Search results for: cylindrical coordinates
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 581

Search results for: cylindrical coordinates

131 Comparison of FNTD and OSLD Detectors' Responses to Light Ion Beams Using Monte Carlo Simulations and Exprimental Data

Authors: M. R. Akbari, H. Yousefnia, A. Ghasemi

Abstract:

Al2O3:C,Mg fluorescent nuclear track detector (FNTD) and Al2O3:C optically stimulated luminescence detector (OSLD) are becoming two of the applied detectors in ion dosimetry. Therefore, the response of these detectors to hadron beams is highly of interest in radiation therapy (RT) using ion beams. In this study, these detectors' responses to proton and Helium-4 ion beams were compared using Monte Carlo simulations. The calculated data for proton beams were compared with Markus ionization chamber (IC) measurement (in water phantom) from M.D. Anderson proton therapy center. Monte Carlo simulations were performed via the FLUKA code (version 2011.2-17). The detectors were modeled in cylindrical shape at various depths of the water phantom without shading each other for obtaining relative depth dose in the phantom. Mono-energetic parallel ion beams in different incident energies (100 MeV/n to 250 MeV/n) were collided perpendicularly on the phantom surface. For proton beams, the results showed that the simulated detectors have over response relative to IC measurements in water phantom. In all cases, there were good agreements between simulated ion ranges in the water with calculated and experimental results reported by the literature. For proton, maximum peak to entrance dose ratio in the simulated water phantom was 4.3 compared with about 3 obtained from IC measurements. For He-4 ion beams, maximum peak to entrance ratio calculated by both detectors was less than 3.6 in all energies. Generally, it can be said that FLUKA is a good tool to calculate Al2O3:C,Mg FNTD and Al2O3:C OSLD detectors responses to therapeutic proton and He-4 ion beams. It can also calculate proton and He-4 ion ranges with a reasonable accuracy.

Keywords: comparison, FNTD and OSLD detectors response, light ion beams, Monte Carlo simulations

Procedia PDF Downloads 321
130 Detection of Safety Goggles on Humans in Industrial Environment Using Faster-Region Based on Convolutional Neural Network with Rotated Bounding Box

Authors: Ankit Kamboj, Shikha Talwar, Nilesh Powar

Abstract:

To successfully deliver our products in the market, the employees need to be in a safe environment, especially in an industrial and manufacturing environment. The consequences of delinquency in wearing safety glasses while working in industrial plants could be high risk to employees, hence the need to develop a real-time automatic detection system which detects the persons (violators) not wearing safety glasses. In this study a convolutional neural network (CNN) algorithm called faster region based CNN (Faster RCNN) with rotated bounding box has been used for detecting safety glasses on persons; the algorithm has an advantage of detecting safety glasses with different orientation angles on the persons. The proposed method of rotational bounding boxes with a convolutional neural network first detects a person from the images, and then the method detects whether the person is wearing safety glasses or not. The video data is captured at the entrance of restricted zones of the industrial environment (manufacturing plant), which is further converted into images at 2 frames per second. In the first step, the CNN with pre-trained weights on COCO dataset is used for person detection where the detections are cropped as images. Then the safety goggles are labelled on the cropped images using the image labelling tool called roLabelImg, which is used to annotate the ground truth values of rotated objects more accurately, and the annotations obtained are further modified to depict four coordinates of the rectangular bounding box. Next, the faster RCNN with rotated bounding box is used to detect safety goggles, which is then compared with traditional bounding box faster RCNN in terms of detection accuracy (average precision), which shows the effectiveness of the proposed method for detection of rotatory objects. The deep learning benchmarking is done on a Dell workstation with a 16GB Nvidia GPU.

Keywords: CNN, deep learning, faster RCNN, roLabelImg rotated bounding box, safety goggle detection

Procedia PDF Downloads 115
129 Performance Analysis of Modified Solar Water Heating System for Climatic Condition of Allahabad, India

Authors: Kirti Tewari, Rahul Dev

Abstract:

Solar water heating is a thermodynamic process of heating water using sunlight with the help of solar water heater. Thus, solar water heater is a device used to harness solar energy. In this paper, a modified solar water heating system (MSWHS) has been proposed over flat plate collector (FPC) and Evacuated tube collector (ETC). The modifications include selection of materials other than glass, and glass wool which are conventionally used for fabricating FPC and ETC. Some modifications in design have also been proposed. Its collector is made of double layer of semi-cylindrical acrylic tubes and fibre reinforced plastic (FRP) insulation base. Water tank is made of double layer of acrylic sheet except base and north wall. FRP is used in base and north wall of the water tank. A concept of equivalent thickness has been utilised for calculating the dimensions of collector plate, acrylic tube and tank. A thermal model for the proposed design of MSWHS is developed and simulation is carried out on MATLAB for the capacity of 200L MSWHS having collector area of 1.6 m2, length of acrylic tubes of 2m at an inclination angle 25° which is taken nearly equal to the latitude of the given location. Latitude of Allahabad is 24.45° N. The results show that the maximum temperature of water in tank and tube has been found to be 71.2°C and 73.3°C at 17:00hr and 16:00hr respectively in March for the climatic data of Allahabad. Theoretical performance analysis has been carried out by varying number of tubes of collector, the tank capacity and climatic data for given months of winter and summer.

Keywords: acrylic, fibre reinforced plastic, solar water heating, thermal model, conventional water heaters

Procedia PDF Downloads 320
128 Main Control Factors of Fluid Loss in Drilling and Completion in Shunbei Oilfield by Unmanned Intervention Algorithm

Authors: Peng Zhang, Lihui Zheng, Xiangchun Wang, Xiaopan Kou

Abstract:

Quantitative research on the main control factors of lost circulation has few considerations and single data source. Using Unmanned Intervention Algorithm to find the main control factors of lost circulation adopts all measurable parameters. The degree of lost circulation is characterized by the loss rate as the objective function. Geological, engineering and fluid data are used as layers, and 27 factors such as wellhead coordinates and WOB are used as dimensions. Data classification is implemented to determine function independent variables. The mathematical equation of loss rate and 27 influencing factors is established by multiple regression method, and the undetermined coefficient method is used to solve the undetermined coefficient of the equation. Only three factors in t-test are greater than the test value 40, and the F-test value is 96.557%, indicating that the correlation of the model is good. The funnel viscosity, final shear force and drilling time were selected as the main control factors by elimination method, contribution rate method and functional method. The calculated values of the two wells used for verification differ from the actual values by -3.036m3/h and -2.374m3/h, with errors of 7.21% and 6.35%. The influence of engineering factors on the loss rate is greater than that of funnel viscosity and final shear force, and the influence of the three factors is less than that of geological factors. Quantitatively calculate the best combination of funnel viscosity, final shear force and drilling time. The minimum loss rate of lost circulation wells in Shunbei area is 10m3/h. It can be seen that man-made main control factors can only slow down the leakage, but cannot fundamentally eliminate it. This is more in line with the characteristics of karst caves and fractures in Shunbei fault solution oil and gas reservoir.

Keywords: drilling and completion, drilling fluid, lost circulation, loss rate, main controlling factors, unmanned intervention algorithm

Procedia PDF Downloads 89
127 Characteristics of Meiofaunal Communities in Intertidal Habitats Along Albanian Adriatic Sea Coast

Authors: Fundime Miri, Emanuela Sulaj

Abstract:

Benthic ecosystems constitute important ecological habitats, providing fundamental services for spawning, foraging, and sheltering aquatic organisms. Benthic faunal communities are characterized by a large biological diversity, supported by a great physical variety of benthic habitats. Until late, the study of meiobenthic communities in Albania has been neglectedthus excluding an important component of benthos. The present study aims to bring characteristics of distribution pattern of meiofaunal communities with further focus on nematode genus-based diversity from different intertidal habitats along Albanian Adriatic Sea Coast. The investigation area is extended from Shkodra to Vlora District, including six sandy sampling sites in beaches and areas near river estuaries. Sediment samples were collected manually in low intertidal zone by using a cylindrical corer, with an internal diameter of 5 cm. The richness onmeiofaunalmajor taxon level did not show any significant change between different sampling sites compare to significant changes in nematode diversity at genus level, with distinct nematode assemblages per sampling sites and presence of exclusive genera. All meiofaunal communities under study were dominated by nematodes. Further assessment of functional diversity on nematode assemblages exhibited changes as well on trophic groups and life strategies due to diverse feeding behaviors and c-p values of nematode genera. This study emphasize the need for lower level taxonomic identification of meiofaunal organisms and extending of ecological assessments on trophic diversity and life strategies to understanding functional consequences.

Keywords: benthos, meiofauna, nematode genus-based diversity, functional diversity, intertidal, albanian adriatic coast

Procedia PDF Downloads 128
126 The Influence of Apple Pomace on Colour and Chemical Composition of Extruded Corn Snack Product

Authors: Jovana Petrovic, Biljana Pajin, Ivana Loncarevic, Aleksandar Fistes, Antun Jozinivic, Durdica Ackar, Drago Subaric

Abstract:

Recovery of food wastes and their conversion to economically viable products will play a vital role for the management strategies in the years to come. Apple pomace may be considered as wastes, but they contain considerable amounts of high value reusable materials. Apple pomace, the by-product of apple juice and cider production, is a good source of fibre, particularly insoluble one. The remaining apple pulp contains 12% dry residue, which is half dietary fibre. Another remarkable aspect is its richness in polyphenols, components with antioxidant activity. Apple pomace could be an interesting alternative source for fibre and polyphenols in extruded corn meals. The extruded corn meals with the addition of finely ground apple pomace were prepared (the ratio of corn meal: apple pomace was 85:15 and 70:30). Characterization of the extrudates in terms of determining the chemical composition and colour was performed. The color of samples was measured by MINOLTA Chroma Meter CR-400 (Minolta Co., Ltd., Osaka, Japan) using D 65 lighting, a 2º standard observer angle and an 8-mm aperture in the measuring head. The following CIELab color coordinates were determined: L* – lightness, a* – redness to greenness and b* – yellowness to blueness. Protein content decreased significantly from 7.91% to 5.19% with increase in pomace from 0% to 30%, while total fibre content increase from 3.39% to 16.62%. The apple pomace addition produced extrudates with a significantly lower L* value and significantly higher a* value. This study has been fully supported by the Provincial Secretariat for High Education and Scientific Research of the Government of Autonomous Province of Vojvodina, Republic of Serbia, project 142-451-2483/2017 and the Ministry of Science and Technological Development of the Republic of Serbia (Project no. 31014).

Keywords: apple pomace, chemical composition, colour, extruded corn snack products, food waste recovery

Procedia PDF Downloads 204
125 Analysis of Rock Cutting Progress with a New Axe-Shaped PDC Cutter to Improve PDC Bit Performance in Elastoplastic Formation

Authors: Fangyuan Shao, Wei Liu, Deli Gao

Abstract:

Polycrystalline diamond compact (PDC) bits have occupied a large market of unconventional oil and gas drilling. The application of PDC bits benefits from the efficient rock breaking of PDC cutters. In response to increasingly complex formations, many shaped cutters have been invited, but many of them have not been solved by the mechanism of rock breaking. In this paper, two kinds of PDC cutters: a new axe-shaped (NAS) cutter and cylindrical cutter (benchmark) were studied by laboratory experiments. NAS cutter is obtained by optimizing two sides of axe-shaped cutter with curved surfaces. All the cutters were put on a vertical turret lathe (VTL) in the laboratory for cutting tests. According to the cutting distance, the VTL tests can be divided into two modes: single-turn rotary cutting and continuous cutting. The cutting depth of cutting (DOC) was set at 1.0 mm and 2.0 mm in the former mode. The later mode includes a dry VTL test for thermal stability and a wet VTL test for wear resistance. Load cell and 3D optical profiler were used to obtain the value of cutting forces and wear area, respectively. Based on the findings of the single-turn rotary cutting VTL tests, the performance of A NAS cutter was better than the benchmark cutter on elastoplastic material cutting. The cutting forces (normal forces, tangential force, and radial force) and special mechanical energy (MSE) of a NAS cutter were lower than that of the benchmark cutter under the same condition. It meant that a NAS cutter was more efficient on elastoplastic material breaking. However, the wear resistance of a new axe-shaped cutter was higher than that of a benchmark cutter. The results of the dry VTL test showed that the thermal stability of a NAS cutter was higher than that of a benchmark cutter. The cutting efficiency can be improved by optimizing the geometric structure of the PDC cutter. The change of thermal stability may be caused by the decrease of the contact area between cutter and rock at given DOC. The conclusions of this paper can be used as an important reference for PDC cutters designers.

Keywords: axe-shaped cutter, PDC cutter, rotary cutting test, vertical turret lathe

Procedia PDF Downloads 183
124 Calculation of Secondary Neutron Dose Equivalent in Proton Therapy of Thyroid Gland Using FLUKA Code

Authors: M. R. Akbari, M. Sadeghi, R. Faghihi, M. A. Mosleh-Shirazi, A. R. Khorrami-Moghadam

Abstract:

Proton radiotherapy (PRT) is becoming an established treatment modality for cancer. The localized tumors, the same as undifferentiated thyroid tumors are insufficiently handled by conventional radiotherapy, while protons would propose the prospect of increasing the tumor dose without exceeding the tolerance of the surrounding healthy tissues. In spite of relatively high advantages in giving localized radiation dose to the tumor region, in proton therapy, secondary neutron production can have significant contribution on integral dose and lessen advantages of this modality contrast to conventional radiotherapy techniques. Furthermore, neutrons have high quality factor, therefore, even a small physical dose can cause considerable biological effects. Measuring of this neutron dose is a very critical step in prediction of secondary cancer incidence. It has been found that FLUKA Monte Carlo code simulations have been used to evaluate dose due to secondaries in proton therapy. In this study, first, by validating simulated proton beam range in water phantom with CSDA range from NIST for the studied proton energy range (34-54 MeV), a proton therapy in thyroid gland cancer was simulated using FLUKA code. Secondary neutron dose equivalent of some organs and tissues after the target volume caused by 34 and 54 MeV proton interactions were calculated in order to evaluate secondary cancer incidence. A multilayer cylindrical neck phantom considering all the layers of neck tissues and a proton beam impinging normally on the phantom were also simulated. Trachea (accompanied by Larynx) had the greatest dose equivalent (1.24×10-1 and 1.45 pSv per primary 34 and 54 MeV protons, respectively) among the simulated tissues after the target volume in the neck region.

Keywords: FLUKA code, neutron dose equivalent, proton therapy, thyroid gland

Procedia PDF Downloads 404
123 Jagiellonian-PET: A Novel TOF-PET Detector Based on Plastic Scintillators

Authors: P. Moskal, T. Bednarski, P. Bialas, E. Czerwinski, A. Gajos, A. Gruntowski, D. Kaminska, L. Kaplon, G. Korcyl, P. Kowalski, T. Kozik, W. Krzemien, E. Kubicz, Sz. Niedzwiecki, M. Palka, L. Raczynski, Z. Rudy, P. Salabura, N. G. Sharma, M. Silarski, A. Slomski, J. Smyrski, A. Strzelecki, A. Wieczorek, W. Wislicki, M. Zielinski, N. Zon

Abstract:

A new concept and results of the performance tests of the TOF-PET detection system developed at the Jagiellonian University will be presented. The novelty of the concept lies in employing long strips of polymer scintillators instead of crystals as detectors of annihilation quanta, and in using predominantly the timing of signals instead of their amplitudes for the reconstruction of Lines-of-Response. The diagnostic chamber consists of plastic scintillator strips readout by pairs of photo multipliers arranged axially around a cylindrical surface. To take advantage of the superior timing properties of plastic scintillators the signals are probed in the voltage domain with the accuracy of 20 ps by a newly developed electronics, and the data are collected by the novel trigger-less and reconfigurable data acquisition system. The hit-position and hit-time are reconstructed by the dedicated reconstruction methods based on the compressing sensing theory and the library of synchronized model signals. The solutions are subject to twelve patent applications. So far a time-of-flight resolution of ~120 ps (sigma) was achieved for a double-strip prototype with 30 cm field-of-view (FOV). It is by more than a factor of two better than TOF resolution achievable in current TOF-PET modalities and at the same time the FOV of 30 cm long prototype is significantly larger with respect to typical commercial PET devices. The Jagiellonian PET (J-PET) detector with plastic scintillators arranged axially possesses also another advantage. Its diagnostic chamber is free of any electronic devices and magnetic materials thus giving unique possibilities of combining J-PET with CT and J-PET with MRI for scanning the same part of a patient at the same time with both methods.

Keywords: PET-CT, PET-MRI, TOF-PET, scintillator

Procedia PDF Downloads 467
122 Novel Hole-Bar Standard Design and Inter-Comparison for Geometric Errors Identification on Machine-Tool

Authors: F. Viprey, H. Nouira, S. Lavernhe, C. Tournier

Abstract:

Manufacturing of freeform parts may be achieved on 5-axis machine tools currently considered as a common means of production. In particular, the geometrical quality of the freeform parts depends on the accuracy of the multi-axis structural loop, which is composed of several component assemblies maintaining the relative positioning between the tool and the workpiece. Therefore, to reach high quality of the geometries of the freeform parts the geometric errors of the 5 axis machine should be evaluated and compensated, which leads one to master the deviations between the tool and the workpiece (volumetric accuracy). In this study, a novel hole-bar design was developed and used for the characterization of the geometric errors of a RRTTT 5-axis machine tool. The hole-bar standard design is made of Invar material, selected since it is less sensitive to thermal drift. The proposed design allows once to extract 3 intrinsic parameters: one linear positioning and two straightnesses. These parameters can be obtained by measuring the cylindricity of 12 holes (bores) and 11 cylinders located on a perpendicular plane. By mathematical analysis, twelve 3D points coordinates can be identified and correspond to the intersection of each hole axis with the least square plane passing through two perpendicular neighbour cylinders axes. The hole-bar was calibrated using a precision CMM at LNE traceable the SI meter definition. The reversal technique was applied in order to separate the error forms of the hole bar from the motion errors of the mechanical guiding systems. An inter-comparison was additionally conducted between four NMIs (National Metrology Institutes) within the EMRP IND62: JRP-TIM project. Afterwards, the hole-bar was integrated in RRTTT 5-axis machine tool to identify its volumetric errors. Measurements were carried out in real time and combine raw data acquired by the Renishaw RMP600 touch probe and the linear and rotary encoders. The geometric errors of the 5 axis machine were also evaluated by an accurate laser tracer interferometer system. The results were compared to those obtained with the hole bar.

Keywords: volumetric errors, CMM, 3D hole-bar, inter-comparison

Procedia PDF Downloads 363
121 Terahertz Glucose Sensors Based on Photonic Crystal Pillar Array

Authors: S. S. Sree Sanker, K. N. Madhusoodanan

Abstract:

Optical biosensors are dominant alternative for traditional analytical methods, because of their small size, simple design and high sensitivity. Photonic sensing method is one of the recent advancing technology for biosensors. It measures the change in refractive index which is induced by the difference in molecular interactions due to the change in concentration of the analyte. Glucose is an aldosic monosaccharide, which is a metabolic source in many of the organisms. The terahertz waves occupies the space between infrared and microwaves in the electromagnetic spectrum. Terahertz waves are expected to be applied to various types of sensors for detecting harmful substances in blood, cancer cells in skin and micro bacteria in vegetables. We have designed glucose sensors using silicon based 1D and 2D photonic crystal pillar arrays in terahertz frequency range. 1D photonic crystal has rectangular pillars with height 100 µm, length 1600 µm and width 50 µm. The array period of the crystal is 500 µm. 2D photonic crystal has 5×5 cylindrical pillar array with an array period of 75 µm. Height and diameter of the pillar array are 160 µm and 100 µm respectively. Two samples considered in the work are blood and glucose solution, which are labelled as sample 1 and sample 2 respectively. The proposed sensor detects the concentration of glucose in the samples from 0 to 100 mg/dL. For this, the crystal was irradiated with 0.3 to 3 THz waves. By analyzing the obtained S parameter, the refractive index of the crystal corresponding to the particular concentration of glucose was measured using the parameter retrieval method. Refractive indices of the two crystals decreased gradually with the increase in concentration of glucose in the sample. For 1D photonic crystals, a gradual decrease in refractive index was observed at 1 THz. 2D photonic crystal showed this behavior at 2 THz. The proposed sensor was simulated using CST Microwave studio. This will enable us to develop a model which can be used to characterize a glucose sensor. The present study is expected to contribute to blood glucose monitoring.

Keywords: CST microwave studio, glucose sensor, photonic crystal, terahertz waves

Procedia PDF Downloads 259
120 The Material-Process Perspective: Design and Engineering

Authors: Lars Andersen

Abstract:

The development of design and engineering in large construction projects are characterized by an increased degree of flattening out of formal structures, extended use of parallel and integrated processes (‘Integrated Concurrent Engineering’) and an increased number of expert disciplines. The integration process is based on ongoing collaborations, dialogues, intercommunication and comments on each other’s work (iterations). This process based on reciprocal communication between actors and disciplines triggers value creation. However, communication between equals is not in itself sufficient to create effective decision making. The complexity of the process and time pressure contribute to an increased risk of a deficit of decisions and loss of process control. The paper refers to a study that aims at developing a resilient decision-making system that does not come in conflict with communication processes based on equality between the disciplines in the process. The study includes the construction of a hospital, following the phases design, engineering and physical building. The Research method is a combination of formative process research, process tracking and phenomenological analyses. The study tracked challenges and problems in the building process to the projection substrates (drawing and models) and further to the organization of the engineering and design phase. A comparative analysis of traditional and new ways of organizing the projecting made it possible to uncover an implicit material order or structure in the process. This uncovering implied a development of a material process perspective. According to this perspective the complexity of the process is rooted in material-functional differentiation. This differentiation presupposes a structuring material (the skeleton of the building) that coordinates the other types of material. Each expert discipline´s competence is related to one or a set of materials. The architect, consulting engineer construction etc. have their competencies related to structuring material, and inherent in this; coordination competence. When dialogues between the disciplines concerning the coordination between them do not result in agreement, the disciplines with responsibility for the structuring material decide the interface issues. Based on these premises, this paper develops a self-organized expert-driven interdisciplinary decision-making system.

Keywords: collaboration, complexity, design, engineering, materiality

Procedia PDF Downloads 200
119 MIMO Radar-Based System for Structural Health Monitoring and Geophysical Applications

Authors: Davide D’Aria, Paolo Falcone, Luigi Maggi, Aldo Cero, Giovanni Amoroso

Abstract:

The paper presents a methodology for real-time structural health monitoring and geophysical applications. The key elements of the system are a high performance MIMO RADAR sensor, an optical camera and a dedicated set of software algorithms encompassing interferometry, tomography and photogrammetry. The MIMO Radar sensor proposed in this work, provides an extremely high sensitivity to displacements making the system able to react to tiny deformations (up to tens of microns) with a time scale which spans from milliseconds to hours. The MIMO feature of the system makes the system capable of providing a set of two-dimensional images of the observed scene, each mapped on the azimuth-range directions with noticeably resolution in both the dimensions and with an outstanding repetition rate. The back-scattered energy, which is distributed in the 3D space, is projected on a 2D plane, where each pixel has as coordinates the Line-Of-Sight distance and the cross-range azimuthal angle. At the same time, the high performing processing unit allows to sense the observed scene with remarkable refresh periods (up to milliseconds), thus opening the way for combined static and dynamic structural health monitoring. Thanks to the smart TX/RX antenna array layout, the MIMO data can be processed through a tomographic approach to reconstruct the three-dimensional map of the observed scene. This 3D point cloud is then accurately mapped on a 2D digital optical image through photogrammetric techniques, allowing for easy and straightforward interpretations of the measurements. Once the three-dimensional image is reconstructed, a 'repeat-pass' interferometric approach is exploited to provide the user of the system with high frequency three-dimensional motion/vibration estimation of each point of the reconstructed image. At this stage, the methodology leverages consolidated atmospheric correction algorithms to provide reliable displacement and vibration measurements.

Keywords: interferometry, MIMO RADAR, SAR, tomography

Procedia PDF Downloads 170
118 An Open-Source Guidance System for an Autonomous Planter Robot in Precision Agriculture

Authors: Nardjes Hamini, Mohamed Bachir Yagoubi

Abstract:

Precision agriculture has revolutionized farming by enabling farmers to monitor their crops remotely in real-time. By utilizing technologies such as sensors, farmers can detect the state of growth, hydration levels, and nutritional status and even identify diseases affecting their crops. With this information, farmers can make informed decisions regarding irrigation, fertilization, and pesticide application. Automated agricultural tasks, such as plowing, seeding, planting, and harvesting, are carried out by autonomous robots and have helped reduce costs and increase production. Despite the advantages of precision agriculture, its high cost makes it inaccessible to small and medium-sized farms. To address this issue, this paper presents an open-source guidance system for an autonomous planter robot. The system is composed of a Raspberry Pi-type nanocomputer equipped with Wi-Fi, a GPS module, a gyroscope, and a power supply module. The accompanying application allows users to enter and calibrate maps with at least four coordinates, enabling the localized contour of the parcel to be captured. The application comprises several modules, such as the mission entry module, which traces the planting trajectory and points, and the action plan entry module, which creates an ordered list of pre-established tasks such as loading, following the plan, returning to the garage, and entering sleep mode. A remote control module enables users to control the robot manually, visualize its location on the map, and use a real-time camera. Wi-Fi coverage is provided by an outdoor access point, covering a 2km circle. This open-source system offers a low-cost alternative for small and medium-sized farms, enabling them to benefit from the advantages of precision agriculture.

Keywords: autonomous robot, guidance system, low-cost, medium farms, open-source system, planter robot, precision agriculture, real-time monitoring, remote control, small farms

Procedia PDF Downloads 85
117 Geological Structure Identification in Semilir Formation: An Correlated Geological and Geophysical (Very Low Frequency) Data for Zonation Disaster with Current Density Parameters and Geological Surface Information

Authors: E. M. Rifqi Wilda Pradana, Bagus Bayu Prabowo, Meida Riski Pujiyati, Efraim Maykhel Hagana Ginting, Virgiawan Arya Hangga Reksa

Abstract:

The VLF (Very Low Frequency) method is an electromagnetic method that uses low frequencies between 10-30 KHz which results in a fairly deep penetration. In this study, the VLF method was used for zonation of disaster-prone areas by identifying geological structures in the form of faults. Data acquisition was carried out in Trimulyo Region, Jetis District, Bantul Regency, Special Region of Yogyakarta, Indonesia with 8 measurement paths. This study uses wave transmitters from Japan and Australia to obtain Tilt and Elipt values that can be used to create RAE (Rapat Arus Ekuivalen or Current Density) sections that can be used to identify areas that are easily crossed by electric current. This section will indicate the existence of a geological structure in the form of faults in the study area which is characterized by a high RAE value. In data processing of VLF method, it is obtained Tilt vs Elliptical graph and Moving Average (MA) Tilt vs Moving Average (MA) Elipt graph of each path that shows a fluctuating pattern and does not show any intersection at all. Data processing uses Matlab software and obtained areas with low RAE values that are 0%-6% which shows medium with low conductivity and high resistivity and can be interpreted as sandstone, claystone, and tuff lithology which is part of the Semilir Formation. Whereas a high RAE value of 10% -16% which shows a medium with high conductivity and low resistivity can be interpreted as a fault zone filled with fluid. The existence of the fault zone is strengthened by the discovery of a normal fault on the surface with strike N550W and dip 630E at coordinates X= 433256 and Y= 9127722 so that the activities of residents in the zone such as housing, mining activities and other activities can be avoided to reduce the risk of natural disasters.

Keywords: current density, faults, very low frequency, zonation

Procedia PDF Downloads 152
116 Automatic Furrow Detection for Precision Agriculture

Authors: Manpreet Kaur, Cheol-Hong Min

Abstract:

The increasing advancement in the robotics equipped with machine vision sensors applied to precision agriculture is a demanding solution for various problems in the agricultural farms. An important issue related with the machine vision system concerns crop row and weed detection. This paper proposes an automatic furrow detection system based on real-time processing for identifying crop rows in maize fields in the presence of weed. This vision system is designed to be installed on the farming vehicles, that is, submitted to gyros, vibration and other undesired movements. The images are captured under image perspective, being affected by above undesired effects. The goal is to identify crop rows for vehicle navigation which includes weed removal, where weeds are identified as plants outside the crop rows. The images quality is affected by different lighting conditions and gaps along the crop rows due to lack of germination and wrong plantation. The proposed image processing method consists of four different processes. First, image segmentation based on HSV (Hue, Saturation, Value) decision tree. The proposed algorithm used HSV color space to discriminate crops, weeds and soil. The region of interest is defined by filtering each of the HSV channels between maximum and minimum threshold values. Then the noises in the images were eliminated by the means of hybrid median filter. Further, mathematical morphological processes, i.e., erosion to remove smaller objects followed by dilation to gradually enlarge the boundaries of regions of foreground pixels was applied. It enhances the image contrast. To accurately detect the position of crop rows, the region of interest is defined by creating a binary mask. The edge detection and Hough transform were applied to detect lines represented in polar coordinates and furrow directions as accumulations on the angle axis in the Hough space. The experimental results show that the method is effective.

Keywords: furrow detection, morphological, HSV, Hough transform

Procedia PDF Downloads 215
115 Uncovering Geometrical Ideas in Weaving: An Ethnomathematical Approaches to School Pedagogy

Authors: Jaya Bishnu Pradhan

Abstract:

Weaving mat is one of the common activities performed in different community generally in the rural part of Nepal. Mat weavers’ practice mathematical ideas and concepts implicitly in order to perform their job. This study is intended to uncover the mathematical ideas embedded in mat weaving that can help teachers and students for the teaching and learning of school geometry. The ethnographic methodology was used to uncover and describe the beliefs, values, understanding, perceptions, and attitudes of the mat weavers towards mathematical ideas and concepts in the process of mat weaving. A total of 4 mat weavers, two mathematics teachers and 12 students from grade level 6-8, who are used to participate in weaving, were selected for the study. The whole process of the mat weaving was observed in a natural setting. The classroom observation and in-depth interview were taken with the participants with the help of interview guidelines and observation checklist. The data obtained from the field were categorized according to the themes regarding mathematical ideas embedded in the weaving activities, and its possibilities in teaching learning of school geometry. In this study, the mathematical activities in different sectors of their lives, their ways of understanding the natural phenomena, and their ethnomathematical knowledge were analyzed with the notions of pluralism. From the field data, it was found that the mat weaver exhibited sophisticated geometrical ideas in the process of construction of frame of mat. They used x-test method for confirming if the mat is rectangular. Mat also provides a good opportunity to understand the space geometry. A rectangular form of mat may be rolled up when it is not in use and can be converted to a cylindrical form, which usually can be used as larder so as to reserve food grains. From the observation of the situations, this cultural experience enables students to calculate volume, curved surface area and total surface area of the cylinder. The possibilities of incorporation of these cultural activities and its pedagogical use were observed in mathematics classroom. It is argued that it is possible to use mat weaving activities in the teaching and learning of school geometry.

Keywords: ethnography, ethnomathematics, geometry, mat weaving, school pedagogy

Procedia PDF Downloads 132
114 Carbon, Nitrogen Doped TiO2 Macro/Mesoporous Monoliths with High Visible Light Absorption for Photocatalytic Wastewater Treatment

Authors: Paolo Boscaro, Vasile Hulea, François Fajula, Francis Luck, Anne Galarneau

Abstract:

TiO2 based monoliths with hierarchical macropores and mesopores have been synthesized following a novel one pot sol-gel synthesis method. Taking advantage of spinodal separation that occurs between titanium isopropoxide and an acidic solution in presence of polyethylene oxide polymer, monoliths with homogeneous interconnected macropres of 3 μm in diameter and mesopores of ca. 6 nm (surface area 150 m2/g) are obtained. Furthermore, these monoliths present some carbon and nitrogen (as shown by XPS and elemental analysis), which considerably reduce titanium oxide energy gap and enable light to be absorbed up to 700 nm wavelength. XRD shows that anatase is the dominant phase with a small amount of brookite. Enhanced light absorption and high porosity of the monoliths are responsible for a remarkable photocatalytic activity. Wastewater treatment has been performed in closed reactor under sunlight using orange G dye as target molecule. Glass reactors guarantee that most of UV radiations (to almost 300 nm) of solar spectrum are excluded. TiO2 nanoparticles P25 (usually used in photocatalysis under UV) and un-doped TiO2 monoliths with similar porosity were used as comparison. C,N-doped TiO2 monolith allowed a complete colorant degradation in less than 1 hour, whereas 10 h are necessary for 40% colorant degradation with P25 and un-doped monolith. Experiment performed in the dark shows that only 3% of molecules have been adsorbed in the C,N-doped TiO2 monolith within 1 hour. The much higher efficiency of C,N-doped TiO2 monolith in comparison to P25 and un-doped monolith, proves that doping TiO2 is an essential issue and that nitrogen and carbon are effective dopants. Monoliths offer multiples advantages in respect to nanometric powders: sample can be easily removed from batch (no needs to filter or to centrifuge). Moreover flow reactions can be set up with cylindrical or flat monoliths by simple sheathing or by locking them with O-rings.

Keywords: C-N doped, sunlight photocatalytic activity, TiO2 monolith, visible absorbance

Procedia PDF Downloads 206
113 Electrochemistry Analysis of Oxygen Reduction with Microalgal on Microbial Fuel Cell

Authors: Azri Yamina Mounia, Zitouni Dalila, Aziza Majda, Tou Insaf, Sadi Meriem

Abstract:

To confront the fossil fuel crisis and the consequences of global warning, many efforts were devoted to develop alternative electricity generation and attracted numerous researchers, especially in the microbial fuel cell field, because it allows generating electric energy and degrading multiple organics compounds at the same time. However, one of the main constraints on power generation is the slow rate of oxygen reduction at the cathode electrode. This paper describes the potential of algal biomass (Chlorella vulgaris) as photosynthetic cathodes, eliminating the need for a mechanical air supply and the use of often expensive noble metal cathode catalysts, thus improving the sustainability and cost-effectiveness of the MFC system. During polarizations, MFC power density using algal biomass was 0.4mW/m², whereas the MFC with mechanic aeration showed a value of 0.2mW/m². Chlorella vulgaris was chosen due to its fastest growing. C. vulgaris grown in BG11 medium in sterilized Erlenmeyer flask. C. vulgaris was used as a bio‐cathode. Anaerobic activated sludge from the plant of Beni‐Messous WWTP(Algiers) was used in an anodic compartment. A dual‐chamber reactor MFC was used as a reactor. The reactor has been fabricated in the laboratory using plastic jars. The cylindrical and rectangular jars were used as the anode and cathode chambers, respectively. The volume of anode and cathode chambers was 0.8 and 2L, respectively. The two chambers were connected with a proton exchange membrane (PEM). The plain graphite plates (5 x 2cm) were used as electrodes for both anode and cathode. The cyclic voltammetry analysis of oxygen reduction revealed that the cathode potential was proportional to the amount of oxygen available in the cathode surface electrode. In the case of algal aeration, the peak reduction value of -2.18A/m² was two times higher than in mechanical aeration -1.85A/m². The electricity production reached 70 mA/m² and was stimulated immediately by the oxygen produced by algae up to the value of 20 mg/L.

Keywords: Chlorella vulgaris, cyclic voltammetry, microbial fuel cell, oxygen reduction

Procedia PDF Downloads 42
112 Geometric-Morphometric Analysis of Head, Pronotum and Elytra of Brontispa Longissima Gestro in Selected Provinces of the Philippines

Authors: Ana Marie T. Acevedo

Abstract:

This study was conducted to describe variations in the shapes of the elytra, head and pronotum of populations of adult Brontispa longissima (Gestro) infesting coconut farms from selected areas in the Philippines using Cluster Analysis, Relative Warp Analysis coupled with box plot and histograms and Procustean analysis. The data used in this study included shape residuals captured using the method of landmark based geometric morphometrics. Results: The results of the cluster analyses based on the average shapes of the elytra, head and pronotum shows no consistent pattern of similarity between and among five populations of B. longissima. When localized variations using Relative Warp Analysis coupled with box plot and histograms was done, the findings revealed that RWA was only successful in summarizing variations using two relative warps in the shape of the elytra where the first two warps contained 86.29% of the variations of the female and 85.48% for the males. For the head and pronotum, the first two relative warps captured less than 50% of the overall variation. Looking at the shapes of the frequency histograms, all were found to follow a unimodal distribution. The box plots reveal no consistent results. Among the three characters studied only the elytra were more robust and reliable compared to head and pronotum and then Tandag differ from the rest of the other over-lapping populations. On the other hand, Procustean Analyses revealed that elytra were more spread in the posterior region both in male and female. The coordinates in head and pronotum were evenly distributed. In the overlapping consensus configurations show that variability was exaggerated in the right side of the elytra and the posterior parts of the head and pronotum. Results also showed expansion among females while compression among males in elytra. For males, expansion are localized in the posterior part of the elytra, For the head, results showed asymmetry in the distribution of expansion areas where expansion are observed in the right postero-lateral aspect of the female head. Conclusion: The overall results may imply that they might belong to one operational taxonomic unit or ecotype or biotype. Geography might not be the factor responsible for the differentiation of the populations of B. longissima.

Keywords: cluster analysis, relative warp analysis, procrustean analysis, environmental parameters

Procedia PDF Downloads 300
111 A Microsurgery-Specific End-Effector Equipped with a Bipolar Surgical Tool and Haptic Feedback

Authors: Hamidreza Hoshyarmanesh, Sanju Lama, Garnette R. Sutherland

Abstract:

In tele-operative robotic surgery, an ideal haptic device should be equipped with an intuitive and smooth end-effector to cover the surgeon’s hand/wrist degrees of freedom (DOF) and translate the hand joint motions to the end-effector of the remote manipulator with low effort and high level of comfort. This research introduces the design and development of a microsurgery-specific end-effector, a gimbal mechanism possessing 4 passive and 1 active DOFs, equipped with a bipolar forceps and haptic feedback. The robust gimbal structure is comprised of three light-weight links/joint, pitch, yaw, and roll, each consisting of low-friction support and a 2-channel accurate optical position sensor. The third link, which provides the tool roll, was specifically designed to grip the tool prongs and accommodate a low mass geared actuator together with a miniaturized capstan-rope mechanism. The actuator is able to generate delicate torques, using a threaded cylindrical capstan, to emulate the sense of pinch/coagulation during conventional microsurgery. While the tool left prong is fixed to the rolling link, the right prong bears a miniaturized drum sector with a large diameter to expand the force scale and resolution. The drum transmits the actuator output torque to the right prong and generates haptic force feedback at the tool level. The tool is also equipped with a hall-effect sensor and magnet bar installed vis-à-vis on the inner side of the two prongs to measure the tooltip distance and provide an analogue signal to the control system. We believe that such a haptic end-effector could significantly increase the accuracy of telerobotic surgery and help avoid high forces that are known to cause bleeding/injury.

Keywords: end-effector, force generation, haptic interface, robotic surgery, surgical tool, tele-operation

Procedia PDF Downloads 100
110 Structural Design Optimization of Reinforced Thin-Walled Vessels under External Pressure Using Simulation and Machine Learning Classification Algorithm

Authors: Lydia Novozhilova, Vladimir Urazhdin

Abstract:

An optimization problem for reinforced thin-walled vessels under uniform external pressure is considered. The conventional approaches to optimization generally start with pre-defined geometric parameters of the vessels, and then employ analytic or numeric calculations and/or experimental testing to verify functionality, such as stability under the projected conditions. The proposed approach consists of two steps. First, the feasibility domain will be identified in the multidimensional parameter space. Every point in the feasibility domain defines a design satisfying both geometric and functional constraints. Second, an objective function defined in this domain is formulated and optimized. The broader applicability of the suggested methodology is maximized by implementing the Support Vector Machines (SVM) classification algorithm of machine learning for identification of the feasible design region. Training data for SVM classifier is obtained using the Simulation package of SOLIDWORKS®. Based on the data, the SVM algorithm produces a curvilinear boundary separating admissible and not admissible sets of design parameters with maximal margins. Then optimization of the vessel parameters in the feasibility domain is performed using the standard algorithms for the constrained optimization. As an example, optimization of a ring-stiffened closed cylindrical thin-walled vessel with semi-spherical caps under high external pressure is implemented. As a functional constraint, von Mises stress criterion is used but any other stability constraint admitting mathematical formulation can be incorporated into the proposed approach. Suggested methodology has a good potential for reducing design time for finding optimal parameters of thin-walled vessels under uniform external pressure.

Keywords: design parameters, feasibility domain, von Mises stress criterion, Support Vector Machine (SVM) classifier

Procedia PDF Downloads 304
109 Raising the Property Provisions of the Topographic Located near the Locality of Gircov, Romania

Authors: Carmen Georgeta Dumitrache

Abstract:

Measurements of terrestrial science aims to study the totality of operations and computing, which are carried out for the purposes of representation on the plan or map of the land surface in a specific cartographic projection and topographic scale. With the development of society, the metrics have evolved, and they land, being dependent on the achievement of a goal-bound utility of economic activity and of a scientific purpose related to determining the form and dimensions of the Earth. For measurements in the field, data processing and proper representation on drawings and maps of planimetry and landform of the land, using topographic and geodesic instruments, calculation and graphical reporting, which requires a knowledge of theoretical and practical concepts from different areas of science and technology. In order to use properly in practice, topographical and geodetic instruments designed to measure precise angles and distances are required knowledge of geometric optics, precision mechanics, the strength of materials, and more. For processing, the results from field measurements are necessary for calculation methods, based on notions of geometry, trigonometry, algebra, mathematical analysis and computer science. To be able to illustrate topographic measurements was established for the lifting of property located near the locality of Gircov, Romania. We determine this total surface of the plan (T30), parcel/plot, but also in the field trace the coordinates of a parcel. The purpose of the removal of the planimetric consisted of: the exact determination of the bounding surface; analytical calculation of the surface; comparing the surface determined with the one registered in the documents produced; drawing up a plan of location and delineation with closeness and distance contour, as well as highlighting the parcels comprising this property; drawing up a plan of location and delineation with closeness and distance contour for a parcel from Dave; in the field trace outline of plot points from the previous point. The ultimate goal of this work was to determine and represent the surface, but also to tear off a plot of the surface total, while respecting the first surface condition imposed by the Act of the beneficiary's property.

Keywords: topography, surface, coordinate, modeling

Procedia PDF Downloads 236
108 Deflagration and Detonation Simulation in Hydrogen-Air Mixtures

Authors: Belyayev P. E., Makeyeva I. R., Mastyuk D. A., Pigasov E. E.

Abstract:

Previously, the phrase ”hydrogen safety” was often used in terms of NPP safety. Due to the rise of interest to “green” and, particularly, hydrogen power engineering, the problem of hydrogen safety at industrial facilities has become ever more urgent. In Russia, the industrial production of hydrogen is meant to be performed by placing a chemical engineering plant near NPP, which supplies the plant with the necessary energy. In this approach, the production of hydrogen involves a wide range of combustible gases, such as methane, carbon monoxide, and hydrogen itself. Considering probable incidents, sudden combustible gas outburst into open space with further ignition is less dangerous by itself than ignition of the combustible mixture in the presence of many pipelines, reactor vessels, and any kind of fitting frames. Even ignition of 2100 cubic meters of the hydrogen-air mixture in open space gives velocity and pressure that are much lesser than velocity and pressure in Chapman-Jouguet condition and do not exceed 80 m/s and 6 kPa accordingly. However, the space blockage, the significant change of channel diameter on the way of flame propagation, and the presence of gas suspension lead to significant deflagration acceleration and to its transition into detonation or quasi-detonation. At the same time, process parameters acquired from the experiments at specific experimental facilities are not general, and their application to different facilities can only have a conventional and qualitative character. Yet, conducting deflagration and detonation experimental investigation for each specific industrial facility project in order to determine safe infrastructure unit placement does not seem feasible due to its high cost and hazard, while the conduction of numerical experiments is significantly cheaper and safer. Hence, the development of a numerical method that allows the description of reacting flows in domains with complex geometry seems promising. The base for this method is the modification of Kuropatenko method for calculating shock waves recently developed by authors, which allows using it in Eulerian coordinates. The current work contains the results of the development process. In addition, the comparison of numerical simulation results and experimental series with flame propagation in shock tubes with orifice plates is presented.

Keywords: CFD, reacting flow, DDT, gas explosion

Procedia PDF Downloads 66
107 Electroremediation of Saturated and Unsaturated Nickel-Contaminated Soils

Authors: Waddah Abdullah, Saleh Al-Sarem

Abstract:

Electrokinetic remediation was undoubtedly proven to be one of the most efficient techniques used to clean up soils contaminated with polar charged contaminants (such as heavy metals) and non-polar organic contaminants. It can be efficiently used to clean up low permeability mud, wastewater, electroplating wastes, sludge, and marine dredging. This study presented and discussed the results of electrokinetic remediation processes to clean up soils contaminated with nickel. Two types of electrokinetics cells were used: an open cell and an advanced cylindrical cell. Two types of soils were used for this investigation; the Azraq green clay which has very low permeability taken from the eastern part of Jordan (city of Azraq) and a sandy soil having, relatively, very high permeability. The clayey soil was spiked with 500 ppm of nickel, and the sandy soil was spiked with 1500 ppm of nickel. Fully saturated and partially saturated clayey soils were used for the clean-up process. Clayey soils were tested under a direct current of 80 mA and 50 mA to study the effect of the electrical current on the remediation process. Chelating agent (Na-EDTA), disodium ethylene diamine tetraacetatic acid, was used in both types of soils to enhance the electroremediation process. The effect of carbonates presence in the contaminated soils, also, was investigated by use of sodium carbonate and calcium carbonate. pH changes in the anode and the cathode compartments were controlled by use of buffer solutions. The results of the investigation showed that for the fully saturated clayey soil spiked with nickel had an average removal efficiency of 64%, and the average removal efficiency was 46% for the unsaturated clayey soil. For the sandy soil, the average removal efficiency of Nickel was 90%. Test results showed that presence of carbonates in the remediated soils retarded the clean-up process of nickel-contaminated soils (removal efficiency was reduced from 90% to 60%). EDTA enhanced decontamination of nickel contaminated clayey and sandy soils with carbonates was studied. The average removal efficiency increased from 60% (prior to using EDTA) to more than 90% after using EDTA.

Keywords: buffer solution, EDTA, electroremediation, nickel removal efficiency

Procedia PDF Downloads 163
106 Luminescent Properties of Sm³⁺-Doped Silica Nanophosphor Synthesized from Highly Active Amorphous Nanosilica Derived from Rice Husk

Authors: Celestine Mbakaan, Iorkyaa Ahemen, A. D. Onoja, A. N. Amah, Emmanuel Barki

Abstract:

Rice husk (RH) is a natural sheath that forms and covers the grain of rice. The husk composed of hard materials, including opaline silica and lignin. It separates from its grain during rice milling. RH also contains approximately 15 to 28 wt % of silica in hydrated amorphous form. Nanosilica was derived from the husk of different rice varieties after pre-treating the husk (RH) with HCl and calcination at 550°C. Nanosilica derived from the husk of Osi rice variety produced the highest silica yield, and further pretreatment with 0.8 M H₃PO₄ acid removed more mineral impurities. The silica obtained from this rice variety was selected as a host matrix for doping with Sm³⁺ ions. Rice husk silica (RH-SiO₂) doped with samarium (RH-SiO₂: xSm³⁺ (x=0.01, 0.05, and 0.1 molar ratios) nanophosphors were synthesized via the sol-gel method. The structural analysis by X-ray diffraction analysis (XRD) reveals amorphous structure while the surface morphology, as revealed by SEM and TEM, indicates agglomerates of nano-sized spherical particles with an average particle size measuring 21 nm. The nanophosphor has a large surface area measuring 198.0 m²/g, and Fourier transform infrared spectroscopy (FT-IR) shows only a single absorption band which is strong and broad with a valley at 1063 cm⁻¹. Diffuse reflectance spectroscopy (DRS) shows strong absorptions at 319, 345, 362, 375, 401, and 474 nm, which can be exclusively assigned to the 6H5/2→4F11/2, 3H7/2, 4F9/2, 4D5/2, 4K11/2, and 4M15/2 + 4I11/2, transitions of Sm³⁺ respectively. The photoluminescence excitation spectra show that near UV and blue LEDs can effectively be used as excitation sources to produce red-orange and yellow-orange emission from Sm³⁺ ion-doped RH-SiO₂ nanophosphors. The photoluminescence (PL) of the nanophosphors gives three main lines; 568, 605, and 652 nm, which are attributed to the intra-4f shell transitions from the excited level to ground levels, respectively under excitation wavelengths of 365 and 400 nm. The result, as confirmed from the 1931 CIE coordinates diagram, indicates the emission of red-orange light by RH-SiO₂: xSm³⁺ (x=0.01 and 0.1 molar ratios) and yellow-orange light from RH-SiO₂: 0.05 Sm³⁺. Finally, the result shows that RH-SiO₂ doped with samarium (Sm³⁺) ions can be applicable in display applications.

Keywords: luminescence, nanosilica, nanophosphors, Sm³⁺

Procedia PDF Downloads 116
105 Case-Based Reasoning Application to Predict Geological Features at Site C Dam Construction Project

Authors: Shahnam Behnam Malekzadeh, Ian Kerr, Tyson Kaempffer, Teague Harper, Andrew Watson

Abstract:

The Site C Hydroelectric dam is currently being constructed in north-eastern British Columbia on sub-horizontal sedimentary strata that dip approximately 15 meters from one bank of the Peace River to the other. More than 615 pressure sensors (Vibrating Wire Piezometers) have been installed on bedding planes (BPs) since construction began, with over 80 more planned before project completion. These pressure measurements are essential to monitor the stability of the rock foundation during and after construction and for dam safety purposes. BPs are identified by their clay gouge infilling, which varies in thickness from less than 1 to 20 mm and can be challenging to identify as the core drilling process often disturbs or washes away the gouge material. Without the use of depth predictions from nearby boreholes, stratigraphic markers, and downhole geophysical data, it is difficult to confidently identify BP targets for the sensors. In this paper, a Case-Based Reasoning (CBR) method was used to develop an empirical model called the Bedding Plane Elevation Prediction (BPEP) to help geologists and geotechnical engineers to predict geological features and bedding planes at new locations in a fast and accurate manner. To develop CBR, a database was developed based on 64 pressure sensors already installed on key bedding planes BP25, BP28, and BP31 on the Right Bank, including bedding plane elevations and coordinates. Thirteen (20%) of the most recent cases were selected to validate and evaluate the accuracy of the developed model, while the similarity was defined as the distance between previous cases and recent cases to predict the depth of significant BPs. The average difference between actual BP elevations and predicted elevations for above BPs was ±55cm, while the actual results showed that 69% of predicted elevations were within ±79 cm of actual BP elevations while 100% of predicted elevations for new cases were within ±99cm range. Eventually, the actual results will be used to develop the database and improve BPEP to perform as a learning machine to predict more accurate BP elevations for future sensor installations.

Keywords: case-based reasoning, geological feature, geology, piezometer, pressure sensor, core logging, dam construction

Procedia PDF Downloads 58
104 Impact of Land-Use and Climate Change on the Population Structure and Distribution Range of the Rare and Endangered Dracaena ombet and Dobera glabra in Northern Ethiopia

Authors: Emiru Birhane, Tesfay Gidey, Haftu Abrha, Abrha Brhan, Amanuel Zenebe, Girmay Gebresamuel, Florent Noulèkoun

Abstract:

Dracaena ombet and Dobera glabra are two of the most rare and endangered tree species in dryland areas. Unfortunately, their sustainability is being compromised by different anthropogenic and natural factors. However, the impacts of ongoing land use and climate change on the population structure and distribution of the species are less explored. This study was carried out in the grazing lands and hillside areas of the Desa'a dry Afromontane forest, northern Ethiopia, to characterize the population structure of the species and predict the impact of climate change on their potential distributions. In each land-use type, abundance, diameter at breast height, and height of the trees were collected using 70 sampling plots distributed over seven transects spaced one km apart. The geographic coordinates of each individual tree were also recorded. The results showed that the species populations were characterized by low abundance and unstable population structure. The latter was evinced by a lack of seedlings and mature trees. The study also revealed that the total abundance and dendrometric traits of the trees were significantly different between the two land uses. The hillside areas had a denser abundance of bigger and taller trees than the grazing lands. Climate change predictions using the MaxEnt model highlighted that future temperature increases coupled with reduced precipitation would lead to significant reductions in the suitable habitats of the species in northern Ethiopia. The species' suitable habitats were predicted to decline by 48–83% for D. ombet and 35–87% for D. glabra. Hence, to sustain the species populations, different strategies should be adopted, namely the introduction of alternative livelihoods (e.g., gathering NTFP) to reduce the overexploitation of the species for subsistence income and the protection of the current habitats that will remain suitable in the future using community-based exclosures. Additionally, the preservation of the species' seeds in gene banks is crucial to ensure their long-term conservation.

Keywords: grazing lands, hillside areas, land-use change, MaxEnt, range limitation, rare and endangered tree species

Procedia PDF Downloads 61
103 Performance Management in Public Administration on Chile and Portugal

Authors: Lilian Bambirra De Assis, Patricia Albuquerque Gomes, Kamila Pagel De Oliveira, Deborah Oliveira Santos, Marcelo Esteves Chaves Campos

Abstract:

This paper aimed to analyze how performance management occurs in the context of the modernization of the federal public sector in Chile and Portugal. To do so, the study was based on a theoretical framework that covers the modernization of public administration to performance management, passing on people management. The work consisted of qualitative-descriptive research in which 16 semi-structured interviews were applied in the countries of study and documents and legislation were used referring to the subject. Performance management, as well as other people management subsystems, is criticized for using private sector management tools, based on a results-driven logic. From this point of view, it is understood that certain practices of the private sector, regarding the measurement of performance, can not be simply inserted in the scenario of the public administration. Beyond this criticism, performance management can contribute to the achievement of the strategic objectives of the countries and its focus is upward, a trend that can be verified through the manuals produced; by the interest of consultants and professional organizations, both public and private; and OECD (Organization for Economic Cooperation and Development) evaluations. In Portugal, public administration reform was implemented during the Constitutional Government (2005-2009) and had as its objective the restructuring of human resources management, with an emphasis on its integration with budget management, which is an inclination of the OECD, while in Chile HRM (Human Resource Management) practices are directed to ministries to a lesser extent than the OECD average. The central human resources management sector, for the most part, coordinates policy but is also responsible for other issues, including payment and classification systems. Chile makes less use of strategic Human Resource Management practices than the average of OECD countries, and its prominence lies in the decentralization of public bodies, which may grant autonomy, but fragments the implementation of policies and practices in that country since they are not adopted by all organs. Through the analysis, it was possible to identify that Chile and Portugal have practices and personnel management policies that make reference to performance management, which is similar to other OECD countries. The study countries also have limitations to implement performance management and the results indicate that there are still processes to be perfected, such as performance appraisal and compensation.

Keywords: management of people in the public sector, modernization of public administration, performance management in the public sector, HRM, OECD

Procedia PDF Downloads 131
102 An Experimental Investigation on Explosive Phase Change of Liquefied Propane During a Bleve Event

Authors: Frederic Heymes, Michael Albrecht Birk, Roland Eyssette

Abstract:

Boiling Liquid Expanding Vapor Explosion (BLEVE) has been a well know industrial accident for over 6 decades now, and yet it is still poorly predicted and avoided. BLEVE is created when a vessel containing a pressure liquefied gas (PLG) is engulfed in a fire until the tank rupture. At this time, the pressure drops suddenly, leading the liquid to be in a superheated state. The vapor expansion and the violent boiling of the liquid produce several shock waves. This works aimed at understanding the contribution of vapor ad liquid phases in the overpressure generation in the near field. An experimental work was undertaken at a small scale to reproduce realistic BLEVE explosions. Key parameters were controlled through the experiments, such as failure pressure, fluid mass in the vessel, and weakened length of the vessel. Thirty-four propane BLEVEs were then performed to collect data on scenarios similar to common industrial cases. The aerial overpressure was recorded all around the vessel, and also the internal pressure changed during the explosion and ground loading under the vessel. Several high-speed cameras were used to see the vessel explosion and the blast creation by shadowgraph. Results highlight how the pressure field is anisotropic around the cylindrical vessel and highlights a strong dependency between vapor content and maximum overpressure from the lead shock. The time chronology of events reveals that the vapor phase is the main contributor to the aerial overpressure peak. A prediction model is built upon this assumption. Secondary flow patterns are observed after the lead. A theory on how the second shock observed in experiments forms is exposed thanks to an analogy with numerical simulation. The phase change dynamics are also discussed thanks to a window in the vessel. Ground loading measurements are finally presented and discussed to give insight into the order of magnitude of the force.

Keywords: phase change, superheated state, explosion, vapor expansion, blast, shock wave, pressure liquefied gas

Procedia PDF Downloads 53