak current reduction by applying a new Karnaugh Map (K-Map) constructed rule based energy management strategy to proposed HESS. The strategy allows Ultracapacitor (UC) to assist battery when the vehicle accelerates there by reducing the burden on battery. Simulation is carried out for various operating modes of EV considering both urban and highway driving conditions. Simulation is done for different values of UC by keeping battery rating constant for each driving cycle and results are presented. Feasible value of UC is selected based on simulation results. The results of proposed HESS show an improvement in performance parameters compared to Battery only Energy Storage System (BESS). Battery life is improved to considerable extent and there is an overall development in the performance of electric vehicle.Keywords: electric vehicle, PID controller, energy management strategy, range, battery current, ultracapacitor
Procedia PDF Downloads 11843546 Energy Consumption and GHG Production in Railway and Road Passenger Regional Transport
Authors: Martin Kendra, Tomas Skrucany, Jozef Gnap, Jan Ponicky
Abstract:
Paper deals with the modeling and simulation of energy consumption and GHG production of two different modes of regional passenger transport – road and railway. These two transport modes use the same type of fuel – diesel. Modeling and simulation of the energy consumption in transport is often used due to calculation satisfactory accuracy and cost efficiency. Paper deals with the calculation based on EN standards and information collected from technical information from vehicle producers and characteristics of tracks. Calculation included maximal theoretical capacity of bus and train and real passenger’s measurement from operation. Final energy consumption and GHG production is calculated by using software simulation. In evaluation of the simulation is used system ‘well to wheel’.Keywords: bus, consumption energy, GHG, production, simulation, train
Procedia PDF Downloads 44343545 An Engineer-Oriented Life Cycle Assessment Tool for Building Carbon Footprint: The Building Carbon Footprint Evaluation System in Taiwan
Authors: Hsien-Te Lin
Abstract:
The purpose of this paper is to introduce the BCFES (building carbon footprint evaluation system), which is a LCA (life cycle assessment) tool developed by the Low Carbon Building Alliance (LCBA) in Taiwan. A qualified BCFES for the building industry should fulfill the function of evaluating carbon footprint throughout all stages in the life cycle of building projects, including the production, transportation and manufacturing of materials, construction, daily energy usage, renovation and demolition. However, many existing BCFESs are too complicated and not very designer-friendly, creating obstacles in the implementation of carbon reduction policies. One of the greatest obstacle is the misapplication of the carbon footprint inventory standards of PAS2050 or ISO14067, which are designed for mass-produced goods rather than building projects. When these product-oriented rules are applied to building projects, one must compute a tremendous amount of data for raw materials and the transportation of construction equipment throughout the construction period based on purchasing lists and construction logs. This verification method is very cumbersome by nature and unhelpful to the promotion of low carbon design. With a view to provide an engineer-oriented BCFE with pre-diagnosis functions, a component input/output (I/O) database system and a scenario simulation method for building energy are proposed herein. Most existing BCFESs base their calculations on a product-oriented carbon database for raw materials like cement, steel, glass, and wood. However, data on raw materials is meaningless for the purpose of encouraging carbon reduction design without a feedback mechanism, because an engineering project is not designed based on raw materials but rather on building components, such as flooring, walls, roofs, ceilings, roads or cabinets. The LCBA Database has been composited from existing carbon footprint databases for raw materials and architectural graphic standards. Project designers can now use the LCBA Database to conduct low carbon design in a much more simple and efficient way. Daily energy usage throughout a building's life cycle, including air conditioning, lighting, and electric equipment, is very difficult for the building designer to predict. A good BCFES should provide a simplified and designer-friendly method to overcome this obstacle in predicting energy consumption. In this paper, the author has developed a simplified tool, the dynamic Energy Use Intensity (EUI) method, to accurately predict energy usage with simple multiplications and additions using EUI data and the designed efficiency levels for the building envelope, AC, lighting and electrical equipment. Remarkably simple to use, it can help designers pre-diagnose hotspots in building carbon footprint and further enhance low carbon designs. The BCFES-LCBA offers the advantages of an engineer-friendly component I/O database, simplified energy prediction methods, pre-diagnosis of carbon hotspots and sensitivity to good low carbon designs, making it an increasingly popular carbon management tool in Taiwan. To date, about thirty projects have been awarded BCFES-LCBA certification and the assessment has become mandatory in some cities.Keywords: building carbon footprint, life cycle assessment, energy use intensity, building energy
Procedia PDF Downloads 13943544 An Information-Based Approach for Preference Method in Multi-Attribute Decision Making
Authors: Serhat Tuzun, Tufan Demirel
Abstract:
Multi-Criteria Decision Making (MCDM) is the modelling of real-life to solve problems we encounter. It is a discipline that aids decision makers who are faced with conflicting alternatives to make an optimal decision. MCDM problems can be classified into two main categories: Multi-Attribute Decision Making (MADM) and Multi-Objective Decision Making (MODM), based on the different purposes and different data types. Although various MADM techniques were developed for the problems encountered, their methodology is limited in modelling real-life. Moreover, objective results are hard to obtain, and the findings are generally derived from subjective data. Although, new and modified techniques are developed by presenting new approaches such as fuzzy logic; comprehensive techniques, even though they are better in modelling real-life, could not find a place in real world applications for being hard to apply due to its complex structure. These constraints restrict the development of MADM. This study aims to conduct a comprehensive analysis of preference methods in MADM and propose an approach based on information. For this purpose, a detailed literature review has been conducted, current approaches with their advantages and disadvantages have been analyzed. Then, the approach has been introduced. In this approach, performance values of the criteria are calculated in two steps: first by determining the distribution of each attribute and standardizing them, then calculating the information of each attribute as informational energy.Keywords: literature review, multi-attribute decision making, operations research, preference method, informational energy
Procedia PDF Downloads 224