Search results for: configuration space-singularities
592 Numerical Investigation into the Effect of Axial Fan Blade Angle on the Fan Performance
Authors: Shayan Arefi, Qadir Esmaili, Seyed Ali Jazayeri
Abstract:
The performance of cooling system affects on efficiency of turbo generators and temperature of winding. Fan blade is one of the most important components of cooling system which plays a significant role in ventilation of generators. Fan performance curve depends on the blade geometry and boundary condition. This paper calculates numerically the performance curve of axial flow fan mounted on turbo generator with 160 MW output power. The numerical calculation was implemented by Ansys-workbench software. The geometrical model of blade was created by bladegen, grid generation and configuration was made by turbogrid and finally, the simulation was implemented by CFX. For the first step, the performance curves consist of pressure rise and efficiency flow rate were calculated in the original angle of blade. Then, by changing the attack angle of blade, the related performance curves were calculated. CFD results for performance curve of each angle show a good agreement with experimental results. Additionally, the field velocity and pressure gradient of flow near the blade were investigated and simulated numerically with varying of angle.Keywords: turbo generator, axial fan, Ansys, performance
Procedia PDF Downloads 369591 A Guide to the Implementation of Ambisonics Super Stereo
Authors: Alessio Mastrorillo, Giuseppe Silvi, Francesco Scagliola
Abstract:
In this work, we introduce an Ambisonics decoder with an implementation of the C-format, also called Super Stereo. This format is an alternative to conventional stereo and binaural decoding. Unlike those, this format conveys audio information from the horizontal plane and works with stereo speakers and headphones. The two C-format channels can also return a reconstructed planar B-format. This work provides an open-source implementation for this format. We implement an all-pass filter for signal quadrature, as required by the decoding equations. This filter works with six Biquads in a cascade configuration, with values for control frequency and quality factor discovered experimentally. The phase response of the filter delivers a small error in the 20-14.000Hz range. The decoder has been tested with audio sources up to 192kHz sample rate, returning pristine sound quality and detailed stereo image. It has been included in the Envelop for Live suite and is available as an open-source repository. This decoder has applications in Virtual Reality and 360° audio productions, music composition, and online streaming.Keywords: ambisonics, UHJ, quadrature filter, virtual reality, Gerzon, decoder, stereo, binaural, biquad
Procedia PDF Downloads 94590 Baby Cot’s Indoor Air Quality
Authors: Wim Zeiler
Abstract:
The indoor quality of occupied space is very important for the well-being of its occupants, especially in the case of babies. The lungs of a young child are still growing and adverse conditions could affect this development. Presently little children spend a lot of their time in day care centers while parents are at work. Little is known about the effects of different indoor environmental factors present in these day care centers and the quality of air of baby cots in which the babies are accommodated in these day care centers. Therefore this research investigated the quality of the accommodation of Dutch day care centers. Besides an extensive literature research actual measurements were performed in baby cots within three-day care center. Some experiments were performed to find out the importance of the configuration and types of baby cots. This research investigated the quality of the accommodation of a Dutch day care center which led to a tool describing the quality needs (e.g., quality standard) for the accommodation of day care centers. The results of our detailed studies were compared with the results of earlier Dutch more global studies in day care centers, in which more than 60 day care centers were investigated. Also the results are compared with the outcomes of research on school ventilation. The results proved that the situation in day care centers is even worse than that of schools within the Netherlands. More attention is needed to improve the current situation.Keywords: ventilation, baby cots, day care centers, case study
Procedia PDF Downloads 477589 Theoretical and Numerical Investigation of a Tri-Stable Nonlinear Energy Harvesting System in Rotational Motion for Low Frequency Environment
Authors: Mei Xutao, Nakano Kimihiko
Abstract:
In order to enhance the energy harvesting efficiency, this paper presents a novel tri-stable energy harvesting system (TEHS), which is realized by the effect of magnetic force, in rotational motion to scavenge vibration energy. The device is meant to provide the power supply for wireless autonomous systems in low-frequency environment. The nonlinear TEHS is composed of the cantilever beam which is mounted on a rotating hub and partially covered by piezoelectric patch, a tip mass magnet in the end and two fixed magnets. A theoretical investigation using the Lagrangian formulation is derived to describe the motion of the energy harvesting system and the output voltage. Additionally, several numerical simulations were carried out to characterize the system under different external excitations and to validate its performance. The results demonstrated that TEHS owns a wide range of frequency of snap-through and high output voltage compared with the bi-stable energy harvesting system (BEHS). Moreover, some sets of experimental validations will be performed in the future work because the experimental setup is in the configuration now.Keywords: piezoelectric beam, rotational motion, snap-through, tri-stable energy harvester
Procedia PDF Downloads 299588 Model-Based Automotive Partitioning and Mapping for Embedded Multicore Systems
Authors: Robert Höttger, Lukas Krawczyk, Burkhard Igel
Abstract:
This paper introduces novel approaches to partitioning and mapping in terms of model-based embedded multicore system engineering and further discusses benefits, industrial relevance and features in common with existing approaches. In order to assess and evaluate results, both approaches have been applied to a real industrial application as well as to various prototypical demonstrative applications, that have been developed and implemented for different purposes. Evaluations show, that such applications improve significantly according to performance, energy efficiency, meeting timing constraints and covering maintaining issues by using the AMALTHEA platform and the implemented approaches. Further- more, the model-based design provides an open, expandable, platform independent and scalable exchange format between OEMs, suppliers and developers on different levels. Our proposed mechanisms provide meaningful multicore system utilization since load balancing by means of partitioning and mapping is effectively performed with regard to the modeled systems including hardware, software, operating system, scheduling, constraints, configuration and more data.Keywords: partitioning, mapping, distributed systems, scheduling, embedded multicore systems, model-based, system analysis
Procedia PDF Downloads 623587 Cost Analysis of Hybrid Wind Energy Generating System Considering CO2 Emissions
Authors: M. A. Badr, M. N. El Kordy, A. N. Mohib, M. M. Ibrahim
Abstract:
The basic objective of the research is to study the effect of hybrid wind energy on the cost of generated electricity considering the cost of reduction CO2 emissions. The system consists of small wind turbine(s), storage battery bank and a diesel generator (W/D/B). Using an optimization software package, different system configurations are investigated to reach optimum configuration based on the net present cost (NPC) and cost of energy (COE) as economic optimization criteria. The cost of avoided CO2 is taken into consideration. The system is intended to supply the electrical load of a small community (gathering six families) in a remote Egyptian area. The investigated system is not connected to the electricity grid and may replace an existing conventional diesel powered electric supply system to reduce fuel consumption and CO2 emissions. The simulation results showed that W/D energy system is more economic than diesel alone. The estimated COE is 0.308$/kWh and extracting the cost of avoided CO2, the COE reached 0.226 $/kWh which is an external benefit of wind turbine, as there are no pollutant emissions through operational phase.Keywords: hybrid wind turbine systems, remote areas electrification, simulation of hybrid energy systems, techno-economic study
Procedia PDF Downloads 405586 Energy Analysis and Integration of the H₂ Production from Biomass Fast Pyrolysis and in Line Sorption Enhanced Steam Reforming
Authors: P. Comendador, M. Suarez, L. Olazar, M. Cortazar, M. Artetxe, G. Lopez, M. Olazar
Abstract:
H₂ production from fast biomass pyrolysis and line Steam Reforming (SR) has been extensively studied in the last years. However, Sorption Enhanced Steam Reforming (SESR) is gaining attention as an alternative to the conventional SR since it allows obtaining higher H₂ yields and a purity near 100 % in the product stream. In this work, both alternatives were compared through an energy analysis. The processes were modeled with PRO II v.2021 software. First, general energy balances were carried out in order to identify the total energy requirements in a wide range of operating conditions. At H₂ yield optimum conditions for both processes (steam to biomass ratio of 2 and temperature of 600 ºC), the total energy requirement for the SR alternative is 936 kJ/kgH₂, whereas for the SESR alternative is 1134 kJ/kgH₂. Then, the energy needs were grouped into operation stages, aiming at identifying the energy sinks and sources of the processes. It was determined that the SESR alternative is more energy intensive due to the need for a calcination stage for regenerating the sorbent. Finally, a configuration of the SESR alternative with energy integration was developed in order to compensate for the energy demand.Keywords: Biomass valorization, CO₂ capture, Energy analysis, H₂ production
Procedia PDF Downloads 98585 Bio-Nanotechnology Approach of Nano-Size Iron Particles as Promising Iron Supplements: An Exploratory Study to Combat the Problems of Iron Fortification in Children and Pregnant Women of Rural India
Authors: Roshni Raha, Kavya P., Gayathri M.
Abstract:
India, with a humongous population, remains the world's poorest developing nation in terms of nutritional status, with iron deficiency anaemia (IDA) affecting the population. Despite efforts over the past decades, India's anaemia prevalence has not been reduced. Researchers are interested in developing therapies that will minimize the typical side effects of oral iron and optimize iron salts-based treatment through delivery methods based on the physiology of hepcidin regulation. However, they need to come up with iron therapies that will prevent making the infection worse. This article explores using bio-nanotechnology as the alternative, promising substitution of providing iron supplements for the treatment of diarrhoea and gut inflammation in kids and pregnant women. This article is an exploratory study using a literature survey and secondary research from review papers. In the realm of biotechnology, nanoparticles have become extremely famous due to unexpected variations in surface characteristics caused by particle size. Particle size distribution and shape exhibit unusual, enhanced characteristics when reduced to nanoscale. The article attempts to develop a model for a nanotechnology based solution in iron fortification to combat the problems of diarrhoea and gut inflammation. Certain dimensions that have been considered in the model include the size, shape, source, and biosynthesis of the iron nanoparticles. Another area of investigation addressed in the article is the cost-effective biocompatible production of these iron nanoparticles. Studies have demonstrated that a substantial reduction of metal ions to form nanoparticles from the bulk metal occurs in plants because of the presence of a wide diversity of biomolecules. Using this concept, the paper investigates the effectiveness and impact of how similar sources can be used for the biological synthesis of iron nanoparticles. Results showed that iron particles, when prepared in nano-metre size, offer potential advantages. When the particle size of the iron compound decreases and attains nano configuration, its surface area increases, which further improves its solubility in the gastric acid, leading to higher absorption, higher bioavailability, and producing the least organoleptic changes in food. It has no negative effects and possesses a safe, effective profile to reduce IDA. Considering all the parameters, it has been concluded that iron particles in nano configuration serve as alternative iron supplements for the complete treatment of IDA. Nanoparticles of ferric phosphate, ferric pyrophosphate, and iron oxide are the choices of iron supplements. From a sourcing perspective, the paper concludes green sources are the primary sources for the biological synthesis of iron nanoparticles. It will also be a cost-effective strategy since our goal is to treat the target population in rural India. Bio-nanotechnology serves as an alternative and promising substitution for iron supplements due to its low cost, excellent bioavailability, and strong organoleptic properties. One area of future research can be to explore the type of size and shape of iron nanoparticles that would be suitable for the different age groups of pregnant women and children and whether it would be influenced based on the topography in certain areas.Keywords: anemia, bio-nanotechnology, iron-fortification, nanoparticle
Procedia PDF Downloads 80584 An Experimental Study of Downstream Structures on the Flow-Induced Vibrations Energy Harvester Performances
Authors: Pakorn Uttayopas, Chawalit Kittichaikarn
Abstract:
This paper presents an experimental investigation for the characteristics of an energy harvesting device exploiting flow-induced vibration in a wind tunnel. A stationary bluff body is connected with a downstream tip body via an aluminium cantilever beam. Various lengths of aluminium cantilever beam and different shapes of downstream tip body are considered. The results show that the characteristics of the energy harvester’s vibration depend on both the length of the aluminium cantilever beam and the shape of the downstream tip body. The highest ratio between vibration amplitude and bluff body diameter was found to be 1.39 for an energy harvester with a symmetrical triangular tip body and L/D1 = 5 at 9.8 m/s of flow speed (Re = 20077). Using this configuration, the electrical energy was extracted with a polyvinylidene fluoride (PVDF) piezoelectric beam with different load resistances, of which the optimal value could be found on each Reynolds number. The highest power output was found to be 3.19 µW, at 9.8 m/s of flow speed (Re = 20077) and 27 MΩ of load resistance.Keywords: downstream structures, energy harvesting, flow-induced vibration, piezoelectric material, wind tunnel
Procedia PDF Downloads 235583 Study of Bolt Inclination in a Composite Single Bolted Joint
Authors: Faci Youcef, Ahmed Mebtouche, Djillali Allou, Maalem Badredine
Abstract:
The inclination of the bolt in a fastened joint of composite material during a tensile test can be influenced by several parameters, including material properties, bolt diameter and length, the type of composite material being used, the size and dimensions of the bolt, bolt preload, surface preparation, the design and configuration of the joint, and finally testing conditions. These parameters should be carefully considered and controlled to ensure accurate and reliable results during tensile testing of composite materials with fastened joints. Our work focuses on the effect of the stacking sequence and the geometry of specimens. An experimental test is carried out to obtain the inclination of a bolt during a tensile test of a composite material using acoustic emission and digital image correlation. Several types of damage were obtained during the load. Digital image correlation techniques permit the obtaining of the inclination of bolt angle value during tensile test. We concluded that the inclination of the bolt during a tensile test of a composite material can be related to the damage that occurs in the material. It can cause stress concentrations and localized deformation in the material, leading to damage such as delamination, fiber breakage, matrix cracking, and other forms of failure.Keywords: damage, inclination, analyzed, carbon
Procedia PDF Downloads 61582 Design of Regular Communication Area for Infrared Electronic-Toll-Collection Systems
Authors: Wern-Yarng Shieh, Chao Qian, Bingnan Pei
Abstract:
A design of communication area for infrared electronic-toll-collection systems to provide an extended communication interval in the vehicle traveling direction and regular boundary between contiguous traffic lanes is proposed. By utilizing two typical low-cost commercial infrared LEDs with different half-intensity angles Φ1/2 = 22° and 10°, the radiation pattern of the emitter is designed to properly adjust the spatial distribution of the signal power. The aforementioned purpose can be achieved with an LED array in a three-piece structure with appropriate mounting angles. With this emitter, the influence of the mounting parameters, including the mounting height and mounting angles of the on-board unit and road-side unit, on the system performance in terms of the received signal strength and communication area are investigated. The results reveal that, for our emitter proposed in this paper, the ideal "long-and-narrow" characteristic of the communication area is very little affected by these mounting parameters. An optimum mounting configuration is also suggested.Keywords: dedicated short-range communication (DSRC), electronic toll collection (ETC), infrared communication, intelligent transportation system (ITS), multilane free flow
Procedia PDF Downloads 340581 Modeling of the Mechanism of Ion Channel Opening of the Visual Receptor's Rod on the Light and Allosteric Effect of Rhodopsin in the Phosphorylation Process
Authors: N. S. Vassilieva-Vashakmadze, R. A. Gakhokidze, I. M. Khachatryan
Abstract:
In the first part of the paper it is shown that both the depolarization of the cytoplasmic membrane of rods observed in invertebrates and hyperpolarization characteristic of vertebrates on the light may activate the functioning of ion (Na+) channels of cytoplasmic membrane of rods and thus provide the emergence of nerve impulse and its transfer to the neighboring neuron etc. In the second part, using the quantum mechanical program for modeling of the molecular processes, we got a clear picture demonstrating the effect of charged phosphate groups on the protein components of α-helical subunits of the visual rhodopsin receptor. The analysis shows that the phosphorylation of terminal amino acid of seventh α-helical subunits of the visual rhodopsin causes a redistribution of electron density on the atoms, i.e. polarization of subunits, also the changing the configuration of the nuclear subsystem, which corresponds to the deformation process in the molecule. Based on the use of models it can be concluded that this system has an internal relationship between polarization and deformation processes that indicates on the allosteric effect. The allosteric effect is based on quantum-mechanical principle of the self-consistency of the molecules.Keywords: membrane potential, ion channels, visual rhodopsin, allosteric effect
Procedia PDF Downloads 275580 Protection System Mis-operations: Fundamental Concepts and Learning from Indian Power Sector
Authors: Pankaj Kumar Jha, Mahendra Singh Hada, Brijendra Singh
Abstract:
Protection system is an essential feature of the electrical system which helps in detection and removal of faults. Protection system consists of many subsystems like relays, circuit breakers, instrument transformers, auxiliary DC system, auxiliary relays etc. Although the fundamental protective and relay operating concepts are similar throughout the world, there are very significant differences in their implementation. These differences arise through different traditions, operating philosophies, experiences and national standards. Protection system mis-operation due to problem in one or more of its subsystem or inadequate knowledge of numerical relay settings and configuration are very common throughout the world. Protection system mis-operation leads to unstable and unreliable grid operation. In this paper we will discuss about the fundamental concepts of protective relaying and the reasons for protection system mis-operation due to one or more of its subsystems. Many real-world case studies of protection system mis-operation from Indian power sector are discussed in detail in this paper.Keywords: auxiliary trip relays, bus zone, check zone, CT saturation, dead zone protection, DC ground faults, DMT, DR, end fault protection, instrument transformer, SOTF, STUB
Procedia PDF Downloads 78579 Solving the Wireless Mesh Network Design Problem Using Genetic Algorithm and Simulated Annealing Optimization Methods
Authors: Moheb R. Girgis, Tarek M. Mahmoud, Bahgat A. Abdullatif, Ahmed M. Rabie
Abstract:
Mesh clients, mesh routers and gateways are components of Wireless Mesh Network (WMN). In WMN, gateways connect to Internet using wireline links and supply Internet access services for users. We usually need multiple gateways, which takes time and costs a lot of money set up, due to the limited wireless channel bit rate. WMN is a highly developed technology that offers to end users a wireless broadband access. It offers a high degree of flexibility contrasted to conventional networks; however, this attribute comes at the expense of a more complex construction. Therefore, a challenge is the planning and optimization of WMNs. In this paper, we concentrate on this challenge using a genetic algorithm and simulated annealing. The genetic algorithm and simulated annealing enable searching for a low-cost WMN configuration with constraints and determine the number of used gateways. Experimental results proved that the performance of the genetic algorithm and simulated annealing in minimizing WMN network costs while satisfying quality of service. The proposed models are presented to significantly outperform the existing solutions.Keywords: wireless mesh networks, genetic algorithms, simulated annealing, topology design
Procedia PDF Downloads 463578 Aristotle University of Thessaloniki
Authors: Ail Akbar Emamverdian, Neriman Özada, Atabak Rahimzadeh Ilkhchi, Zahra Emamverdian
Abstract:
The reverse shoulder prosthesis is an innovative procedure design to treat of (GH) joint problems with severe rotator cuff deficiency. The original reverse shoulder prosthesis was invented by France surgery in1985 and has been in clinical use in the United States in 2004. These prostheses consist of baseplate that attached to the glenoid, in order to hold a spherical component, and humeral part consist of polyethylene insert which is flat. This prosthesis is the ‘reverse’ configuration. The indications for the reverse prosthesis are: (1) treating failed hemi arthroplasty with irrecoverable rotator cuff tears, (2) relief of painful arthritis associated with cuff tear arthropathy, (3) instauration after tumor resection, (4) pseudo paralysis because of irrecoverable rotator cuff tears (5) some fractures of the shoulder which reverse shoulder prostheses is only the option for treatment. This prosthesis resulting in relief of pain and decreasing the range of motion in above indications. However, this prosthesis and its applications such as notching of the scapula, dislocation of the prosthesis parts and acromial stress fractures. In this article the reverse shoulder prostheses, indication has been reviewed. This study can make clear aspect of reverse shoulder prosthesis that can help to find some solution in future.Keywords: prostheses, complications, reverse shoulder prosthesis, indications
Procedia PDF Downloads 279577 Robust Fractional Order Controllers for Minimum and Non-Minimum Phase Systems – Studies on Design and Development
Authors: Anand Kishore Kola, G. Uday Bhaskar Babu, Kotturi Ajay Kumar
Abstract:
The modern dynamic systems used in industries are complex in nature and hence the fractional order controllers have been contemplated as a fresh approach to control system design that takes the complexity into account. Traditional integer order controllers use integer derivatives and integrals to control systems, whereas fractional order controllers use fractional derivatives and integrals to regulate memory and non-local behavior. This study provides a method based on the maximumsensitivity (Ms) methodology to discover all resilient fractional filter Internal Model Control - proportional integral derivative (IMC-PID) controllers that stabilize the closed-loop system and deliver the highest performance for a time delay system with a Smith predictor configuration. Additionally, it helps to enhance the range of PID controllers that are used to stabilize the system. This study also evaluates the effectiveness of the suggested controller approach for minimum phase system in comparison to those currently in use which are based on Integral of Absolute Error (IAE) and Total Variation (TV).Keywords: modern dynamic systems, fractional order controllers, maximum-sensitivity, IMC-PID controllers, Smith predictor, IAE and TV
Procedia PDF Downloads 72576 Humeral Head and Scapula Detection in Proton Density Weighted Magnetic Resonance Images Using YOLOv8
Authors: Aysun Sezer
Abstract:
Magnetic Resonance Imaging (MRI) is one of the advanced diagnostic tools for evaluating shoulder pathologies. Proton Density (PD)-weighted MRI sequences prove highly effective in detecting edema. However, they are deficient in the anatomical identification of bones due to a trauma-induced decrease in signal-to-noise ratio and blur in the traumatized cortices. Computer-based diagnostic systems require precise segmentation, identification, and localization of anatomical regions in medical imagery. Deep learning-based object detection algorithms exhibit remarkable proficiency in real-time object identification and localization. In this study, the YOLOv8 model was employed to detect humeral head and scapular regions in 665 axial PD-weighted MR images. The YOLOv8 configuration achieved an overall success rate of 99.60% and 89.90% for detecting the humeral head and scapula, respectively, with an intersection over union (IoU) of 0.5. Our findings indicate a significant promise of employing YOLOv8-based detection for the humerus and scapula regions, particularly in the context of PD-weighted images affected by both noise and intensity inhomogeneity.Keywords: YOLOv8, object detection, humerus, scapula, IRM
Procedia PDF Downloads 70575 Self-Tuning-Filter and Fuzzy Logic Control for Shunt Active Power Filter
Authors: Kaddari Faiza, Mazari Benyounes, Mihoub Youcef, Safa Ahmed
Abstract:
Active filtering of electric power has now become a mature technology for reactive power and harmonic compensation caused by the proliferation of power electronics devices used for industrial, commercial and residential purposes. The aim of this study is to enhance the power quality by improving the performances of shunt active power filter in harmonic mitigation to obtain sinusoidal source currents with very weak ripples. A power circuit configuration and control scheme for shunt active power filter are described with an improved method for harmonics compensation using self-tuning-filter for harmonics identification and fuzzy logic control to generate reference current. Simulation results (using MATLAB/SIMULINK) illustrates the compensation characteristics of the proposed control strategy. Analysis of these results proves the feasibility and effectiveness of this method to improve the power quality and also show the performances of fuzzy logic control which provides flexibility, high precision and fast response. The total harmonic distortion (THD %) for the simulations found to be within the recommended imposed IEEE 519-1992 harmonic standard.Keywords: Active Powers Filter (APF), Self-Tuning-Filter (STF), fuzzy logic control, hysteresis-band control
Procedia PDF Downloads 742574 Mechanical Behavior of a Pipe Subject to Buckling
Authors: H. Chenine, D. Ouinas, Z. Bennaceur
Abstract:
The thin shell structures like metal are particularly susceptible to buckling or geometric instability. Their sizing is performed by resorting to simplified rules, this approach is generally conservative. Indeed, these structures are very sensitive to the slightest imperfection shape (initial geometrical defects). The design is usually based on the knowledge of the real or perceived initial state. Now this configuration evolves over time, there is usually the addition of new deformities due to operation (accidental loads, creep), but also to loss of material located in the corroded areas. Taking into account these various damage generally led to a loss of bearing capacity. In order to preserve the charge potential of the structure, it is then necessary to find a different material. In our study, we plan to replace the material used for reservoirs found in the company Sonatrach with a composite material made from carbon fiber or glass. 6 to 12 layers of composite are simply stuck. Research is devoted to the study of the buckling of multilayer shells subjected to an imposed displacement, allowed us to identify the key parameters and those whose effect is less. For all results, we find that the carbon epoxy T700E is the strongest, increasing the number of layers increases the strength of the shell.Keywords: finite element analysis, circular notches, buckling, tank made composite materials
Procedia PDF Downloads 220573 Buckling a Reservoir Composite Provided with Notches
Authors: H. Chenine, D. Ouinas, Z. Bennaceur
Abstract:
The thin shell structures like metal are particularly susceptible to buckling or geometric instability. Their sizing is performed by resorting to simplified rules, this approach is generally conservative. Indeed, these structures are very sensitive to the slightest imperfection shape (initial geometrical defects). The design is usually based on the knowledge of the real or perceived initial state. Now this configuration evolves over time, there is usually the addition of new deformities due to operation (accidental loads, creep), but also to loss of material located in the corroded areas. Taking into account these various damage generally led to a loss of bearing capacity. In order to preserve the charge potential of the structure, it is then necessary to find a different material. In our study we plan to replace the material used for reservoirs found in the company Sonatrach with a composite material made from carbon fiber or glass. 6 to 12 layers of composite are simply stuck. Research is devoted to the study of the buckling of multilayer shells subjected to an imposed displacement, allowed us to identify the key parameters and those whose effect is less. For all results, we find that the carbon epoxy T700E is the strongest, increasing the number of layers increases the strength of the shell.Keywords: Finite Element Analysis, circular notches, buckling, tank made composite materials
Procedia PDF Downloads 361572 Computational Analysis of the Scaling Effects on the Performance of an Axial Compressor
Authors: Junting Xiang, Jörg Uwe Schlüter, Fei Duan
Abstract:
The miniaturization of gas turbines promises many advantages. Miniature gas turbines can be used for local power generation or the propulsion of small aircraft, such as UAV and MAV. However, experience shows that the miniaturization of conventional gas turbines, which are optimized at their current large size, leads to a substantial loss of efficiency and performance at smaller scales. This may be due to a number of factors, such as the Reynolds-number effect, the increased heat transfer, and manufacturing tolerances. In the present work, we focus on computational investigations of the Reynolds number effect and the wall heat transfer on the performance of axial compressor during its size change. The NASA stage 35 compressors are selected as the configuration in this study and Computational Fluid Dynamics (CFD) is used to carry out the miniaturization process and simulations. We perform parameter studies on the effect of Reynolds number and wall thermal conditions. Our results indicate a decrease of efficiency, if the compressor is miniaturized based on its original geometry due to the increase of viscous effects. The increased heat transfer through wall has only a small effect and will actually benefit compressor performance based on our study.Keywords: axial compressor, CFD, heat transfer, miniature gas turbines, Reynolds number
Procedia PDF Downloads 420571 A 3kW Grid Connected Residential Energy Storage System with PV and Li-Ion Battery
Authors: Moiz Masood Syed, Seong-Jun Hong, Geun-Hie Rim, Kyung-Ae Cho, Hyoung-Suk Kim
Abstract:
In the near future, energy storage will play a vital role to enhance the present changing technology. Energy storage with power generation becomes necessary when renewable energy sources are connected to the grid which consequently adjoins to the total energy in the system since utilities require more power when peak demand occurs. This paper describes the operational function of a 3 kW grid-connected residential Energy Storage System (ESS) which is connected with Photovoltaic (PV) at its input side. The system can perform bidirectional functions of charging from the grid and discharging to the grid when power demand becomes high and low respectively. It consists of PV module, Power Conditioning System (PCS) containing a bidirectional DC/DC Converter and bidirectional DC/AC inverter and a Lithium-ion battery pack. ESS Configuration, specifications, and control are described. The bidirectional DC/DC converter tracks the maximum power point (MPPT) and maintains the stability of PV array in case of power deficiency to fulfill the load requirements. The bidirectional DC/AC inverter has good voltage regulation properties like low total harmonic distortion (THD), low electromagnetic interference (EMI), faster response and anti-islanding characteristics. Experimental results satisfy the effectiveness of the proposed system.Keywords: energy storage system, photovoltaic, DC/DC converter, DC/AC inverter
Procedia PDF Downloads 644570 Analysis of Moment Rotation Curve for Steel Beam Column Joint
Authors: A. J. Shah, G. R. Vesmawala
Abstract:
Connections perform a fundamental role in the steel structures as global behaviour. In order to evaluate the real influence of the physical and geometrical parameters that control their behaviour, many experimental tests and analysis have been developed but a definitive answer to the problem in question still stands. Here, various configurations of bolts were tried and the resulting moment rotation (M-θ) curves were plotted. The connection configuration is such that two bolts are located above each of the flanges and beside each of the webs. The model considers the combined effects of prying action, the formation of yield lines, and failures due to punching shear and beam section failure. For many types of connections, the stiffness at the service load level falls somewhere in between the fully restrained and simple limits and designers need to account for its behaviour. The (M-θ) curves are generally assumed to be the best characterization of connection behaviour. The moment rotation curves are generally derived from experiments on cantilever type specimens. The moments are calculated directly from the statics of the specimen, while the rotations are measured over a distance typically equal to the point of loading. Thus, this paper establishes the relationship between M-θ behaviour of different types of connections tested and presents the relative strength of various possible arrangements of bolts.Keywords: bolt, moment, rotation, stiffness, connections
Procedia PDF Downloads 395569 Non-Linear Numerical Modeling of the Interaction of Twin Tunnels-Structure
Authors: A. Bayoumi, M. Abdallah, F. Hage Chehade
Abstract:
Structures on the ground surface bear impact from the tunneling-induced settlement, especially when twin tunnels are constructed. The tunneling influence on the structure is considered as a critical issue based on the construction procedure and relative position of tunnels. Lebanon is suffering from a traffic phenomenon caused by the lack of transportation systems. After several traffic counts and geotechnical investigations in Beirut city, efforts aim for the construction of tunneling systems. In this paper, we present a non-linear numerical modeling of the effect of the twin tunnels constructions on the structures located at soil surface for a particular site in Beirut. A parametric study, which concerns the geometric configuration of tunnels, the distance between their centers, the construction order, and the position of the structure, is performed. The tunnel-soil-structure interaction is analyzed by using the non-linear finite element modeling software PLAXIS 2D. The results of the surface settlement and the bending moment of the structure reveal significant influence when the structure is moved away, especially in vertical aligned tunnels.Keywords: bending moment, elastic modulus, horizontal twin tunnels, soil, structure location, surface settlement, vertical twin tunnels
Procedia PDF Downloads 301568 The Effect of Normal Cervical Sagittal Configuration in the Management of Cervicogenic Dizziness: A 1-Year Randomized Controlled Study
Authors: Moustafa Ibrahim Moustafa
Abstract:
The purpose of this study was to determine the immediate and long term effects of a multimodal program, with the addition of cervical sagittal curve restoration and forward head correction, on severity of dizziness, disability, frequency of dizziness, and severity of cervical pain. 72 patients with cervicogenic dizziness, definite hypolordotic cervical spine, and forward head posture were randomized to experimental or a control group. Both groups received the multimodal program, additionally, the study group received the Denneroll cervical traction. All outcome measures were measured at three intervals. The general linear model indicated a significant group × time effects in favor of experimental group on measures of anterior head translation (F=329.4 P < .0005), cervical lordosis (F=293.7 P < .0005), severity of dizziness (F=262.1 P < .0005), disability (F=248.9 P < .0005), frequency of dizziness (F=53.9 P < .0005), and severity of cervical pain (F=350.1 P < .0005). The addition of Dennroll cervical traction to a multimodal program can positively affect dizziness management outcomes.Keywords: randomized controlled trial, traction, dizziness, cervical
Procedia PDF Downloads 314567 Lightweight Cryptographically Generated Address for IPv6 Neighbor Discovery
Authors: Amjed Sid Ahmed, Rosilah Hassan, Nor Effendy Othman
Abstract:
Limited functioning of the Internet Protocol version 4 (IPv4) has necessitated the development of the Internetworking Protocol next generation (IPng) to curb the challenges. Indeed, the IPng is also referred to as the Internet Protocol version 6 (IPv6) and includes the Neighbor Discovery Protocol (NDP). The latter performs the role of Address Auto-configuration, Router Discovery (RD), and Neighbor Discovery (ND). Furthermore, the role of the NDP entails redirecting the service, detecting the duplicate address, and detecting the unreachable services. Despite the fact that there is an NDP’s assumption regarding the existence of trust the links’ nodes, several crucial attacks may affect the Protocol. Internet Engineering Task Force (IETF) therefore has recommended implementation of Secure Neighbor Discovery Protocol (SEND) to tackle safety issues in NDP. The SEND protocol is mainly used for validation of address rights, malicious response inhibiting techniques and finally router certification procedures. For routine running of these tasks, SEND utilizes on the following options, Cryptographically Generated Address (CGA), RSA Signature, Nonce and Timestamp option. CGA is produced at extra high costs making it the most notable disadvantage of SEND. In this paper a clear description of the constituents of CGA, its operation and also recommendations for improvements in its generation are given.Keywords: CGA, IPv6, NDP, SEND
Procedia PDF Downloads 389566 Variable Shunt Reactors for Reactive Power Compensation of HV Subsea Cables
Authors: Saeed A. AlGhamdi, Nabil Habli, Vinoj Somasanran
Abstract:
This paper presents an application of 230 kV Variable Shunt Reactors (VSR) used to compensate reactive power of dual 90 KM subsea cables. VSR integrates an on-load tap changer (OLTC) that adjusts reactive power compensation to maintain acceptable bus voltages under variable load profile and network configuration. An automatic voltage regulator (AVR) or a power management system (PMS) that allows VSR rating to be changed in discrete steps typically controls the OLTC. Typical regulation range start as minimum as 20% up to 100% and are available for systems up to 550kV. The regulation speed is normally in the order of seconds per step and approximately a minute from maximum to minimum rating. VSR can be bus or line connected depending on line/cable length and compensation requirements. The flexible reactive compensation ranges achieved by recent VSR technologies have enabled newer facilities design to deploy line connected VSR through either disconnect switches, which saves space and cost, or through circuit breakers. Lines with VSR are typically energized with lower taps (reduced reactive compensation) to minimize or remove the presence of delayed zero crossing.Keywords: power management, reactive power, subsea cables, variable shunt reactors
Procedia PDF Downloads 257565 Large Amplitude Free Vibration of a Very Sag Marine Cable
Authors: O. Punjarat, S. Chucheepsakul, T. Phanyasahachart
Abstract:
This paper focuses on a variational formulation of large amplitude free vibration behavior of a very sag marine cable. In the static equilibrium state, the marine cable has a very large sag configuration. In the motion state, the marine cable is assumed to vibrate in in-plane motion with large amplitude from the static equilibrium position. The total virtual work-energy of the marine cable at the dynamic state is formulated which involves the virtual strain energy due to axial deformation, the virtual work done by effective weight, and the inertia forces. The equations of motion for the large amplitude free vibration of marine cable are obtained by taking into account the difference between the Euler’s equation in the static state and the displaced state. Based on the Galerkin finite element procedure, the linear and nonlinear stiffness matrices, and mass matrices of the marine cable are obtained and the eigenvalue problem is solved. The natural frequency spectrum and the large amplitude free vibration behavior of marine cable are presented.Keywords: axial deformation, free vibration, Galerkin finite element method, large amplitude, variational method
Procedia PDF Downloads 257564 Component Interface Formalization in Robotic Systems
Authors: Anton Hristozov, Eric Matson, Eric Dietz, Marcus Rogers
Abstract:
Components are heavily used in many software systems, including robotics systems. The growth of sophistication and diversity of new capabilities for robotic systems presents new challenges to their architectures. Their complexity is growing exponentially with the advent of AI, smart sensors, and the complex tasks they have to accomplish. Such complexity requires a more rigorous approach to the creation, use, and interoperability of software components. The issue is exacerbated because robotic systems are becoming more and more reliant on third-party components for certain functions. In order to achieve this kind of interoperability, including dynamic component replacement, we need a way to standardize their interfaces. A formal approach is desperately needed to specify what an interface of a robotic software component should contain. This study performs an analysis of the issue and presents a universal and generic approach to standardizing component interfaces for robotic systems. Our approach is inspired by well-established robotic architectures such as ROS, PX4, and Ardupilot. The study is also applicable to other software systems that share similar characteristics with robotic systems. We consider the use of JSON or Domain Specific Languages (DSL) development with tools such as Antlr and automatic code and configuration file generation for frameworks such as ROS and PX4. A case study with ROS2 is presented as a proof of concept for the proposed methodology.Keywords: CPS, robots, software architecture, interface, ROS, autopilot
Procedia PDF Downloads 96563 Investigation into Micro-Grids with Renewable Energy Sources for Use as High Reliability Electrical Power Supply in a Nuclear Facility
Authors: Gerard R. Lekhema, Willie A Cronje, Ian Korir
Abstract:
The objective of this research work is to investigate the use of a micro-grid system to improve the reliability and availability of emergency electrical power in a nuclear facility. The nuclear facility is a safety-critical application that requires reliable electrical power for safe startup, operation and normal or emergency shutdown conditions. The majority of the nuclear facilities around the world utilize diesel generators as emergency power supply during loss of offsite power events. This study proposes the micro-grid system with distributed energy sources and energy storage systems for use as emergency power supply. The systems analyzed include renewable energy sources, decay heat recovery system and large scale energy storage system. The configuration of the micro-grid system is realized with guidelines of nuclear safety standards and requirements. The investigation results presented include performance analysis of the micro-grid system in terms of reliability and availability.Keywords: emergency power supply, micro-grid, nuclear facility, renewable energy sources
Procedia PDF Downloads 398