Search results for: crowd detecting and tracking
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1657

Search results for: crowd detecting and tracking

1207 Correlation between Speech Emotion Recognition Deep Learning Models and Noises

Authors: Leah Lee

Abstract:

This paper examines the correlation between deep learning models and emotions with noises to see whether or not noises mask emotions. The deep learning models used are plain convolutional neural networks (CNN), auto-encoder, long short-term memory (LSTM), and Visual Geometry Group-16 (VGG-16). Emotion datasets used are Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D), Toronto Emotional Speech Set (TESS), and Surrey Audio-Visual Expressed Emotion (SAVEE). To make it four times bigger, audio set files, stretch, and pitch augmentations are utilized. From the augmented datasets, five different features are extracted for inputs of the models. There are eight different emotions to be classified. Noise variations are white noise, dog barking, and cough sounds. The variation in the signal-to-noise ratio (SNR) is 0, 20, and 40. In summation, per a deep learning model, nine different sets with noise and SNR variations and just augmented audio files without any noises will be used in the experiment. To compare the results of the deep learning models, the accuracy and receiver operating characteristic (ROC) are checked.

Keywords: auto-encoder, convolutional neural networks, long short-term memory, speech emotion recognition, visual geometry group-16

Procedia PDF Downloads 53
1206 Improving Subjective Bias Detection Using Bidirectional Encoder Representations from Transformers and Bidirectional Long Short-Term Memory

Authors: Ebipatei Victoria Tunyan, T. A. Cao, Cheol Young Ock

Abstract:

Detecting subjectively biased statements is a vital task. This is because this kind of bias, when present in the text or other forms of information dissemination media such as news, social media, scientific texts, and encyclopedias, can weaken trust in the information and stir conflicts amongst consumers. Subjective bias detection is also critical for many Natural Language Processing (NLP) tasks like sentiment analysis, opinion identification, and bias neutralization. Having a system that can adequately detect subjectivity in text will boost research in the above-mentioned areas significantly. It can also come in handy for platforms like Wikipedia, where the use of neutral language is of importance. The goal of this work is to identify the subjectively biased language in text on a sentence level. With machine learning, we can solve complex AI problems, making it a good fit for the problem of subjective bias detection. A key step in this approach is to train a classifier based on BERT (Bidirectional Encoder Representations from Transformers) as upstream model. BERT by itself can be used as a classifier; however, in this study, we use BERT as data preprocessor as well as an embedding generator for a Bi-LSTM (Bidirectional Long Short-Term Memory) network incorporated with attention mechanism. This approach produces a deeper and better classifier. We evaluate the effectiveness of our model using the Wiki Neutrality Corpus (WNC), which was compiled from Wikipedia edits that removed various biased instances from sentences as a benchmark dataset, with which we also compare our model to existing approaches. Experimental analysis indicates an improved performance, as our model achieved state-of-the-art accuracy in detecting subjective bias. This study focuses on the English language, but the model can be fine-tuned to accommodate other languages.

Keywords: subjective bias detection, machine learning, BERT–BiLSTM–Attention, text classification, natural language processing

Procedia PDF Downloads 108
1205 Modified 'Perturb and Observe' with 'Incremental Conductance' Algorithm for Maximum Power Point Tracking

Authors: H. Fuad Usman, M. Rafay Khan Sial, Shahzaib Hamid

Abstract:

The trend of renewable energy resources has been amplified due to global warming and other environmental related complications in the 21st century. Recent research has very much emphasized on the generation of electrical power through renewable resources like solar, wind, hydro, geothermal, etc. The use of the photovoltaic cell has become very public as it is very useful for the domestic and commercial purpose overall the world. Although a single cell gives the low voltage output but connecting a number of cells in a series formed a complete module of the photovoltaic cells, it is becoming a financial investment as the use of it fetching popular. This also reduced the prices of the photovoltaic cell which gives the customers a confident of using this source for their electrical use. Photovoltaic cell gives the MPPT at single specific point of operation at a given temperature and level of solar intensity received at a given surface whereas the focal point changes over a large range depending upon the manufacturing factor, temperature conditions, intensity for insolation, instantaneous conditions for shading and aging factor for the photovoltaic cells. Two improved algorithms have been proposed in this article for the MPPT. The widely used algorithms are the ‘Incremental Conductance’ and ‘Perturb and Observe’ algorithms. To extract the maximum power from the source to the load, the duty cycle of the convertor will be effectively controlled. After assessing the previous techniques, this paper presents the improved and reformed idea of harvesting maximum power point from the photovoltaic cells. A thoroughly go through of the previous ideas has been observed before constructing the improvement in the traditional technique of MPP. Each technique has its own importance and boundaries at various weather conditions. An improved technique of implementing the use of both ‘Perturb and Observe’ and ‘Incremental Conductance’ is introduced.

Keywords: duty cycle, MPPT (Maximum Power Point Tracking), perturb and observe (P&O), photovoltaic module

Procedia PDF Downloads 157
1204 Characterization of Anisotropic Deformation in Sandstones Using Micro-Computed Tomography Technique

Authors: Seyed Mehdi Seyed Alizadeh, Christoph Arns, Shane Latham

Abstract:

Geomechanical characterization of rocks in detail and its possible implications on flow properties is an important aspect of reservoir characterization workflow. In order to gain more understanding of the microstructure evolution of reservoir rocks under stress a series of axisymmetric triaxial tests were performed on two different analogue rock samples. In-situ compression tests were coupled with high resolution micro-Computed Tomography to elucidate the changes in the pore/grain network of the rocks under pressurized conditions. Two outcrop sandstones were chosen in the current study representing a various cementation status of well-consolidated and weakly-consolidated granular system respectively. High resolution images were acquired while the rocks deformed in a purpose-built compression cell. A detailed analysis of the 3D images in each series of step-wise compression tests (up to the failure point) was conducted which includes the registration of the deformed specimen images with the reference pristine dry rock image. Digital Image Correlation (DIC) technique based on the intensity of the registered 3D subsets and particle tracking are utilized to map the displacement fields in each sample. The results suggest the complex architecture of the localized shear zone in well-cemented Bentheimer sandstone whereas for the weakly-consolidated Castlegate sandstone no discernible shear band could be observed even after macroscopic failure. Post-mortem imaging a sister plug from the friable rock upon undergoing continuous compression reveals signs of a shear band pattern. This suggests that for friable sandstones at small scales loading mode may affect the pattern of deformation. Prior to mechanical failure, the continuum digital image correlation approach can reasonably capture the kinematics of deformation. As failure occurs, however, discrete image correlation (i.e. particle tracking) reveals superiority in both tracking the grains as well as quantifying their kinematics (in terms of translations/rotations) with respect to any stage of compaction. An attempt was made to quantify the displacement field in compression using continuum Digital Image Correlation which is based on the reference and secondary image intensity correlation. Such approach has only been previously applied to unconsolidated granular systems under pressure. We are applying this technique to sandstones with various degrees of consolidation. Such element of novelty will set the results of this study apart from previous attempts to characterize the deformation pattern in consolidated sands.

Keywords: deformation mechanism, displacement field, shear behavior, triaxial compression, X-ray micro-CT

Procedia PDF Downloads 170
1203 A Robust Visual Simultaneous Localization and Mapping for Indoor Dynamic Environment

Authors: Xiang Zhang, Daohong Yang, Ziyuan Wu, Lei Li, Wanting Zhou

Abstract:

Visual Simultaneous Localization and Mapping (VSLAM) uses cameras to collect information in unknown environments to realize simultaneous localization and environment map construction, which has a wide range of applications in autonomous driving, virtual reality and other related fields. At present, the related research achievements about VSLAM can maintain high accuracy in static environment. But in dynamic environment, due to the presence of moving objects in the scene, the movement of these objects will reduce the stability of VSLAM system, resulting in inaccurate localization and mapping, or even failure. In this paper, a robust VSLAM method was proposed to effectively deal with the problem in dynamic environment. We proposed a dynamic region removal scheme based on semantic segmentation neural networks and geometric constraints. Firstly, semantic extraction neural network is used to extract prior active motion region, prior static region and prior passive motion region in the environment. Then, the light weight frame tracking module initializes the transform pose between the previous frame and the current frame on the prior static region. A motion consistency detection module based on multi-view geometry and scene flow is used to divide the environment into static region and dynamic region. Thus, the dynamic object region was successfully eliminated. Finally, only the static region is used for tracking thread. Our research is based on the ORBSLAM3 system, which is one of the most effective VSLAM systems available. We evaluated our method on the TUM RGB-D benchmark and the results demonstrate that the proposed VSLAM method improves the accuracy of the original ORBSLAM3 by 70%˜98.5% under high dynamic environment.

Keywords: dynamic scene, dynamic visual SLAM, semantic segmentation, scene flow, VSLAM

Procedia PDF Downloads 87
1202 A Biophysical Study of the Dynamic Properties of Glucagon Granules in α Cells by Imaging-Derived Mean Square Displacement and Single Particle Tracking Approaches

Authors: Samuele Ghignoli, Valentina de Lorenzi, Gianmarco Ferri, Stefano Luin, Francesco Cardarelli

Abstract:

Insulin and glucagon are the two essential hormones for maintaining proper blood glucose homeostasis, which is disrupted in Diabetes. A constantly growing research interest has been focused on the study of the subcellular structures involved in hormone secretion, namely insulin- and glucagon-containing granules, and on the mechanisms regulating their behaviour. Yet, while several successful attempts were reported describing the dynamic properties of insulin granules, little is known about their counterparts in α cells, the glucagon-containing granules. To fill this gap, we used αTC1 clone 9 cells as a model of α cells and ZIGIR as a fluorescent Zinc chelator for granule labelling. We started by using spatiotemporal fluorescence correlation spectroscopy in the form of imaging-derived mean square displacement (iMSD) analysis. This afforded quantitative information on the average dynamical and structural properties of glucagon granules having insulin granules as a benchmark. Interestingly, the iMSD sensitivity to average granule size allowed us to confirm that glucagon granules are smaller than insulin ones (~1.4 folds, further validated by STORM imaging). To investigate possible heterogeneities in granule dynamic properties, we moved from correlation spectroscopy to single particle tracking (SPT). We developed a MATLAB script to localize and track single granules with high spatial resolution. This enabled us to classify the glucagon granules, based on their dynamic properties, as ‘blocked’ (i.e., trajectories corresponding to immobile granules), ‘confined/diffusive’ (i.e., trajectories corresponding to slowly moving granules in a defined region of the cell), or ‘drifted’ (i.e., trajectories corresponding to fast-moving granules). In cell-culturing control conditions, results show this average distribution: 32.9 ± 9.3% blocked, 59.6 ± 9.3% conf/diff, and 7.4 ± 3.2% drifted. This benchmarking provided us with a foundation for investigating selected experimental conditions of interest, such as the glucagon-granule relationship with the cytoskeleton. For instance, if Nocodazole (10 μM) is used for microtubule depolymerization, the percentage of drifted motion collapses to 3.5 ± 1.7% while immobile granules increase to 56.0 ± 10.7% (remaining 40.4 ± 10.2% of conf/diff). This result confirms the clear link between glucagon-granule motion and cytoskeleton structures, a first step towards understanding the intracellular behaviour of this subcellular compartment. The information collected might now serve to support future investigations on glucagon granules in physiology and disease. Acknowledgment: This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 866127, project CAPTUR3D).

Keywords: glucagon granules, single particle tracking, correlation spectroscopy, ZIGIR

Procedia PDF Downloads 77
1201 Comparative Ante-Mortem Studies through Electrochemical Impedance Spectroscopy, Differential Voltage Analysis and Incremental Capacity Analysis on Lithium Ion Batteries

Authors: Ana Maria Igual-Munoz, Juan Gilabert, Marta Garcia, Alfredo Quijano-Lopez

Abstract:

Nowadays, several lithium-ion battery technologies are being commercialized. These chemistries present different properties that make them more suitable for different purposes. However, comparative studies showing the advantages and disadvantages of different chemistries are incomplete or scarce. Different non-destructive techniques are currently being employed to detect how ageing affects the active materials of lithium-ion batteries (LIBs). For instance, electrochemical impedance spectroscopy (EIS) is one of the most employed ones. This technique allows the user to identify the variations on the different resistances present in LIBs. On the other hand, differential voltage analysis (DVA) has shown to be a powerful technique to detect the processes affecting the different capacities present in LIBs. This technique shows variations in the state of health (SOH) and the capacities for one or both electrodes depending on their chemistry. Finally, incremental capacity analysis (ICA) is a widely known technique for being capable of detecting phase equilibria. It reminds of the commonly used cyclic voltamperometry, as it allows detecting some reactions taking place in the electrodes. In these studies, a set of ageing procedures have been applied to commercial batteries of different chemistries (NCA, NMC, and LFP). Afterwards, results of EIS, DVA, and ICA have been used to correlate them with the processes affecting each cell. Ciclability, overpotential, and temperature cycling studies envisage how the charge-discharge rates, cut-off voltage, and operation temperatures affect each chemistry. These studies will serve battery pack manufacturers, as for common battery users, as they will determine the different conditions affecting cells for each of the chemistry. Taking this into account, each cell could be adjusted to the final purpose of the battery application. Last but not least, all the degradation parameters observed are focused to be integrated into degradation models in the future. This fact will allow the implementation of the widely known digital twins to the degradation in LIBs.

Keywords: lithium ion batteries, non-destructive analysis, different chemistries, ante-mortem studies, ICA, DVA, EIS

Procedia PDF Downloads 111
1200 Getting It Right Before Implementation: Using Simulation to Optimize Recommendations and Interventions After Adverse Event Review

Authors: Melissa Langevin, Natalie Ward, Colleen Fitzgibbons, Christa Ramsey, Melanie Hogue, Anna Theresa Lobos

Abstract:

Description: Root Cause Analysis (RCA) is used by health care teams to examine adverse events (AEs) to identify causes which then leads to recommendations for prevention Despite widespread use, RCA has limitations. Best practices have not been established for implementing recommendations or tracking the impact of interventions after AEs. During phase 1 of this study, we used simulation to analyze two fictionalized AEs that occurred in hospitalized paediatric patients to identify and understand how the errors occurred and generated recommendations to mitigate and prevent recurrences. Scenario A involved an error of commission (inpatient drug error), and Scenario B involved detecting an error that already occurred (critical care drug infusion error). Recommendations generated were: improved drug labeling, specialized drug kids, alert signs and clinical checklists. Aim: Use simulation to optimize interventions recommended post critical event analysis prior to implementation in the clinical environment. Methods: Suggested interventions from Phase 1 were designed and tested through scenario simulation in the clinical environment (medicine ward or pediatric intensive care unit). Each scenario was simulated 8 times. Recommendations were tested using different, voluntary teams and each scenario was debriefed to understand why the error was repeated despite interventions and how interventions could be improved. Interventions were modified with subsequent simulations until recommendations were felt to have an optimal effect and data saturation was achieved. Along with concrete suggestions for design and process change, qualitative data pertaining to employee communication and hospital standard work was collected and analyzed. Results: Each scenario had a total of three interventions to test. In, scenario 1, the error was reproduced in the initial two iterations and mitigated following key intervention changes. In scenario 2, the error was identified immediately in all cases where the intervention checklist was utilized properly. Independently of intervention changes and improvements, the simulation was beneficial to identify which of these should be prioritized for implementation and highlighted that even the potential solutions most frequently suggested by participants did not always translate into error prevention in the clinical environment. Conclusion: We conclude that interventions that help to change process (epinephrine kit or mandatory checklist) were more successful at preventing errors than passive interventions (signage, change in memory aids). Given that even the most successful interventions needed modifications and subsequent re-testing, simulation is key to optimizing suggested changes. Simulation is a safe, practice changing modality for institutions to use prior to implementing recommendations from RCA following AE reviews.

Keywords: adverse events, patient safety, pediatrics, root cause analysis, simulation

Procedia PDF Downloads 129
1199 Implicit Responses for Assessment of Autism Based on Natural Behaviors Obtained Inside Immersive Virtual Environment

Authors: E. Olmos-Raya, A. Cascales Martínez, N. Minto de Sousa, M. Alcañiz Raya

Abstract:

The late detection and subjectivity of the assessment of Autism Spectrum Disorder (ASD) imposed a difficulty for the children’s clinical and familiar environment. The results showed in this paper, are part of a research project about the assessment and training of social skills in children with ASD, whose overall goal is the use of virtual environments together with physiological measures in order to find a new model of objective ASD assessment based on implicit brain processes measures. In particular, this work tries to contribute by studying the differences and changes in the Skin Conductance Response (SCR) and Eye Tracking (ET) between a typical development group (TD group) and an ASD group (ASD group) after several combined stimuli using a low cost Immersive Virtual Environment (IVE). Subjects were exposed to a virtual environment that showed natural scenes that stimulated visual, auditory and olfactory perceptual system. By exposing them to the IVE, subjects showed natural behaviors while measuring SCR and ET. This study compared measures of subjects diagnosed with ASD (N = 18) with a control group of subjects with typical development (N=10) when exposed to three different conditions: only visual (V), visual and auditory (VA) and visual, auditory and olfactory (VAO) stimulation. Correlations between SCR and ET measures were also correlated with the Autism Diagnostic Observation Schedule (ADOS) test. SCR measures showed significant differences among the experimental condition between groups. The ASD group presented higher level of SCR while we did not find significant differences between groups regarding DF. We found high significant correlations among all the experimental conditions in SCR measures and the subscale of ADOS test of imagination and symbolic thinking. Regarding the correlation between ET measures and ADOS test, the results showed significant relationship between VA condition and communication scores.

Keywords: autism, electrodermal activity, eye tracking, immersive virtual environment, virtual reality

Procedia PDF Downloads 124
1198 Tracking of Intramuscular Stem Cells by Magnetic Resonance Diffusion Weighted Imaging

Authors: Balakrishna Shetty

Abstract:

Introduction: Stem Cell Imaging is a challenging field since the advent of Stem Cell treatment in humans. Series of research on tagging and tracking the stem cells has not been very effective. The present study is an effort by the authors to track the stem cells injected into calf muscles by Magnetic Resonance Diffusion Weighted Imaging. Materials and methods: Stem Cell injection deep into the calf muscles of patients with peripheral vascular disease is one of the recent treatment modalities followed in our institution. 5 patients who underwent deep intramuscular injection of stem cells as treatment were included for this study. Pre and two hours Post injection MRI of bilateral calf regions was done using 1.5 T Philips Achieva, 16 channel system using 16 channel torso coils. Axial STIR, Axial Diffusion weighted images with b=0 and b=1000 values with back ground suppression (DWIBS sequence of Philips MR Imaging Systems) were obtained at 5 mm interval covering the entire calf. The invert images were obtained for better visualization. 120ml of autologous bone marrow derived stem cells were processed and enriched under c-GMP conditions and reduced to 40ml solution containing mixture of above stem cells. Approximately 40 to 50 injections, each containing 0.75ml of processed stem cells, was injected with marked grids over the calf region. Around 40 injections, each of 1ml normal saline, is injected into contralateral leg as control. Results: Significant Diffusion hyper intensity is noted at the site of injected stem cells. No hyper intensity noted before the injection and also in the control side where saline was injected conclusion: This is one of the earliest studies in literature showing diffusion hyper intensity in intramuscularly injected stem cells. The advantages and deficiencies in this study will be discussed during the presentation.

Keywords: stem cells, imaging, DWI, peripheral vascular disease

Procedia PDF Downloads 50
1197 Exploration of RFID in Healthcare: A Data Mining Approach

Authors: Shilpa Balan

Abstract:

Radio Frequency Identification, also popularly known as RFID is used to automatically identify and track tags attached to items. This study focuses on the application of RFID in healthcare. The adoption of RFID in healthcare is a crucial technology to patient safety and inventory management. Data from RFID tags are used to identify the locations of patients and inventory in real time. Medical errors are thought to be a prominent cause of loss of life and injury. The major advantage of RFID application in healthcare industry is the reduction of medical errors. The healthcare industry has generated huge amounts of data. By discovering patterns and trends within the data, big data analytics can help improve patient care and lower healthcare costs. The number of increasing research publications leading to innovations in RFID applications shows the importance of this technology. This study explores the current state of research of RFID in healthcare using a text mining approach. No study has been performed yet on examining the current state of RFID research in healthcare using a data mining approach. In this study, related articles were collected on RFID from healthcare journal and news articles. Articles collected were from the year 2000 to 2015. Significant keywords on the topic of focus are identified and analyzed using open source data analytics software such as Rapid Miner. These analytical tools help extract pertinent information from massive volumes of data. It is seen that the main benefits of adopting RFID technology in healthcare include tracking medicines and equipment, upholding patient safety, and security improvement. The real-time tracking features of RFID allows for enhanced supply chain management. By productively using big data, healthcare organizations can gain significant benefits. Big data analytics in healthcare enables improved decisions by extracting insights from large volumes of data.

Keywords: RFID, data mining, data analysis, healthcare

Procedia PDF Downloads 209
1196 Optimization of Marine Waste Collection Considering Dynamic Transport and Ship’s Wake Impact

Authors: Guillaume Richard, Sarra Zaied

Abstract:

Marine waste quantities increase more and more, 5 million tons of plastic waste enter the ocean every year. Their spatiotemporal distribution is never homogeneous and depends mainly on the hydrodynamic characteristics of the environment, as well as the size and location of the waste. As part of optimizing collect of marine plastic wastes, it is important to measure and monitor their evolution over time. In this context, diverse studies have been dedicated to describing waste behavior in order to identify its accumulation in ocean areas. None of the existing tools which track objects at sea had the objective of tracking down a slick of waste. Moreover, the applications related to marine waste are in the minority compared to rescue applications or oil slicks tracking applications. These approaches are able to accurately simulate an object's behavior over time but not during the collection mission of a waste sheet. This paper presents numerical modeling of a boat’s wake impact on the floating marine waste behavior during a collection mission. The aim is to predict the trajectory of a marine waste slick to optimize its collection using meteorological data of ocean currents, wind, and possibly waves. We have made the choice to use Ocean Parcels which is a Python library suitable for trajectoring particles in the ocean. The modeling results showed the important role of advection and diffusion processes in the spatiotemporal distribution of floating plastic litter. The performance of the proposed method was evaluated on real data collected from the Copernicus Marine Environment Monitoring Service (CMEMS). The results of the evaluation in Cape of Good Hope (South Africa) prove that the proposed approach can effectively predict the position and velocity of marine litter during collection, which allowed for optimizing time and more than $90\%$ of the amount of collected waste.

Keywords: marine litter, advection-diffusion equation, sea current, numerical model

Procedia PDF Downloads 70
1195 Enabling and Ageing-Friendly Neighbourhoods: An Eye-Tracking Study of Multi-Sensory Experience of Senior Citizens in Singapore

Authors: Zdravko Trivic, Kelvin E. Y. Low, Darko Radovic, Raymond Lucas

Abstract:

Our understanding and experience of the built environment are primarily shaped by multi‐sensory, emotional and symbolic modes of exchange with spaces. Associated sensory and cognitive declines that come with ageing substantially affect the overall quality of life of the elderly citizens and the ways they perceive and use urban environment. Reduced mobility and increased risk of falls, problems with spatial orientation and communication, lower confidence and independence levels, decreased willingness to go out and social withdrawal are some of the major consequences of sensory declines that challenge almost all segments of the seniors’ everyday living. However, contemporary urban environments are often either sensory overwhelming or depleting, resulting in physical, mental and emotional stress. Moreover, the design and planning of housing neighbourhoods hardly go beyond the passive 'do-no-harm' and universal design principles, and the limited provision of often non-integrated eldercare and inter-generational facilities. This paper explores and discusses the largely neglected relationships between the 'hard' and 'soft' aspects of housing neighbourhoods and urban experience, focusing on seniors’ perception and multi-sensory experience as vehicles for design and planning of high-density housing neighbourhoods that are inclusive and empathetic yet build senior residents’ physical and mental abilities at different stages of ageing. The paper outlines methods and key findings from research conducted in two high-density housing neighbourhoods in Singapore with aims to capture and evaluate multi-sensorial qualities of two neighbourhoods from the perspective of senior residents. Research methods employed included: on-site sensory recordings of 'objective' quantitative sensory data (air temperature and humidity, sound level and luminance) using multi-function environment meter, spatial mapping of patterns of elderly users’ transient and stationary activity, socio-sensory perception surveys and sensorial journeys with local residents using eye-tracking glasses, and supplemented by walk-along or post-walk interviews. The paper develops a multi-sensory framework to synthetize, cross-reference, and visualise the activity and spatio-sensory rhythms and patterns and distill key issues pertinent to ageing-friendly and health-supportive neighbourhood design. Key findings show senior residents’ concerns with walkability, safety, and wayfinding, overall aesthetic qualities, cleanliness, smell, noise, and crowdedness in their neighbourhoods, as well as the lack of design support for all-day use in the context of Singaporean tropical climate and for inter-generational social interaction. The (ongoing) analysis of eye-tracking data reveals the spatial elements of senior residents’ look at and interact with the most frequently, with the visual range often directed towards the ground. With capacities to meaningfully combine quantitative and qualitative, measured and experienced sensory data, multi-sensory framework shows to be fruitful for distilling key design opportunities based on often ignored aspects of subjective and often taken-for-granted interactions with the familiar outdoor environment. It offers an alternative way of leveraging the potentials of housing neighbourhoods to take a more active role in enabling healthful living at all stages of ageing.

Keywords: ageing-friendly neighbourhoods, eye-tracking, high-density environment, multi-sensory approach, perception

Procedia PDF Downloads 128
1194 Assessment of Students Skills in Error Detection in SQL Classes using Rubric Framework - An Empirical Study

Authors: Dirson Santos De Campos, Deller James Ferreira, Anderson Cavalcante Gonçalves, Uyara Ferreira Silva

Abstract:

Rubrics to learning research provide many evaluation criteria and expected performance standards linked to defined student activity for learning and pedagogical objectives. Despite the rubric being used in education at all levels, academic literature on rubrics as a tool to support research in SQL Education is quite rare. There is a large class of SQL queries is syntactically correct, but certainly, not all are semantically correct. Detecting and correcting errors is a recurring problem in SQL education. In this paper, we usthe Rubric Abstract Framework (RAF), which consists of steps, that allows us to map the information to measure student performance guided by didactic objectives defined by the teacher as long as it is contextualized domain modeling by rubric. An empirical study was done that demonstrates how rubrics can mitigate student difficulties in finding logical errors and easing teacher workload in SQL education. Detecting and correcting logical errors is an important skill for students. Researchers have proposed several ways to improve SQL education because understanding this paradigm skills are crucial in software engineering and computer science. The RAF instantiation was using in an empirical study developed during the COVID-19 pandemic in database course. The pandemic transformed face-to-face and remote education, without presential classes. The lab activities were conducted remotely, which hinders the teaching-learning process, in particular for this research, in verifying the evidence or statements of knowledge, skills, and abilities (KSAs) of students. Various research in academia and industry involved databases. The innovation proposed in this paper is the approach used where the results obtained when using rubrics to map logical errors in query formulation have been analyzed with gains obtained by students empirically verified. The research approach can be used in the post-pandemic period in both classroom and distance learning.

Keywords: rubric, logical error, structured query language (SQL), empirical study, SQL education

Procedia PDF Downloads 165
1193 Third Eye: A Hybrid Portrayal of Visuospatial Attention through Eye Tracking Research and Modular Arithmetic

Authors: Shareefa Abdullah Al-Maqtari, Ruzaika Omar Basaree, Rafeah Legino

Abstract:

A pictorial representation of hybrid forms in science-art collaboration has become a crucial issue in the course of exploring a new painting technique development. This is straight related to the reception of an invisible-recognition phenomenology. In hybrid pictorial representation of invisible-recognition phenomenology, the challenging issue is how to depict the pictorial features of indescribable objects from its mental source, modality and transparency. This paper proposes the hybrid technique of painting Demonstrate, Resemble, and Synthesize (DRS) through a combination of the hybrid aspect-recognition representation of understanding picture, demonstrative mod, the number theory, pattern in the modular arithmetic system, and the coherence theory of visual attention in the dynamic scenes representation. Multi-methods digital gaze data analyses, pattern-modular table operation design, and rotation parameter were used for the visualization. In the scientific processes, Eye-trackingvideo-sections based was conducted using Tobii T60 remote eye tracking hardware and TobiiStudioTM analysis software to collect and analyze the eye movements of ten participants when watching the video clip, Alexander Paulikevitch’s performance’s ‘Tajwal’. Results: we found that correlation of fixation count in section one was positively and moderately correlated with section two Person’s (r=.10, p < .05, 2-tailed) as well as in fixation duration Person’s (r=.10, p < .05, 2-tailed). However, a paired-samples t-test indicates that scores were significantly higher for the section one (M = 2.2, SD = .6) than for the section two (M = 1.93, SD = .6) t(9) = 2.44, p < .05, d = 0.87. In the visual process, the exported data of gaze number N was resembled the hybrid forms of visuospatial attention using the table-mod-analyses operation. The explored hybrid guideline was simply applicable, and it could be as alternative approach to the sustainability of contemporary visual arts.

Keywords: science-art collaboration, hybrid forms, pictorial representation, visuospatial attention, modular arithmetic

Procedia PDF Downloads 347
1192 An Intelligent Steerable Drill System for Orthopedic Surgery

Authors: Wei Yao

Abstract:

A steerable and flexible drill is needed in orthopaedic surgery. For example, osteoarthritis is a common condition affecting millions of people for which joint replacement is an effective treatment which improves the quality and duration of life in elderly sufferers. Conventional surgery is not very accurate. Computer navigation and robotics can help increase the accuracy. For example, In Total Hip Arthroplasty (THA), robotic surgery is currently practiced mainly on acetabular side helping cup positioning and orientation. However, femoral stem positioning mostly uses hand-rasping method rather than robots for accurate positioning. The other case for using a flexible drill in surgery is Anterior Cruciate Ligament (ACL) Reconstruction. The majority of ACL Reconstruction failures are primarily caused by technical mistakes and surgical errors resulting from drilling the anatomical bone tunnels required to accommodate the ligament graft. The proposed new steerable drill system will perform orthopedic surgery through curved tunneling leading to better accuracy and patient outcomes. It may reduce intra-operative fractures, dislocations, early failure and leg length discrepancy by making possible a new level of precision. This technology is based on a robotically assisted, steerable, hand-held flexible drill, with a drill-tip tracking device and a multi-modality navigation system. The critical differentiator is that this robotically assisted surgical technology now allows the surgeon to prepare 'patient specific' and more anatomically correct 'curved' bone tunnels during orthopedic surgery rather than drilling straight holes as occurs currently with existing surgical tools. The flexible and steerable drill and its navigation system for femoral milling in total hip arthroplasty had been tested on sawbones to evaluate the accuracy of the positioning and orientation of femoral stem relative to the pre-operative plan. The data show the accuracy of the navigation system is better than traditional hand-rasping method.

Keywords: navigation, robotic orthopedic surgery, steerable drill, tracking

Procedia PDF Downloads 150
1191 Artificial Neural Network Based Model for Detecting Attacks in Smart Grid Cloud

Authors: Sandeep Mehmi, Harsh Verma, A. L. Sangal

Abstract:

Ever since the idea of using computing services as commodity that can be delivered like other utilities e.g. electric and telephone has been floated, the scientific fraternity has diverted their research towards a new area called utility computing. New paradigms like cluster computing and grid computing came into existence while edging closer to utility computing. With the advent of internet the demand of anytime, anywhere access of the resources that could be provisioned dynamically as a service, gave rise to the next generation computing paradigm known as cloud computing. Today, cloud computing has become one of the most aggressively growing computer paradigm, resulting in growing rate of applications in area of IT outsourcing. Besides catering the computational and storage demands, cloud computing has economically benefitted almost all the fields, education, research, entertainment, medical, banking, military operations, weather forecasting, business and finance to name a few. Smart grid is another discipline that direly needs to be benefitted from the cloud computing advantages. Smart grid system is a new technology that has revolutionized the power sector by automating the transmission and distribution system and integration of smart devices. Cloud based smart grid can fulfill the storage requirement of unstructured and uncorrelated data generated by smart sensors as well as computational needs for self-healing, load balancing and demand response features. But, security issues such as confidentiality, integrity, availability, accountability and privacy need to be resolved for the development of smart grid cloud. In recent years, a number of intrusion prevention techniques have been proposed in the cloud, but hackers/intruders still manage to bypass the security of the cloud. Therefore, precise intrusion detection systems need to be developed in order to secure the critical information infrastructure like smart grid cloud. Considering the success of artificial neural networks in building robust intrusion detection, this research proposes an artificial neural network based model for detecting attacks in smart grid cloud.

Keywords: artificial neural networks, cloud computing, intrusion detection systems, security issues, smart grid

Procedia PDF Downloads 300
1190 A Survey of Domain Name System Tunneling Attacks: Detection and Prevention

Authors: Lawrence Williams

Abstract:

As the mechanism which converts domains to internet protocol (IP) addresses, Domain Name System (DNS) is an essential part of internet usage. It was not designed securely and can be subject to attacks. DNS attacks have become more frequent and sophisticated and the need for detecting and preventing them becomes more important for the modern network. DNS tunnelling attacks are one type of attack that are primarily used for distributed denial-of-service (DDoS) attacks and data exfiltration. Discussion of different techniques to detect and prevent DNS tunneling attacks is done. The methods, models, experiments, and data for each technique are discussed. A proposal about feasibility is made. Future research on these topics is proposed.

Keywords: DNS, tunneling, exfiltration, botnet

Procedia PDF Downloads 56
1189 Evolution of Floating Photovoltaic System Technology and Future Prospect

Authors: Young-Kwan Choi, Han-Sang Jeong

Abstract:

Floating photovoltaic system is a technology that combines photovoltaic power generation with floating structure. However, since floating technology has not been utilized in photovoltaic generation, there are no standardized criteria. It is separately developed and used by different installation bodies. This paper aims to discuss the change of floating photovoltaic system technology based on examples of floating photovoltaic systems installed in Korea.

Keywords: floating photovoltaic system, floating PV installation, ocean floating photovoltaic system, tracking type floating photovoltaic system

Procedia PDF Downloads 540
1188 A Method of Detecting the Difference in Two States of Brain Using Statistical Analysis of EEG Raw Data

Authors: Digvijaysingh S. Bana, Kiran R. Trivedi

Abstract:

This paper introduces various methods for the alpha wave to detect the difference between two states of brain. One healthy subject participated in the experiment. EEG was measured on the forehead above the eye (FP1 Position) with reference and ground electrode are on the ear clip. The data samples are obtained in the form of EEG raw data. The time duration of reading is of one minute. Various test are being performed on the alpha band EEG raw data.The readings are performed in different time duration of the entire day. The statistical analysis is being carried out on the EEG sample data in the form of various tests.

Keywords: electroencephalogram(EEG), biometrics, authentication, EEG raw data

Procedia PDF Downloads 448
1187 Detecting Covid-19 Fake News Using Deep Learning Technique

Authors: AnjalI A. Prasad

Abstract:

Nowadays, social media played an important role in spreading misinformation or fake news. This study analyzes the fake news related to the COVID-19 pandemic spread in social media. This paper aims at evaluating and comparing different approaches that are used to mitigate this issue, including popular deep learning approaches, such as CNN, RNN, LSTM, and BERT algorithm for classification. To evaluate models’ performance, we used accuracy, precision, recall, and F1-score as the evaluation metrics. And finally, compare which algorithm shows better result among the four algorithms.

Keywords: BERT, CNN, LSTM, RNN

Procedia PDF Downloads 190
1186 GPU Based Real-Time Floating Object Detection System

Authors: Jie Yang, Jian-Min Meng

Abstract:

A GPU-based floating object detection scheme is presented in this paper which is designed for floating mine detection tasks. This system uses contrast and motion information to eliminate as many false positives as possible while avoiding false negatives. The GPU computation platform is deployed to allow detecting objects in real-time. From the experimental results, it is shown that with certain configuration, the GPU-based scheme can speed up the computation up to one thousand times compared to the CPU-based scheme.

Keywords: object detection, GPU, motion estimation, parallel processing

Procedia PDF Downloads 455
1185 A Methodological Approach to Digital Engineering Adoption and Implementation for Organizations

Authors: Sadia H. Syeda, Zain H. Malik

Abstract:

As systems continue to become more complex and the interdependencies of processes and sub-systems continue to grow and transform, the need for a comprehensive method of tracking and linking the lifecycle of the systems in a digital form becomes ever more critical. Digital Engineering (DE) provides an approach to managing an authoritative data source that links, tracks, and updates system data as it evolves and grows throughout the system development lifecycle. DE enables the developing, tracking, and sharing system data, models, and other related artifacts in a digital environment accessible to all necessary stakeholders. The DE environment provides an integrated electronic repository that enables traceability between design, engineering, and sustainment artifacts. The DE activities' primary objective is to develop a set of integrated, coherent, and consistent system models for the program. It is envisioned to provide a collaborative information-sharing environment for various stakeholders, including operational users, acquisition personnel, engineering personnel, and logistics and sustainment personnel. Examining the processes that DE can support in the systems engineering life cycle (SELC) is a primary step in the DE adoption and implementation journey. Through an analysis of the U.S Department of Defense’s (DoD) Office of the Secretary of Defense (OSD’s) Digital Engineering Strategy and their implementation, examples of DE implementation by the industry and technical organizations, this paper will provide descriptions of the current DE processes and best practices of implementing DE across an enterprise. This will help identify the capabilities, environment, and infrastructure needed to develop a potential roadmap for implementing DE practices consistent with its business strategy. A capability maturity matrix will be provided to assess the organization’s DE maturity emphasizing how all the SELC elements interlink to form a cohesive ecosystem. If implemented, DE can increase efficiency and improve the systems engineering processes' quality and outcomes.

Keywords: digital engineering, digital environment, digital maturity model, single source of truth, systems engineering life-cycle

Procedia PDF Downloads 75
1184 Toward Subtle Change Detection and Quantification in Magnetic Resonance Neuroimaging

Authors: Mohammad Esmaeilpour

Abstract:

One of the important open problems in the field of medical image processing is detection and quantification of small changes. In this poster, we try to investigate that, how the algebraic decomposition techniques can be used for semiautomatically detecting and quantifying subtle changes in Magnetic Resonance (MR) neuroimaging volumes. We mostly focus on the low-rank values of the matrices achieved from decomposing MR image pairs during a period of time. Besides, a skillful neuroradiologist will help the algorithm to distinguish between noises and small changes.

Keywords: magnetic resonance neuroimaging, subtle change detection and quantification, algebraic decomposition, basis functions

Procedia PDF Downloads 452
1183 Neurofeedback for Anorexia-RelaxNeuron-Aimed in Dissolving the Root Neuronal Cause

Authors: Kana Matsuyanagi

Abstract:

Anorexia Nervosa (AN) is a psychiatric disorder characterized by a relentless pursuit of thinness and strict restriction of food. The current therapeutic approaches for AN predominantly revolve around outpatient psychotherapies, which create significant financial barriers for the majority of affected patients, hindering their access to treatment. Nonetheless, AN exhibit one of the highest mortality and relapse rates among psychological disorders, underscoring the urgent need to provide patients with an affordable self-treatment tool, enabling those unable to access conventional medical intervention to address their condition autonomously. To this end, a neurofeedback software, termed RelaxNeuron, was developed with the objective of providing an economical and portable means to aid individuals in self-managing AN. Electroencephalography (EEG) was chosen as the preferred modality for RelaxNeuron, as it aligns with the study's goal of supplying a cost-effective and convenient solution for addressing AN. The primary aim of the software is to ameliorate the negative emotional responses towards food stimuli and the accompanying aberrant eye-tracking patterns observed in AN patient, ultimately alleviating the profound fear towards food an elemental symptom and, conceivably, the fundamental etiology of AN. The core functionality of RelaxNeuron hinges on the acquisition and analysis of EEG signals, alongside an electrocardiogram (ECG) signal, to infer the user's emotional state while viewing dynamic food-related imagery on the screen. Moreover, the software quantifies the user's performance in accurately tracking the moving food image. Subsequently, these two parameters undergo further processing in the subsequent algorithm, informing the delivery of either negative or positive feedback to the user. Preliminary test results have exhibited promising outcomes, suggesting the potential advantages of employing RelaxNeuron in the treatment of AN, as evidenced by its capacity to enhance emotional regulation and attentional processing through repetitive and persistent therapeutic interventions.

Keywords: Anorexia Nervosa, fear conditioning, neurofeedback, BCI

Procedia PDF Downloads 18
1182 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis

Authors: Mehrnaz Mostafavi

Abstract:

The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.

Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans

Procedia PDF Downloads 59
1181 West Nile Virus in North-Eastern Italy: Overview of Integrated Surveillance Activities

Authors: Laura Amato, Paolo Mulatti, Fabrizio Montarsi, Matteo Mazzucato, Laura Gagliazzo, Michele Brichese, Manlio Palei, Gioia Capelli, Lebana Bonfanti

Abstract:

West Nile virus (WNV) re-emerged in north-eastern Italy in 2008, after ten years from its first appearance in Tuscany. In 2009, a national surveillance programme was implemented, and re-modulated in north-eastern Italy in 2011. Hereby, we present the results of surveillance activities in 2008-2016 in the north-eastern Italian regions, with inferences on WNV epidemiological trend in the area. The re-modulated surveillance programmes aimed at early detecting WNV seasonal reactivation by searching IgM antibodies in horses. In 2013, the surveillance plans were further modified including a risk-based approach. Spatial analysis techniques, including Bernoulli space-time scan-statistics, were applied to the results of 2010–2012 surveillance on mosquitoes, equines, and humans to identify areas where WNV reactivation was more likely to occur. From 2008 to 2016, residential horses tested positive for anti-WNV antibodies on a yearly basis (503 cases), also in areas where WNV circulation was not detected in mosquito populations. Surveillance activities detected 26 syndromic cases in horses, 102 infected mosquito pools and WNV in 18 dead wild birds. Human cases were also recurrently detected in the study area during the surveillance period (68 cases of West Nile neuroinvasive disease). The recurrent identification of WNV in animals, mosquitoes, and humans indicates the virus has likely become endemic in the area. In 2016, findings of WNV positives in horses or mosquitoes were included as triggers for enhancing screening activities in humans. The evolution of the epidemiological situation prompts for continuous and accurate surveillance measures. The results of the 2013-2016 surveillance indicate that the risk-based approach was effective in early detecting seasonal reactivation of WNV, key factor of the integrated surveillance strategy in endemic areas.

Keywords: arboviruses, horses, Italy, surveillance, west nile virus, zoonoses

Procedia PDF Downloads 335
1180 Status of Reintroduced Houbara Bustard Chlamydotis macqueeni in Saudi Arabia

Authors: Mohammad Zafar-ul Islam

Abstract:

The breeding programme of Houbara bustard was started in Saudi Arabia in 1986 to undertake the restoration of native species such as Houbara through a programme of re-introduction, involving the release of captive-bred birds in the wild. Two sites were selected for houbara re-introduction, i.e., Mahazat as-Sayd and Saja Umm Ar-Rimth protected areas in 1988 and 1998 respectively. Both the areas are fenced fairly level, sandy plain with a few rock outcrops. Captive bred houbara have been released in Mahazat since 1992 by NWRC and those birds have been successfully breeding since then. The nesting season of the houbara at Mahazat recorded from February to May and on an average 20-25 nests are located each year but no nesting recorded in Saja. Houbara are monitored using radio transmitters through aerial tracking technique and also a vehicle for terrestrial tracking. Total population of houbara in Mahazat is roughly estimated around 300-400 birds, using the following: N = n1+n2+n3+n4+n5 (n1 = released or wild-born, radio, regularly monitored/checked; n2 = radio tagged missing; n3 = wild born chicks not recorded; n4 = wild born chicks, recorded but not tagged; n5 = immigrants). However, in Saja only 4-7 individuals of houbara have been survived since 2001 because most of the birds are predated immediately after the release. The mean annual home was also calculated using Kernel and Convex polygons methods with Range VII software. The minimum density of houbara was also calculated. In order to know the houbara movement or their migration to other regions, two captive-reared male houbara that were released into the wild and one wild born female were fitted with Platform Transmitter Terminals (PTT). The home range shows that wild-born female has larger movement than two males. More areas need to be selected for reintroduction programme to establish the network of sites to provide easy access to move these birds and mingle with the wild houbara. Some potential sites have been proposed which require more surveys to check the habitat suitability.

Keywords: re-introduction, survival rate, home range, Saudi Arabia

Procedia PDF Downloads 388
1179 Diagnostic Contribution of the MMSE-2:EV in the Detection and Monitoring of the Cognitive Impairment: Case Studies

Authors: Cornelia-Eugenia Munteanu

Abstract:

The goal of this paper is to present the diagnostic contribution that the screening instrument, Mini-Mental State Examination-2: Expanded Version (MMSE-2:EV), brings in detecting the cognitive impairment or in monitoring the progress of degenerative disorders. The diagnostic signification is underlined by the interpretation of the MMSE-2:EV scores, resulted from the test application to patients with mild and major neurocognitive disorders. The original MMSE is one of the most widely used screening tools for detecting the cognitive impairment, in clinical settings, but also in the field of neurocognitive research. Now, the practitioners and researchers are turning their attention to the MMSE-2. To enhance its clinical utility, the new instrument was enriched and reorganized in three versions (MMSE-2:BV, MMSE-2:SV and MMSE-2:EV), each with two forms: blue and red. The MMSE-2 was adapted and used successfully in Romania since 2013. The cases were selected from current practice, in order to cover vast and significant neurocognitive pathology: mild cognitive impairment, Alzheimer’s disease, vascular dementia, mixed dementia, Parkinson’s disease, conversion of the mild cognitive impairment into Alzheimer’s disease. The MMSE-2:EV version was used: it was applied one month after the initial assessment, three months after the first reevaluation and then every six months, alternating the blue and red forms. Correlated with age and educational level, the raw scores were converted in T scores and then, with the mean and the standard deviation, the z scores were calculated. The differences of raw scores between the evaluations were analyzed from the point of view of statistic signification, in order to establish the progression in time of the disease. The results indicated that the psycho-diagnostic approach for the evaluation of the cognitive impairment with MMSE-2:EV is safe and the application interval is optimal. The alternation of the forms prevents the learning phenomenon. The diagnostic accuracy and efficient therapeutic conduct derive from the usage of the national test norms. In clinical settings with a large flux of patients, the application of the MMSE-2:EV is a safe and fast psycho-diagnostic solution. The clinicians can draw objective decisions and for the patients: it doesn’t take too much time and energy, it doesn’t bother them and it doesn’t force them to travel frequently.

Keywords: MMSE-2, dementia, cognitive impairment, neuropsychology

Procedia PDF Downloads 492
1178 Biomechanical Analysis and Interpretation of Pitching Sequences for Enhanced Performance Programming

Authors: Corey F. Fitzgerald

Abstract:

This study provides a comprehensive examination of the biomechanical sequencing inherent in pitching motions, coupled with an advanced methodology for interpreting gathered data to inform programming strategies. The analysis is conducted utilizing state-of-the-art biomechanical laboratory equipment capable of detecting subtle changes and deviations, facilitating highly informed decision-making processes. Through this presentation, the intricate dynamics of pitching sequences are meticulously discussed to highlight the complex movement patterns accessible and actionable for performance enhancement purposes in the weight room.

Keywords: sport science, applied biomechanics, strength and conditioning, applied research

Procedia PDF Downloads 34