Search results for: diffraction efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7775

Search results for: diffraction efficiency

7325 An Analysis of Conditions for Efficiency Gains in Large ICEs Using Cycling

Authors: Bauer Peter, Murillo Jenny

Abstract:

This paper investigates the bounds of achievable fuel efficiency improvements in engines due to cycling between two operating points assuming a series hybrid configuration . It is shown that for linear bsfc dependencies (as a function of power), cycling is only beneficial if the average power needs are smaller than the power at the optimal bsfc value. Exact expressions for the fuel efficiency gains relative to the constant output power case are derived. This asymptotic analysis is then extended to the case where transient losses due to a change in the operating point are also considered. The case of the boundary bsfc trajectory where constant power application and cycling yield the same fuel consumption.is investigated. It is shown that the boundary bsfc locations of the second non-optimal operating points is hyperbolic. The analysis of the boundary case allows to evaluate whether for a particular engine, cycling can be beneficial. The introduced concepts are illustrated through a number of real world examples, i.e. large production Diesel engines in series hybrid configurations.

Keywords: cycling, efficiency, bsfc, series hybrid, diesel, operating point

Procedia PDF Downloads 504
7324 Use of Improved Genetic Algorithm in Cloud Computing to Reduce Energy Consumption in Migration of Virtual Machines

Authors: Marziyeh Bahrami, Hamed Pahlevan Hsseini, Behnam Ghamami, Arman Alvanpour, Hamed Ezzati, Amir Salar Sadeghi

Abstract:

One of the ways to increase the efficiency of services in the system of agents and, of course, in the world of cloud computing, is to use virtualization techniques. The aim of this research is to create changes in cloud computing services that will reduce as much as possible the energy consumption related to the migration of virtual machines and, in some way, the energy related to the allocation of resources and reduce the amount of pollution. So far, several methods have been proposed to increase the efficiency of cloud computing services in order to save energy in the cloud environment. The method presented in this article tries to prevent energy consumption by data centers and the subsequent production of carbon and biological pollutants as much as possible by increasing the efficiency of cloud computing services. The results show that the proposed algorithm, using the improvement in virtualization techniques and with the help of a genetic algorithm, improves the efficiency of cloud services in the matter of migrating virtual machines and finally saves consumption. becomes energy.

Keywords: consumption reduction, cloud computing, genetic algorithm, live migration, virtual Machine

Procedia PDF Downloads 60
7323 Simulation of Antimicrobial Resistance Gene Fate in Narrow Grass Hedges

Authors: Marzieh Khedmati, Shannon L. Bartelt-Hunt

Abstract:

Vegetative Filter Strips (VFS) are used for controlling the volume of runoff and decreasing contaminant concentrations in runoff before entering water bodies. Many studies have investigated the role of VFS in sediment and nutrient removal, but little is known about their efficiency for the removal of emerging contaminants such as antimicrobial resistance genes (ARGs). Vegetative Filter Strip Modeling System (VFSMOD) was used to simulate the efficiency of VFS in this regard. Several studies demonstrated the ability of VFSMOD to predict reductions in runoff volume and sediment concentration moving through the filters. The objectives of this study were to calibrate the VFSMOD with experimental data and assess the efficiency of the model in simulating the filter behavior in removing ARGs (ermB) and tylosin. The experimental data were obtained from a prior study conducted at the University of Nebraska (UNL) Rogers Memorial Farm. Three treatment factors were tested in the experiments, including manure amendment, narrow grass hedges and rainfall events. Sediment Delivery Ratio (SDR) was defined as the filter efficiency and the related experimental and model values were compared to each other. The VFS Model generally agreed with the experimental results and as a result, the model was used for predicting filter efficiencies when the runoff data are not available. Narrow Grass Hedges (NGH) were shown to be effective in reducing tylosin and ARGs concentration. The simulation showed that the filter efficiency in removing ARGs is different for different soil types and filter lengths. There is an optimum length for the filter strip that produces minimum runoff volume. Based on the model results increasing the length of the filter by 1-meter leads to higher efficiency but widening beyond that decreases the efficiency. The VFSMOD, which was proved to work well in estimation of VFS trapping efficiency, showed confirming results for ARG removal.

Keywords: antimicrobial resistance genes, emerging contaminants, narrow grass hedges, vegetative filter strips, vegetative filter strip modeling system

Procedia PDF Downloads 132
7322 Testing the Weak Form Efficiency of Islamic Stock Market: Empirical Evidence from Indonesia

Authors: Herjuno Bagus Wicaksono, Emma Almira Fauni, Salma Amelia Dina

Abstract:

The Efficient Market Hypothesis (EMH) states that, in an efficient capital market, price fully reflects the information available in the market. This theory has influenced many investors behavior in trading in the stock market. Advanced researches have been conducted to test the efficiency of the stock market in particular countries. Indonesia, as one of the emerging countries, has performed substantial growth in the past years. Hence, this paper aims to examine the efficiency of Islamic stock market in Indonesia in its weak form. The daily stock price data from Indonesia Sharia Stock Index (ISSI) for the period October 2015 to October 2016 were used to do the statistical tests: Run Test and Serial Correlation Test. The results show that there is no serial correlation between the current price with the past prices and the market follows the random walk. This research concludes that Indonesia Islamic stock market is weak form efficient.

Keywords: efficient market hypothesis, Indonesia sharia stock index, random walk, weak form efficiency

Procedia PDF Downloads 460
7321 Producing Fertilizers of Increased Environmental and Agrochemical Efficiency via Application of Plant-available Inorganic Coatings

Authors: Andrey Norov

Abstract:

Reduction of inefficient losses of nutrients when using mineral fertilizers is a very important and urgent challenge, which is of both economic and environmental significance. The loss of nutrients to the environment leads to the release of greenhouse gases, eutrophication of water bodies, soil salinization and degradation, and other undesirable phenomena. This report focuses on slow and controlled release fertilizers produced through the application of inorganic coatings, which make the released nutrients plant-available. There are shown the advantages of these fertilizers their improved physical and chemical properties, as well as the effect of the coatings on yield growth and on the degree of nutrient efficiency. This type of fertilizers is an alternative to other polymer-coated fertilizers and is more ecofriendly. The production method is protected by the Russian patent.

Keywords: coatings, controlled release, fertilizer, nutrients, nutrient efficiency, yield increase

Procedia PDF Downloads 95
7320 Development, Characterization and Performance Evaluation of a Weak Cation Exchange Hydrogel Using Ultrasonic Technique

Authors: Mohamed H. Sorour, Hayam F. Shaalan, Heba A. Hani, Eman S. Sayed, Amany A. El-Mansoup

Abstract:

Heavy metals (HMs) present an increasing threat to aquatic and soil environment. Thus, techniques should be developed for the removal and/or recovery of those HMs from point sources in the generating industries. This paper reports our endeavors concerning the development of in-house developed weak cation exchange polyacrylate hydrogel kaolin composites for heavy metals removal. This type of composite enables desirable characteristics and functions including mechanical strength, bed porosity and cost advantages. This paper emphasizes the effect of varying crosslinker (methylenebis(acrylamide)) concentration. The prepared cation exchanger has been subjected to intensive characterization using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF) and Brunauer Emmett and Teller (BET) method. Moreover, the performance was investigated using synthetic and real wastewater for an industrial complex east of Cairo. Simulated and real wastewater compositions addressed; Cr, Co, Ni, and Pb are in the range of (92-115), (91-103), (86-88) and (99-125), respectively. Adsorption experiments have been conducted in both batch and column modes. In general, batch tests revealed enhanced cation exchange capacities of 70, 72, 78.2 and 99.9 mg/g from single synthetic wastes while, removal efficiencies of 82.2, 86.4, 44.4 and 96% were obtained for Cr, Co, Ni and Pb, respectively from mixed synthetic wastes. It is concluded that the mixed synthetic and real wastewaters have lower adsorption capacities than single solutions. It is worth mentioned that Pb attained higher adsorption capacities with comparable results in all tested concentrations of synthetic and real wastewaters. Pilot scale experiments were also conducted for mixed synthetic waste in a fluidized bed column for 48 hour cycle time which revealed 86.4%, 58.5%, 66.8% and 96.9% removal efficiency for Cr, Co, Ni, and Pb, respectively with maximum regeneration was also conducted using saline and acid regenerants. Maximum regeneration efficiencies for the column studies higher than the batch ones about by about 30% to 60%. Studies are currently under way to enhance the regeneration efficiency to enable successful scaling up of the adsorption column.

Keywords: polyacrylate hydrogel kaolin, ultrasonic irradiation, heavy metals, adsorption and regeneration

Procedia PDF Downloads 123
7319 Design of Cartesian Robot for Electric Vehicle Wireless Charging Systems

Authors: Kaan Karaoglu, Raif Bayir

Abstract:

In this study, a cartesian robot is developed to improve the performance and efficiency of wireless charging of electric vehicles. The cartesian robot has three axes, each of which moves linearly. Magnetic positioning is used to align the cartesian robot transmitter charging pad. There are two different wireless charging methods, static and dynamic, for charging electric vehicles. The current state of charge information (SOC State of Charge) and location information are received wirelessly from the electric vehicle. Based on this information, the power to be transmitted is determined, and the transmitter and receiver charging pads are aligned for maximum efficiency. With this study, a fully automated cartesian robot structure will be used to charge electric vehicles with the highest possible efficiency. With the wireless communication established between the electric vehicle and the charging station, the charging status will be monitored in real-time. The cartesian robot developed in this study is a fully automatic system that can be easily used in static wireless charging systems with vehicle-machine communication.

Keywords: electric vehicle, wireless charging systems, energy efficiency, cartesian robot, location detection, trajectory planning

Procedia PDF Downloads 75
7318 Non-Parametric, Unconditional Quantile Estimation of Efficiency in Microfinance Institutions

Authors: Komlan Sedzro

Abstract:

We apply the non-parametric, unconditional, hyperbolic order-α quantile estimator to appraise the relative efficiency of Microfinance Institutions in Africa in terms of outreach. Our purpose is to verify if these institutions, which must constantly try to strike a compromise between their social role and financial sustainability are operationally efficient. Using data on African MFIs extracted from the Microfinance Information eXchange (MIX) database and covering the 2004 to 2006 periods, we find that more efficient MFIs are also the most profitable. This result is in line with the view that social performance is not in contradiction with the pursuit of excellent financial performance. Our results also show that large MFIs in terms of asset and those charging the highest fees are not necessarily the most efficient.

Keywords: data envelopment analysis, microfinance institutions, quantile estimation of efficiency, social and financial performance

Procedia PDF Downloads 308
7317 Design and Performance Evaluation of Synchronous Reluctance Machine (SynRM)

Authors: Hadi Aghazadeh, Mohammadreza Naeimi, Seyed Ebrahim Afjei, Alireza Siadatan

Abstract:

Torque ripple, maximum torque and high efficiency are important issues in synchronous reluctance machine (SynRM). This paper presents a view on design of a high efficiency, low torque ripple and high torque density SynRM. To achieve this goal SynRM parameters is calculated (such as insulation ratios in the d-and q-axes and the rotor slot pitch), while the torque ripple can be minimized by determining the best rotor slot pitch in the d-axis. The presented analytical-finite element method (FEM) approach gives the optimum distribution of air gap and iron portion for the maximizing torque density with minimum torque ripple.

Keywords: torque ripple, efficiency, insulation ratio, FEM, synchronous reluctance machine (SynRM), induction motor (IM)

Procedia PDF Downloads 227
7316 Theoretical Performance of a Sustainable Clean Energy On-Site Generation Device to Convert Consumers into Producers and Its Possible Impact on Electrical National Grids

Authors: Eudes Vera

Abstract:

In this paper, a theoretical evaluation is carried out of the performance of a forthcoming fuel-less clean energy generation device, the Air Motor. The underlying physical principles that support this technology are succinctly described. Examples of the machine and theoretical values of input and output powers are also given. In addition, its main features like portability, on-site energy generation and delivery, miniaturization of generation plants, efficiency, and scaling down of the whole electric infrastructure are discussed. The main component of the Air Motor, the Thermal Air Turbine, generates useful power by converting in mechanical energy part of the thermal energy contained in a fan-produced airflow while leaving intact its kinetic energy. Due to this fact an air motor can contain a long succession of identical air turbines and the total power generated out of a single airflow can be very large, as well as its mechanical efficiency. It is found using the corresponding formulae that the mechanical efficiency of this device can be much greater than 100%, while its thermal efficiency is always less than 100%. On account of its multiple advantages, the Air Motor seems to be the perfect device to convert energy consumers into energy producers worldwide. If so, it would appear that current national electrical grids would no longer be necessary, because it does not seem practical or economical to bring the energy from far-away distances while it can be generated and consumed locally at the consumer’s premises using just the thermal energy contained in the ambient air.

Keywords: electrical grid, clean energy, renewable energy, in situ generation and delivery, generation efficiency

Procedia PDF Downloads 175
7315 Adsorption and Kinetic Studies on Removal of NH3-N from Wastewater onto 2 Different Nanoparticles Loaded Coconut Coir

Authors: Khushboo Bhavsar, Nisha K. Shah, Neha Parekh

Abstract:

The status of wastewater treatment needs a novel and quick method for treating the wastewater containing ammoniacal nitrogen. Adsorption behavior of ammoniacal nitrogen from wastewater using the nanoparticles loaded coconut coir was investigated in the present work. Manganese Oxide (MnO2) and Zinc Oxide (ZnO) nanoparticles were prepared and used for the further adsorption study. Manganese nanoparticles loaded coconut coir (MNLCC) and Zinc nanoparticles loaded coconut coir (ZNLCC) were prepared via a simple method and was fully characterized. The properties of both MNLCC and ZNLCC were characterized by Scanning electron microscopy, Fourier Transform Infrared Spectroscopy and X-ray diffraction. Adsorption characteristics were studied using batch technique considering various parameters like pH, adsorbent dosage, time, temperature and agitation time. The NH3-N adsorption process for MNLCC and ZNLCC was thoroughly studied from both kinetic and equilibrium isotherm view-points. The results indicated that the adsorption efficiency of ZNLCC was better when compared to MNLCC. The adsorption kinetics at different experimental conditions showed that second order kinetic model best fits ensuring the monovalent binding sites existing in the present experimental system. The outcome of the entire study suggests that the ZNLCC can be a smart option for the treatment of the ammoniacal nitrogen containing wastewater.

Keywords: ammoniacal nitrogen, MnO2, Nanoparticles, ZnO

Procedia PDF Downloads 356
7314 Computational Fluid Dynamics Analysis of Cyclone Separator Performance Using Discrete Phase Model

Authors: Sandeep Mohan Ahuja, Gulshan Kumar Jawa

Abstract:

Cyclone separators are crucial components in various industries tasked with efficiently separating particulate matter from gas streams. Achieving optimal performance hinges on a deep understanding of flow dynamics and particle behaviour within these separators. In this investigation, Computational Fluid Dynamics (CFD) simulations are conducted utilizing the Discrete Phase Model (DPM) to dissect the intricate flow patterns, particle trajectories, and separation efficiency within cyclone separators. The study delves into the influence of pivotal parameters like inlet velocity, particle size distribution, and cyclone geometry on separation efficiency. Through numerical simulations, a comprehensive comprehension of fluid-particle interaction phenomena within cyclone separators is attained, allowing for the assessment of solid collection efficiency across diverse operational conditions and geometrical setups. The insights gleaned from this study promise to advance our understanding of the complex interplay between fluid and particle within cyclone separators, thereby enabling optimization across a wide array of industrial applications. By harnessing the power of CFD simulations and the DPM, this research endeavours to furnish valuable insights for designing, operating, and evaluating the performance of cyclone separators, ultimately fostering greater efficiency and environmental sustainability within industrial processes.

Keywords: cyclone separator, computational fluid dynamics, enhancing efficiency, discrete phase model

Procedia PDF Downloads 51
7313 Additive Carbon Dots Nanocrystals for Enhancement of the Efficiency of Dye-Sensitized Solar Cell in Energy Applications Technology

Authors: Getachew Kuma Watiro

Abstract:

The need for solar energy is constantly increasing and it is widely available on the earth’s surface. Photovoltaic technology is one of the most capable of all viable energy technology and is seen as a promising approach to the control era as it is readily available and has zero carbon emissions. Inexpensive and versatile solar cells have achieved the conversion efficiency and long life of dye-sensitized solar cells, improving the conversion efficiency from the sun to electricity. DSSCs have received a lot of attention for Various potential commercial uses, such as mobile devices and portable electronic devices, as well as integrated solar cell modules. The systematic reviews were used to show the critical impact of additive C-dots in the Dye-Sensitized solar cell for energy application technology. This research focuses on the following methods to synthesize nanoparticles such as facile, polyol, calcination, and hydrothermal technique. In addition to these, there are additives C-dots by the Hydrothermal method. This study deals with the progressive development of DSSC in photovoltaic technology. The applications of single and heterojunction structure technology devices were used (ZnO, NiO, SnO2, and NiO/ZnO/N719) and applied some additives C-dots (ZnO/C-dots /N719, NiO/C-dots /N719, SnO2 /C-dots /N719 and NiO/ZnO/C-dots/N719) and the effects of C-dots were reviewed. More than all, the technology of DSSC with C-dots enhances efficiency. Finally, recommendations have been made for future research on the application of DSSC with the use of these additives.

Keywords: dye-sensitized solar cells, heterojunction’s structure, carbon dot, conversion efficiency

Procedia PDF Downloads 119
7312 Technical Efficiency and Challenges of Smallholder Horticultural Farmers in Ghana: A Wake-Up Call for Policy Implementers

Authors: Freda E. Asem, R. D. Osei, D. B. Sarpong, J. K. Kuwornu

Abstract:

While market access remains important, Ghana’s major handicap is her inability to sustain export growth on the open market. The causes of these could be attributed to inefficiency, lack of competitiveness and supply-side constraints. This study examined the challenges faced by smallholder horticultural farmers and how it relates to their technical efficiency. The study employed mixed methods to address the problem. Using the Millennium Development Account (MiDA) Farmer Based Organization survey data on farm households in 23 districts in Ghana, the study assessed the technical efficiency of smallholder horticultural farmers (taking into account production risks). Focus group discussions (FGDs) and in-depth interviews were also conducted on smallholder mango, pineapple, and chilli pepper farmers selected districts in Ghana. Results revealed the constraints faced by smallholder horticultural farmers to be marketing, training, funding, accessibility, and affordability of inputs, land, access to credit, and the disconnect between themselves and policy makers and implementers.

Keywords: productivity, gender, policy, efficiency, constraints

Procedia PDF Downloads 483
7311 Reentrant Spin-Glass State Formation in Polycrystalline Er₂NiSi₃

Authors: Santanu Pakhira, Chandan Mazumdar, R. Ranganathan, Maxim Avdeev

Abstract:

Magnetically frustrated systems are of great interest and one of the most adorable topics for the researcher of condensed matter physics, due to their various interesting properties, viz. ground state degeneracy, finite entropy at zero temperature, lowering of ordering temperature, etc. Ternary intermetallics with the composition RE₂TX₃ (RE = rare-earth element, T= d electron transition metal and X= p electron element) crystallize in hexagonal AlB₂ type crystal structure (space group P6/mmm). In a hexagonal crystal structure with the antiferromagnetic interaction between the moments, the center moment is geometrically frustrated. Magnetic frustration along with disorder arrangements of non-magnetic ions are the building blocks for metastable spin-glass ground state formation for most of the compounds of this stoichiometry. The newly synthesized compound Er₂NiSi₃ compound forms in single phase in AlB₂ type structure with space group P6/mmm. The compound orders antiferromagnetically below 5.4 K and spin freezing of the frustrated magnetic moments occurs below 3 K for the compound. The compound shows magnetic relaxation behavior and magnetic memory effect below its freezing temperature. Neutron diffraction patterns for temperatures below the spin freezing temperature have been analyzed using FULLPROF software package. Diffuse magnetic scattering at low temperatures yields spin glass state formation for the compound.

Keywords: antiferromagnetism, magnetic frustration, spin-glass, neutron diffraction

Procedia PDF Downloads 263
7310 Sustainable Manufacturing and Performance of Ceramic Membranes

Authors: Obsi Terfasa, Bhanupriya Das, Mithilish Passawan

Abstract:

The large-scale application of microbial fuel cell (MFC) technology is significantly hindered by the high cost of the commonly used proton exchange membrane, Nafion. This has led to the recent development of ceramic membranes using various clay minerals. This study evaluates the characteristics and potential use of a new ceramic membrane made from potter’s clay © mixed with different proportions (0, 5, 10 wt%) of fly ash (FA), labeled as CFA0, CFA5, CFA10, for cost-effective and sustainable MFC use. Among these, the CFA10 membrane demonstrated superior quality with a fine pore size distribution (average 0.41 μm), which supports higher water uptake and reduced oxygen diffusion. Its oxygen mass transfer coefficient was 4.13 ± 0.13 × 10⁻⁴ cm/s, about 40% lower than the control. X-ray diffraction analysis revealed that the CFA membrane is rich in quartz, which enhances proton conductance and water retention. Electrochemical kinetics studies, including cyclic voltammetry and electrochemical impedance spectroscopy (EIS), also confirmed the effectiveness of the CFA10 membrane in MFC, showing a peak current output of 15.35 mA and low ohmic resistance (78.2 Ω). The novel CFA10 ceramic membrane, incorporating coal fly ash, a waste material, shows promise for high MFC performance at a significantly reduced cost (96%), making it suitable for sustainable scaling up of the technology.

Keywords: ceramic membrane, Coulombic efficiency, electro-chemical kinetics, fly ash, proton conductivity, microbial fuel cell

Procedia PDF Downloads 36
7309 Lean Philosophy towards the Enhancement of Maintenance Programs Efficiency with Particular Attention to Libyan Oil and Gas Scenario

Authors: Sulayman Adrees Mohammed, Ahmed Faraj Abd Alsameea

Abstract:

The ongoing hindrance for Libyan oil and gas companies is the persistent challenge of eradicating maintenance program failures that result in exorbitant costs and production setbacks. Accordingly, this research is prompted to introduce the concept of lean philosophy in maintenance, which aims to eliminate waste and enhance productivity in maintenance procedures through the identification and differentiation of value-adding (VA) and non-value-adding (NVA) activities. The purpose of this paper was to explore and describe the benefits that can be gained by adopting the Lean philosophy towards the enhancement of maintenance programs' efficiency from theoretical perspectives. The oil industry maintenance community in Libya now has an introduced tool by which they can effectively evaluate their maintenance program functionality and reduce the areas of non-value added activities within maintenance, thereby enhancing the availability of the equipment and the capacity of the oil and gas facilities.

Keywords: efficiency, lean philosophy, Libyan oil and gas scenario, maintenance programs

Procedia PDF Downloads 109
7308 A Neural Network Approach to Evaluate Supplier Efficiency in a Supply Chain

Authors: Kishore K. Pochampally

Abstract:

The success of a supply chain heavily relies on the efficiency of the suppliers involved. In this paper, we propose a neural network approach to evaluate the efficiency of a supplier, which is being considered for inclusion in a supply chain, using the available linguistic (fuzzy) data of suppliers that already exist in the supply chain. The approach is carried out in three phases, as follows: In phase one, we identify criteria for evaluation of the supplier of interest. Then, in phase two, we use performance measures of already existing suppliers to construct a neural network that gives weights (importance values) of criteria identified in phase one. Finally, in phase three, we calculate the overall rating of the supplier of interest. The following are the major findings of the research conducted for this paper: (i) linguistic (fuzzy) ratings of suppliers such as 'good', 'bad', etc., can be converted (defuzzified) to numerical ratings (1 – 10 scale) using fuzzy logic so that those ratings can be used for further quantitative analysis; (ii) it is possible to construct and train a multi-level neural network in order to determine the weights of the criteria that are used to evaluate a supplier; and (iii) Borda’s rule can be used to group the weighted ratings and calculate the overall efficiency of the supplier.

Keywords: fuzzy data, neural network, supplier, supply chain

Procedia PDF Downloads 113
7307 The Development of a Residual Stress Measurement Method for Roll Formed Products

Authors: Yong Sun, Vladimir Luzin, Zhen Qian, William J. T. Daniel, Mingxing Zhang, Shichao Ding

Abstract:

The residual stresses in roll formed products are generally very high and un-predictable. This is due to the occurrence of redundant plastic deformation in roll forming process and it can cause various product defects. Although the residual stresses of a roll formed product consist of longitudinal and transverse residual stresses components, but the longitudinal residual stresses plays a key role to the product defects of a roll formed product and therefore, only the longitudinal residual stresses concerned by the roll forming scholars and engineers. However, how to inspect the residual stresses of a product quickly and economically as a routine operation is still a challenge. This paper introduces a residual stresses measurement method called slope cutting method to study the longitudinal residual stresses through layers geometrically to a roll formed products or a product with similar process such as a rolled sheet. The detailed measuring procedure is given and discussed. The residual stresses variation through the layer can be derived based on the variation of curvature in different layers and steps. The slope cutting method has been explored and validated by experimental study on a roll-formed square tube. The neutron diffraction method is applied to validate the accuracy of the newly proposed layering removal materials results. The two set results agree with each other very well and therefore, the method is expected to be a routine testing method to monitor the quality of a product been formed and that is a great impact to roll forming industry.

Keywords: roll forming, residual stress, measurement method, neutron diffraction

Procedia PDF Downloads 364
7306 Investigating the Efficiency of Stratified Double Median Ranked Set Sample for Estimating the Population Mean

Authors: Mahmoud I. Syam

Abstract:

Stratified double median ranked set sampling (SDMRSS) method is suggested for estimating the population mean. The SDMRSS is compared with the simple random sampling (SRS), stratified simple random sampling (SSRS), and stratified ranked set sampling (SRSS). It is shown that SDMRSS estimator is an unbiased of the population mean and more efficient than SRS, SSRS, and SRSS. Also, by SDMRSS, we can increase the efficiency of mean estimator for specific value of the sample size. SDMRSS is applied on real life examples, and the results of the example agreed the theoretical results.

Keywords: efficiency, double ranked set sampling, median ranked set sampling, ranked set sampling, stratified

Procedia PDF Downloads 247
7305 Exergy Based Analysis of Parabolic Trough Collector Using Twisted-Tape Inserts

Authors: Atwari Rawani, Suresh Prasad Sharma, K. D. P. Singh

Abstract:

In this paper, an analytical investigation based on energy and exergy analysis of the parabolic trough collector (PTC) with alternate clockwise and counter-clockwise twisted tape inserts in the absorber tube has been presented. For fully developed flow under quasi-steady state conditions, energy equations have been developed in order to analyze the rise in fluid temperature, thermal efficiency, entropy generation and exergy efficiency. Also the effect of system and operating parameters on performance have been studied. A computer program, based on mathematical models is developed in C++ language to estimate the temperature rise of fluid for evaluation of performances under specified conditions. For numerical simulations four different twist ratio, x = 2,3,4,5 and mass flow rate 0.06 kg/s to 0.16 kg/s which cover the Reynolds number range of 3000 - 9000 is considered. This study shows that twisted tape inserts when used shows great promise for enhancing the performance of PTC. Results show that for x=1, Nusselt number/heat transfer coefficient is found to be 3.528 and 3.008 times over plain absorber of PTC at mass flow rate of 0.06 kg/s and 0.16 kg/s respectively; while corresponding enhancement in thermal efficiency is 12.57% and 5.065% respectively. Also the exergy efficiency has been found to be 10.61% and 10.97% and enhancement factor is 1.135 and 1.048 for same set of conditions.

Keywords: exergy efficiency, twisted tape ratio, turbulent flow, useful heat gain

Procedia PDF Downloads 173
7304 A Study on Energy Efficiency of Vertical Water Treatment System with DC Power Supply

Authors: Young-Kwan Choi, Gang-Wook Shin, Sung-Taek Hong

Abstract:

Water supply system consumes large amount of power load during water treatment and transportation of purified water. Many energy conserving high efficiency materials such as DC motor and LED light have recently been introduced to water supply system for energy conservation. This paper performed empirical analysis on BLDC, AC motors, and comparatively analyzed the change in power according to DC power supply ratio in order to conserve energy of a next-generation water treatment system called vertical water treatment system. In addition, a DC distribution system linked with photovoltaic generation was simulated to analyze the energy conserving effect of DC load.

Keywords: vertical water treatment system, DC power supply, energy efficiency, BLDC

Procedia PDF Downloads 503
7303 Robust Design of Electroosmosis Driven Self-Circulating Micromixer for Biological Applications

Authors: Bahram Talebjedi, Emily Earl, Mina Hoorfar

Abstract:

One of the issues that arises with microscale lab-on-a-chip technology is that the laminar flow within the microchannels limits the mixing of fluids. To combat this, micromixers have been introduced as a means to try and incorporate turbulence into the flow to better aid the mixing process. This study presents an electroosmotic micromixer that balances vortex generation and degeneration with the inlet flow velocity to greatly increase the mixing efficiency. A comprehensive parametric study was performed to evaluate the role of the relevant parameters on the mixing efficiency. It was observed that the suggested micromixer is perfectly suited for biological applications due to its low pressure drop (below 10 Pa) and low shear rate. The proposed micromixer with optimized working parameters is able to attain a mixing efficiency of 95% in a span of 0.5 seconds using a frequency of 10 Hz, a voltage of 0.7 V, and an inlet velocity of 0.366 mm/s.

Keywords: microfluidics, active mixer, pulsed AC electroosmosis flow, micromixer

Procedia PDF Downloads 138
7302 Designing of Induction Motor Efficiency Monitoring System

Authors: Ali Mamizadeh, Ires Iskender, Saeid Aghaei

Abstract:

Energy is one of the important issues with high priority property in the world. Energy demand is rapidly increasing depending on the growing population and industry. The useable energy sources in the world will be insufficient to meet the need for energy. Therefore, the efficient and economical usage of energy sources is getting more importance. In a survey conducted among electric consuming machines, the electrical machines are consuming about 40% of the total electrical energy consumed by electrical devices and 96% of this consumption belongs to induction motors. Induction motors are the workhorses of industry and have very large application areas in industry and urban systems like water pumping and distribution systems, steel and paper industries and etc. Monitoring and the control of the motors have an important effect on the operating performance of the motor, driver selection and replacement strategy management of electrical machines. The sensorless monitoring system for monitoring and calculating efficiency of induction motors are studied in this study. The equivalent circuit of IEEE is used in the design of this study. The terminal current and voltage of induction motor are used in this motor to measure the efficiency of induction motor. The motor nameplate information and the measured current and voltage are used in this system to calculate accurately the losses of induction motor to calculate its input and output power. The efficiency of the induction motor is monitored online in the proposed method without disconnecting the motor from the driver and without adding any additional connection at the motor terminal box. The proposed monitoring system measure accurately the efficiency by including all losses without using torque meter and speed sensor. The monitoring system uses embedded architecture and does not need to connect to a computer to measure and log measured data. The conclusion regarding the efficiency, the accuracy and technical and economical benefits of the proposed method are presented. The experimental verification has been obtained on a 3 phase 1.1 kW, 2-pole induction motor. The proposed method can be used for optimal control of induction motors, efficiency monitoring and motor replacement strategy.

Keywords: induction motor, efficiency, power losses, monitoring, embedded design

Procedia PDF Downloads 347
7301 Experimental Investigation of Powder Holding Capacities of H13 and H14 Class Activated Carbon Filters Based on En 779 Standard

Authors: Abdullah Işıktaş, Kevser Dincer

Abstract:

The use of HEPA filters for air conditioning systems in clean rooms tends to increase progressively in pharmaceutical, food stuff industries and in hospitals. There are two standards widely used for HEPA filters; the EN 1822 standards published by the European Union, CEN (European Committee for Standardization) and the US based IEST standard (Institute of Environmental Sciences and Technology. Both standards exhibit some differences in the definitions of efficiency and its measurement methods. While IEST standard defines efficiency at the grit diameter of 0.3 µm, the EN 1822 standard takes MPPS (Most Penetrating Particle Size) as the basis of its definition. That is, the most difficult grit size to catch up. On the other hand, while IEST suggests that photometer and grit counters be used for filter testing, in EN 1822 standard, only the grit (grain) counters are recommended for that purpose. In this study, powder holding capacities of H13 and H14 grade materials under the EN 779 standard are investigated experimentally by using activated carbon. Measurements were taken on an experimental set up based on the TS 932 standard. Filter efficiency was measured by injecting test powder at amounts predetermined in the standards into the filters at certain intervals. The data obtained showed that the powder holding capacities of the activated carbon filter are high enough to yield efficiency of around 90% and that the H13 and H14 filters exhibit high efficiency suitable for the standard used.

Keywords: activated carbon filters, HEPA filters, powder holding capacities, air conditioning systems

Procedia PDF Downloads 244
7300 Management Systems as a Tool to Limit the End-Users Impacts on Energy Savings Achievements

Authors: Margarida Plana

Abstract:

The end-users behavior has been identified in the last years as one of the main responsible for the success degree of the energy efficiency improvements. It is essential to create tools to limit their impact on the final consumption. This paper is focused on presenting the results of the analysis developed on the basis of real projects’ data in order to quantify the impact of end-users behavior. The analysis is focused on how the behavior of building’s occupants can vary the achievement of the energy savings targets and how they can be limited. The results obtained show that the management systems are one of the main tools available to control and limit the end-users interaction with the equipment operation. In fact, the results will present the management systems as ‘a must’ on any energy efficiency project.

Keywords: end-users impacts, energy efficiency, energy savings, management systems

Procedia PDF Downloads 261
7299 Self-Action of Pyroelectric Spatial Soliton in Undoped Lithium Niobate Samples with Pyroelectric Mechanism of Nonlinear Response

Authors: Anton S. Perin, Vladimir M. Shandarov

Abstract:

Compensation for the nonlinear diffraction of narrow laser beams with wavelength of 532 and the formation of photonic waveguides and waveguide circuits due to the contribution of pyroelectric effect to the nonlinear response of lithium niobate crystal have been experimentally demonstrated. Complete compensation for the linear and nonlinear diffraction broadening of light beams is obtained upon uniform heating of an undoped sample from room temperature to 55 degrees Celsius. An analysis of the light-field distribution patterns and the corresponding intensity distribution profiles allowed us to estimate the spacing for the channel waveguides. The observed behavior of bright soliton beams may be caused by their coherent interaction, which manifests itself in repulsion for anti-phase light fields and in attraction for in-phase light fields. The experimental results of this study showed a fundamental possibility of forming optically complex waveguide structures in lithium niobate crystals with pyroelectric mechanism of nonlinear response. The topology of these structures is determined by the light field distribution on the input face of crystalline sample. The optical induction of channel waveguide elements by interacting spatial solitons makes it possible to design optical systems with a more complex topology and a possibility of their dynamic reconfiguration.

Keywords: self-action, soliton, lithium niobate, piroliton, photorefractive effect, pyroelectric effect

Procedia PDF Downloads 167
7298 Investigation of Length Effect on Power Conversion Efficiency of Perovskite Solar Cells Composed of ZnO Nanowires

Authors: W. S. Li, S. T. Yang, H. C. Cheng

Abstract:

The power conversion efficiency (PCE) of the perovskite solar cells has been achieved by inserting vertically-aligned ZnO nanowires (NWs) between the cathode and the active layer and shows better solar cells performance. Perovskite solar cells have drawn significant attention due to the superb efficiency and low-cost fabrication process. In this experiment, ZnO nanowires are used as the electron transport layer (ETL) due to its low temperature process. The main idea of this thesis is utilizing the 3D structures of the hydrothermally-grown ZnO nanowires to increase the junction area to improve the photovoltaic performance of the perovskite solar cells. The infiltration and the surface coverage of the perovskite precursor solution changed as tuning the length of the ZnO nanowires. It is revealed that the devices with ZnO nanowires of 150 nm demonstrated the best PCE of 8.46 % under the AM 1.5G illumination (100 mW/cm2).

Keywords: hydrothermally-grown ZnO nanowires, perovskite solar cells, low temperature process, pinholes

Procedia PDF Downloads 329
7297 Comparative Study of Experimental and Theoretical Convective, Evaporative for Two Model Distiller

Authors: Khaoula Hidouri, Ali Benhmidene, Bechir Chouachi

Abstract:

The purification of brackish seawater becomes a necessity and not a choice against demographic and industrial growth especially in third world countries. Two models can be used in this work: simple solar still and simple solar still coupled with a heat pump. In this research, the productivity of water by Simple Solar Distiller (SSD) and Simple Solar Distiller Hybrid Heat Pump (SSDHP) was determined by the orientation, the use of heat pump, the simple or double glass cover. The productivity can exceed 1.2 L/m²h for the SSDHP and 0.5 L/m²h for SSD model. The result of the global efficiency is determined for two models SSD and SSDHP give respectively 30%, 50%. The internal efficiency attained 35% for SSD and 60% of the SSDHP models. Convective heat coefficient can be determined by attained 2.5 W/m²°C and 0.5 W/m²°C respectively for SSDHP and SSD models.

Keywords: productivity, efficiency, convective heat coefficient, SSD model, SSDHPmodel

Procedia PDF Downloads 213
7296 Polyvinylidene Fluoride-Polyaniline Films for Improved Dielectric Properties

Authors: Anjana Jain, S. Jayanth Kumar

Abstract:

Polyvinylidene fluoride (PVDF) is a well-known material for remarkable mechanical properties, resistance to chemicals and superior ferroelectric performances. This endows PVDF the potential for application in supercapacitor devices. The dielectric properties of PVDF, however, are not very high. To improve the dielectric properties of Polyvinylidene fluoride (PVDF), Piezoelectric polymer nanocomposites are prepared without affecting the other useful properties of PVDF. Polyaniline (PANI) was chosen as a filler material to prepare the nanocomposites. PVDF-PANI nanocomposite films were prepared using solvent cast method with different volume fractions of PANI varying from 0.04% to 0.048% of PANI content. The films are characterized for structural, mechanical, and surface morphological properties using X-ray diffraction, differential scanning calorimeter, Raman spectra, Infrared spectra, tensile testing, and scanning electron microscopy. The X-ray diffraction analysis shows that, prepared films were in β-phase. The DSC scans indicated that the degree of crystallinity in PVDF-PANI is improved. Raman and Infrared spectrum further confirm the presence of β-phase of PVDF-PANI film. Tensile properties of PVDF-PANI films were in good agreement with those reported in literature. The surface feature shows that PANI is uniformly distributed in PVDF and also results in disappearance of spherulites. The influence of volume fraction of PANI in PVDF on dielectric properties was analyzed. The results showed that the dielectric permittivity of PVDF-PANI (120) was much higher than that of PVDF (12). The sensitivity of these films was studied on application of a pressure and a constant output voltage was obtained.

Keywords: dielectric Properties, PANI, PVDF, smart materials

Procedia PDF Downloads 438