Search results for: computational calculations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2873

Search results for: computational calculations

2423 Computational Linguistic Implications of Gender Bias: Machines Reflect Misogyny in Society

Authors: Irene Yi

Abstract:

Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Computational linguistics is a growing field dealing with such issues of data collection for technological development. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Computational analysis on such linguistic data is used to find patterns of misogyny. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.

Keywords: computational analysis, gendered grammar, misogynistic language, neural networks

Procedia PDF Downloads 119
2422 A Non-linear Damage Model For The Annulus Of the Intervertebral Disc Under Cyclic Loading, Including Recovery

Authors: Shruti Motiwale, Xianlin Zhou, Reuben H. Kraft

Abstract:

Military and sports personnel are often required to wear heavy helmets for extended periods of time. This leads to excessive cyclic loads on the neck and an increased chance of injury. Computational models offer one approach to understand and predict the time progression of disc degeneration under severe cyclic loading. In this paper, we have applied an analytic non-linear damage evolution model to estimate damage evolution in an intervertebral disc due to cyclic loads over decade-long time periods. We have also proposed a novel strategy for inclusion of recovery in the damage model. Our results show that damage only grows 20% in the initial 75% of the life, growing exponentially in the remaining 25% life. The analysis also shows that it is crucial to include recovery in a damage model.

Keywords: cervical spine, computational biomechanics, damage evolution, intervertebral disc, continuum damage mechanics

Procedia PDF Downloads 568
2421 Study of Crashworthiness Behavior of Thin-Walled Tube under Axial Loading by Using Computational Mechanics

Authors: M. Kamal M. Shah, Noorhifiantylaily Ahmad, O. Irma Wani, J. Sahari

Abstract:

This paper presents the computationally mechanics analysis of energy absorption for cylindrical and square thin wall tubed structure by using ABAQUS/explicit. The crashworthiness behavior of AISI 1020 mild steel thin-walled tube under axial loading has been studied. The influence effects of different model’s cross-section, as well as model length on the crashworthiness behavior of thin-walled tube, are investigated. The model was placed on loading platform under axial loading with impact velocity of 5 m/s to obtain the deformation results of each model under quasi-static loading. The results showed that model undergoes different deformation mode exhibits different energy absorption performance.

Keywords: axial loading, computational mechanics, energy absorption performance, crashworthiness behavior, deformation mode

Procedia PDF Downloads 441
2420 Ecological Networks: From Structural Analysis to Synchronization

Authors: N. F. F. Ebecken, G. C. Pereira

Abstract:

Ecological systems are exposed and are influenced by various natural and anthropogenic disturbances. They produce various effects and states seeking response symmetry to a state of global phase coherence or stability and balance of their food webs. This research project addresses the development of a computational methodology for modeling plankton food webs. The use of algorithms to establish connections, the generation of representative fuzzy multigraphs and application of technical analysis of complex networks provide a set of tools for defining, analyzing and evaluating community structure of coastal aquatic ecosystems, beyond the estimate of possible external impacts to the networks. Thus, this study aims to develop computational systems and data models to assess how these ecological networks are structurally and functionally organized, to analyze the types and degree of compartmentalization and synchronization between oscillatory and interconnected elements network and the influence of disturbances on the overall pattern of rhythmicity of the system.

Keywords: ecological networks, plankton food webs, fuzzy multigraphs, dynamic of networks

Procedia PDF Downloads 299
2419 The Analysis of Deceptive and Truthful Speech: A Computational Linguistic Based Method

Authors: Seham El Kareh, Miramar Etman

Abstract:

Recently, detecting liars and extracting features which distinguish them from truth-tellers have been the focus of a wide range of disciplines. To the author’s best knowledge, most of the work has been done on facial expressions and body gestures but only few works have been done on the language used by both liars and truth-tellers. This paper sheds light on four axes. The first axis copes with building an audio corpus for deceptive and truthful speech for Egyptian Arabic speakers. The second axis focuses on examining the human perception of lies and proving our need for computational linguistic-based methods to extract features which characterize truthful and deceptive speech. The third axis is concerned with building a linguistic analysis program that could extract from the corpus the inter- and intra-linguistic cues for deceptive and truthful speech. The program built here is based on selected categories from the Linguistic Inquiry and Word Count program. Our results demonstrated that Egyptian Arabic speakers on one hand preferred to use first-person pronouns and present tense compared to the past tense when lying and their lies lacked of second-person pronouns, and on the other hand, when telling the truth, they preferred to use the verbs related to motion and the nouns related to time. The results also showed that there is a need for bigger data to prove the significance of words related to emotions and numbers.

Keywords: Egyptian Arabic corpus, computational analysis, deceptive features, forensic linguistics, human perception, truthful features

Procedia PDF Downloads 206
2418 Two-Dimensional Modeling of Spent Nuclear Fuel Using FLUENT

Authors: Imane Khalil, Quinn Pratt

Abstract:

In a nuclear reactor, an array of fuel rods containing stacked uranium dioxide pellets clad with zircalloy is the heat source for a thermodynamic cycle of energy conversion from heat to electricity. After fuel is used in a nuclear reactor, the assemblies are stored underwater in a spent nuclear fuel pool at the nuclear power plant while heat generation and radioactive decay rates decrease before it is placed in packages for dry storage or transportation. A computational model of a Boiling Water Reactor spent fuel assembly is modeled using FLUENT, the computational fluid dynamics package. Heat transfer simulations were performed on the two-dimensional 9x9 spent fuel assembly to predict the maximum cladding temperature for different input to the FLUENT model. Uncertainty quantification is used to predict the heat transfer and the maximum temperature profile inside the assembly.

Keywords: spent nuclear fuel, conduction, heat transfer, uncertainty quantification

Procedia PDF Downloads 220
2417 Modeling of Hot Casting Technology of Beryllium Oxide Ceramics with Ultrasonic Activation

Authors: Zamira Sattinova, Tassybek Bekenov

Abstract:

The article is devoted to modeling the technology of hot casting of beryllium oxide ceramics. The stages of ultrasonic activation of beryllium oxide slurry in the plant vessel to improve the rheological property, hot casting in the moulding cavity with cooling and solidification of the casting are described. Thermoplastic slurry (hereinafter referred to as slurry) shows the rheology of a non-Newtonian fluid with yield and plastic viscosity. Cooling-solidification of the slurry in the forming cavity occurs in the liquid, taking into account crystallization and solid state. In this work is the method of calculation of hot casting of the slurry using the method of effective molecular viscosity of viscoplastic fluid. It is shown that the slurry near the cooled wall is in a state of crystallization and plasticity, and the rest may still be in the liquid phase. Nonuniform distribution of temperature, density and concentration of kinetically free binder takes place along the cavity section. This leads to compensation of shrinkage by the influx of slurry from the liquid into the crystallization zones and plasticity of the castings. In the plasticity zone, the shrinkage determined by the concentration of kinetically free binder is compensated under the action of the pressure gradient. The solidification mechanism, as well as the mechanical behavior of the casting mass during casting, the rheological and thermophysical properties of the thermoplastic BeO slurry due to ultrasound exposure have not been well studied. Nevertheless, experimental data allow us to conclude that the effect of ultrasonic vibrations on the slurry mass leads to it: a change in structure, an increase in technological properties, a decrease in heterogeneity and a change in rheological properties. In the course of experiments, the effect of ultrasonic treatment and its duration on the change in viscosity and ultimate shear stress of the slurry depending on temperature (55-75℃) and the mass fraction of the binder (10 - 11.7%) have been studied. At the same time, changes in these properties before and after ultrasound exposure have been analyzed, as well as the nature of the flow in the system under study. The experience of operating the unit with ultrasonic impact has shown that at the same time, the casting capacity of the slurry increases by an average of 15%, and the viscosity decreases by more than half. Experimental study of physicochemical properties and phase change with simultaneous consideration of all factors affecting the quality of products in the process of continuous casting is labor-intensive. Therefore, an effective way to control the physical processes occurring in the formation of articles with predetermined properties and shapes is to simulate the process and determine its basic characteristics. The results of the calculations show the whole stage of hot casting of beryllium oxide slurry, taking into account the change in its state of aggregation. Ultrasonic treatment improves rheological properties and increases the fluidity of the slurry in the forming cavity. Calculations show the influence of velocity, temperature factors and structural data of the cavity on the cooling-solidification process of the casting. In the calculations, conditions for molding with shrinkage of the slurry by hot casting have been found, which makes it possible to obtain a solidifying product with a uniform beryllium oxide structure at the outlet of the cavity.

Keywords: hot casting, thermoplastic slurry molding, shrinkage, beryllium oxide

Procedia PDF Downloads 22
2416 Static vs. Stream Mining Trajectories Similarity Measures

Authors: Musaab Riyadh, Norwati Mustapha, Dina Riyadh

Abstract:

Trajectory similarity can be defined as the cost of transforming one trajectory into another based on certain similarity method. It is the core of numerous mining tasks such as clustering, classification, and indexing. Various approaches have been suggested to measure similarity based on the geometric and dynamic properties of trajectory, the overlapping between trajectory segments, and the confined area between entire trajectories. In this article, an evaluation of these approaches has been done based on computational cost, usage memory, accuracy, and the amount of data which is needed in advance to determine its suitability to stream mining applications. The evaluation results show that the stream mining applications support similarity methods which have low computational cost and memory, single scan on data, and free of mathematical complexity due to the high-speed generation of data.

Keywords: global distance measure, local distance measure, semantic trajectory, spatial dimension, stream data mining

Procedia PDF Downloads 396
2415 Dynamic Process Model for Designing Smart Spaces Based on Context-Awareness and Computational Methods Principles

Authors: Heba M. Jahin, Ali F. Bakr, Zeyad T. Elsayad

Abstract:

As smart spaces can be defined as any working environment which integrates embedded computers, information appliances and multi-modal sensors to remain focused on the interaction between the users, their activity, and their behavior in the space; hence, smart space must be aware of their contexts and automatically adapt to their changing context-awareness, by interacting with their physical environment through natural and multimodal interfaces. Also, by serving the information used proactively. This paper suggests a dynamic framework through the architectural design process of the space based on the principles of computational methods and context-awareness principles to help in creating a field of changes and modifications. It generates possibilities, concerns about the physical, structural and user contexts. This framework is concerned with five main processes: gathering and analyzing data to generate smart design scenarios, parameters, and attributes; which will be transformed by coding into four types of models. Furthmore, connecting those models together in the interaction model which will represent the context-awareness system. Then, transforming that model into a virtual and ambient environment which represents the physical and real environments, to act as a linkage phase between the users and their activities taking place in that smart space . Finally, the feedback phase from users of that environment to be sure that the design of that smart space fulfill their needs. Therefore, the generated design process will help in designing smarts spaces that can be adapted and controlled to answer the users’ defined goals, needs, and activity.

Keywords: computational methods, context-awareness, design process, smart spaces

Procedia PDF Downloads 331
2414 Capacitance Models of AlGaN/GaN High Electron Mobility Transistors

Authors: A. Douara, N. Kermas, B. Djellouli

Abstract:

In this study, we report calculations of gate capacitance of AlGaN/GaN HEMTs with nextnano device simulation software. We have used a physical gate capacitance model for III-V FETs that incorporates quantum capacitance and centroid capacitance in the channel. These simulations explore various device structures with different values of barrier thickness and channel thickness. A detailed understanding of the impact of gate capacitance in HEMTs will allow us to determine their role in future 10 nm physical gate length node.

Keywords: gate capacitance, AlGaN/GaN, HEMTs, quantum capacitance, centroid capacitance

Procedia PDF Downloads 396
2413 Numerical Investigation of Pressure and Velocity Field Contours of Dynamics of Drop Formation

Authors: Pardeep Bishnoi, Mayank Srivastava, Mrityunjay Kumar Sinha

Abstract:

This article represents the numerical investigation of the pressure and velocity field variation of the dynamics of pendant drop formation through a capillary tube. Numerical simulations are executed using volume of fluid (VOF) method in the computational fluid dynamics (CFD). In this problem, Non Newtonian fluid is considered as dispersed fluid whereas air is considered as a continuous fluid. Pressure contours at various time steps expose that pressure varies nearly hydrostatically at each step of the dynamics of drop formation. A result also shows the pressure variation of the liquid droplet during free fall in the computational domain. The evacuation of the fluid from the necking region is also shown by the contour of the velocity field. The role of surface tension in the Pressure contour of the dynamics of drop formation is also studied.

Keywords: pressure contour, surface tension, volume of fluid, velocity field

Procedia PDF Downloads 405
2412 Computational Fluid Dynamics Simulation of Turbulent Convective Heat Transfer in Rectangular Mini-Channels for Rocket Cooling Applications

Authors: O. Anwar Beg, Armghan Zubair, Sireetorn Kuharat, Meisam Babaie

Abstract:

In this work, motivated by rocket channel cooling applications, we describe recent CFD simulations of turbulent convective heat transfer in mini-channels at different aspect ratios. ANSYS FLUENT software has been employed with a mean average error of 5.97% relative to Forrest’s MIT cooling channel study (2014) at a Reynolds number of 50,443 with a Prandtl number of 3.01. This suggests that the simulation model created for turbulent flow was suitable to set as a foundation for the study of different aspect ratios in the channel. Multiple aspect ratios were also considered to understand the influence of high aspect ratios to analyse the best performing cooling channel, which was determined to be the highest aspect ratio channels. Hence, the approximate 28:1 aspect ratio provided the best characteristics to ensure effective cooling. A mesh convergence study was performed to assess the optimum mesh density to collect accurate results. Hence, for this study an element size of 0.05mm was used to generate 579,120 for proper turbulent flow simulation. Deploying a greater bias factor would increase the mesh density to the furthest edges of the channel which would prove to be useful if the focus of the study was just on a single side of the wall. Since a bulk temperature is involved with the calculations, it is essential to ensure a suitable bias factor is used to ensure the reliability of the results. Hence, in this study we have opted to use a bias factor of 5 to allow greater mesh density at both edges of the channel. However, the limitations on mesh density and hardware have curtailed the sophistication achievable for the turbulence characteristics. Also only linear rectangular channels were considered, i.e. curvature was ignored. Furthermore, we only considered conventional water coolant. From this CFD study the variation of aspect ratio provided a deeper appreciation of the effect of small to high aspect ratios with regard to cooling channels. Hence, when considering an application for the channel, the geometry of the aspect ratio must play a crucial role in optimizing cooling performance.

Keywords: rocket channel cooling, ANSYS FLUENT CFD, turbulence, convection heat transfer

Procedia PDF Downloads 150
2411 Unveiling the Potential of MoSe₂ for Toxic Gas Sensing: Insights from Density Functional Theory and Non-equilibrium Green’s Function Calculations

Authors: Si-Jie Ji, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

With the rapid development of industrialization and urbanization, air pollution poses significant global environmental challenges, contributing to acid rain, global warming, and adverse health effects. Therefore, it is necessary to monitor the concentration of toxic gases in the atmospheric environment in real-time and to deploy cost-effective gas sensors capable of detecting their emissions. In this study, we systematically investigated the sensing capabilities of the two-dimensional MoSe₂ for seven key environmental gases (NO, NO₂, CO, CO₂, SO₂, SO₃, and O₂) using density functional theory (DFT) and non-equilibrium Green’s function (NEGF) calculations. We also investigated the impact of H₂O as an interfering gas. Our results indicate that the MoSe₂ monolayer is thermodynamically stable and exhibits strong gas-sensing capabilities. The calculated adsorption energies indicate that these gases can stably adsorb on MoSe₂, with SO₃ exhibiting the strongest adsorption energy (-0.63 eV). Electronic structure analysis, including projected density of states (PDOS) and Bader charge analysis, demonstrates significant changes in the electronic properties of MoSe₂ upon gas adsorption, affecting its conductivity and sensing performance. We find that oxygen (O₂) adsorption notably influenced the deformation of MoSe₂. To comprehensively understand the potential of MoSe₂ as a gas sensor, we used the NEGF method to assess the electronic transport properties of MoSe₂ under gas adsorption, evaluating current-voltage (I-V), resistance-voltage (R-V) characteristics, and transmission spectra to determine sensitivity, selectivity, and recovery time compared to pristine MoSe₂. Sensitivity, selectivity, and recovery time are analyzed at a bias voltage of 1.7V, showing excellent performance of MoSe₂ in detecting SO₃, among other gases. The pronounced changes in electronic transport behavior induced by SO₃ adsorption confirm MoSe₂’s strong potential as a high-performance gas-sensing material. Overall, this theoretical study provides new insights into the development of high-performance gas sensors, demonstrating the potential of MoSe₂ as a gas-sensing material, particularly for gases like SO₃.

Keywords: density functional theory, gas sensing, MoSe₂, non-equilibrium Green’s function, SO

Procedia PDF Downloads 21
2410 Modeling and Simulation of the Structural, Electronic and Magnetic Properties of Fe-Ni Based Nanoalloys

Authors: Ece A. Irmak, Amdulla O. Mekhrabov, M. Vedat Akdeniz

Abstract:

There is a growing interest in the modeling and simulation of magnetic nanoalloys by various computational methods. Magnetic crystalline/amorphous nanoparticles (NP) are interesting materials from both the applied and fundamental points of view, as their properties differ from those of bulk materials and are essential for advanced applications such as high-performance permanent magnets, high-density magnetic recording media, drug carriers, sensors in biomedical technology, etc. As an important magnetic material, Fe-Ni based nanoalloys have promising applications in the chemical industry (catalysis, battery), aerospace and stealth industry (radar absorbing material, jet engine alloys), magnetic biomedical applications (drug delivery, magnetic resonance imaging, biosensor) and computer hardware industry (data storage). The physical and chemical properties of the nanoalloys depend not only on the particle or crystallite size but also on composition and atomic ordering. Therefore, computer modeling is an essential tool to predict structural, electronic, magnetic and optical behavior at atomistic levels and consequently reduce the time for designing and development of new materials with novel/enhanced properties. Although first-principles quantum mechanical methods provide the most accurate results, they require huge computational effort to solve the Schrodinger equation for only a few tens of atoms. On the other hand, molecular dynamics method with appropriate empirical or semi-empirical inter-atomic potentials can give accurate results for the static and dynamic properties of larger systems in a short span of time. In this study, structural evolutions, magnetic and electronic properties of Fe-Ni based nanoalloys have been studied by using molecular dynamics (MD) method in Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and Density Functional Theory (DFT) in the Vienna Ab initio Simulation Package (VASP). The effects of particle size (in 2-10 nm particle size range) and temperature (300-1500 K) on stability and structural evolutions of amorphous and crystalline Fe-Ni bulk/nanoalloys have been investigated by combining molecular dynamic (MD) simulation method with Embedded Atom Model (EAM). EAM is applicable for the Fe-Ni based bimetallic systems because it considers both the pairwise interatomic interaction potentials and electron densities. Structural evolution of Fe-Ni bulk and nanoparticles (NPs) have been studied by calculation of radial distribution functions (RDF), interatomic distances, coordination number, core-to-surface concentration profiles as well as Voronoi analysis and surface energy dependences on temperature and particle size. Moreover, spin-polarized DFT calculations were performed by using a plane-wave basis set with generalized gradient approximation (GGA) exchange and correlation effects in the VASP-MedeA package to predict magnetic and electronic properties of the Fe-Ni based alloys in bulk and nanostructured phases. The result of theoretical modeling and simulations for the structural evolutions, magnetic and electronic properties of Fe-Ni based nanostructured alloys were compared with experimental and other theoretical results published in the literature.

Keywords: density functional theory, embedded atom model, Fe-Ni systems, molecular dynamics, nanoalloys

Procedia PDF Downloads 243
2409 Aerodynamic Heating Analysis of Hypersonic Flow over Blunt-Nosed Bodies Using Computational Fluid Dynamics

Authors: Aakash Chhunchha, Assma Begum

Abstract:

The qualitative aspects of hypersonic flow over a range of blunt bodies have been extensively analyzed in the past. It is well known that the curvature of a body’s geometry in the sonic region predominantly dictates the bow shock shape and its standoff distance from the body, while the surface pressure distribution depends on both the sonic region and on the local body shape. The present study is an extension to analyze the hypersonic flow characteristics over several blunt-nosed bodies using modern Computational Fluid Dynamics (CFD) tools to determine the shock shape and its effect on the heat flux around the body. 4 blunt-nosed models with cylindrical afterbodies were analyzed for a flow at a Mach number of 10 corresponding to the standard atmospheric conditions at an altitude of 50 km. The nose radii of curvature of the models range from a hemispherical nose to a flat nose. Appropriate numerical models and the supplementary convergence techniques that were implemented for the CFD analysis are thoroughly described. The flow contours are presented highlighting the key characteristics of shock wave shape, shock standoff distance and the sonic point shift on the shock. The variation of heat flux, due to different shock detachments for various models is comprehensively discussed. It is observed that the more the bluntness of the nose radii, the farther the shock stands from the body; and consequently, the less the surface heating at the nose. The results obtained from the CFD analyses are compared with approximated theoretical engineering correlations. Overall, a satisfactory agreement is observed between the two.

Keywords: aero-thermodynamics, blunt-nosed bodies, computational fluid dynamics (CFD), hypersonic flow

Procedia PDF Downloads 143
2408 On the Accuracy of Basic Modal Displacement Method Considering Various Earthquakes

Authors: Seyed Sadegh Naseralavi, Sadegh Balaghi, Ehsan Khojastehfar

Abstract:

Time history seismic analysis is supposed to be the most accurate method to predict the seismic demand of structures. On the other hand, the required computational time of this method toward achieving the result is its main deficiency. While being applied in optimization process, in which the structure must be analyzed thousands of time, reducing the required computational time of seismic analysis of structures makes the optimization algorithms more practical. Apparently, the invented approximate methods produce some amount of errors in comparison with exact time history analysis but the recently proposed method namely, Complete Quadratic Combination (CQC) and Sum Root of the Sum of Squares (SRSS) drastically reduces the computational time by combination of peak responses in each mode. In the present research, the Basic Modal Displacement (BMD) method is introduced and applied towards estimation of seismic demand of main structure. Seismic demand of sampled structure is estimated by calculation of modal displacement of basic structure (in which the modal displacement has been calculated). Shear steel sampled structures are selected as case studies. The error applying the introduced method is calculated by comparison of the estimated seismic demands with exact time history dynamic analysis. The efficiency of the proposed method is demonstrated by application of three types of earthquakes (in view of time of peak ground acceleration).

Keywords: time history dynamic analysis, basic modal displacement, earthquake-induced demands, shear steel structures

Procedia PDF Downloads 355
2407 Interactions between Sodium Aerosols and Fission Products: A Theoretical Chemistry and Experimental Approach

Authors: Ankita Jadon, Sidi Souvi, Nathalie Girault, Denis Petitprez

Abstract:

Safety requirements for Generation IV nuclear reactor designs, especially the new generation sodium-cooled fast reactors (SFR) require a risk-informed approach to model severe accidents (SA) and their consequences in case of outside release. In SFRs, aerosols are produced during a core disruptive accident when primary system sodium is ejected into the containment and burn in contact with the air; producing sodium aerosols. One of the key aspects of safety evaluation is the in-containment sodium aerosol behavior and their interaction with fission products. The study of the effects of sodium fires is essential for safety evaluation as the fire can both thermally damage the containment vessel and cause an overpressurization risk. Besides, during the fire, airborne fission product first dissolved in the primary sodium can be aerosolized or, as it can be the case for fission products, released under the gaseous form. The objective of this work is to study the interactions between sodium aerosols and fission products (Iodine, toxic and volatile, being the primary concern). Sodium fires resulting from an SA would produce aerosols consisting of sodium peroxides, hydroxides, carbonates, and bicarbonates. In addition to being toxic (in oxide form), this aerosol will then become radioactive. If such aerosols are leaked into the environment, they can pose a danger to the ecosystem. Depending on the chemical affinity of these chemical forms with fission products, the radiological consequences of an SA leading to containment leak tightness loss will also be affected. This work is split into two phases. Firstly, a method to theoretically understand the kinetics and thermodynamics of the heterogeneous reaction between sodium aerosols and fission products: I2 and HI are proposed. Ab-initio, density functional theory (DFT) calculations using Vienna ab-initio simulation package are carried out to develop an understanding of the surfaces of sodium carbonate (Na2CO3) aerosols and hence provide insight on its affinity towards iodine species. A comprehensive study of I2 and HI adsorption, as well as bicarbonate formation on the calculated lowest energy surface of Na2CO3, was performed which provided adsorption energies and description of the optimized configuration of adsorbate on the stable surface. Secondly, the heterogeneous reaction between (I2)g and Na2CO3 aerosols were investigated experimentally. To study this, (I2)g was generated by heating a permeation tube containing solid I2, and, passing it through a reaction chamber containing Na2CO3 aerosol deposit. The concentration of iodine was then measured at the exit of the reaction chamber. Preliminary observations indicate that there is an effective uptake of (I2)g on Na2CO3 surface, as suggested by our theoretical chemistry calculations. This work is the first step in addressing the gaps in knowledge of in-containment and atmospheric source term which are essential aspects of safety evaluation of SFR SA. In particular, this study is aimed to determine and characterize the radiological and chemical source term. These results will then provide useful insights for the developments of new models to be implemented in integrated computer simulation tool to analyze and evaluate SFR safety designs.

Keywords: iodine adsorption, sodium aerosols, sodium cooled reactor, DFT calculations, sodium carbonate

Procedia PDF Downloads 215
2406 Bio-Guided of Active New Alkaloids from Alstonia Brassi Toxicity Antitumour Activity in Silico and Molecular Modeling

Authors: Mesbah Khaled, Bouraoui Ouissal, Benkiniouar Rachid, Belkhiri Lotfi

Abstract:

Alstonia, which are tropical plants with a wide geographical distribution, have been divided into different sections by different authors based on previous studies of several species within the genus. Monachino divides Alstonia into 5 sections, while Pichon divides it into 3 sections. Several plants belonging to this genus, such as Alstonia brassii, have been used in traditional folk medicine to treat ailments such as fever, malaria and dysentery]. Previous studies focusing on the chemical composition of these plants have successfully identified indol alkaloids with cytotoxic, anti-diabetic and anti-inflammatory properties. The newly discovered monomers are structurally similar to the backbones of picralin, affinisin and macrolin. On the other hand, all recently isolated dimeric compounds have a macrolin moiety. In this study, a computational analysis was performed on a series of novel molecules, including both monomeric and dimeric compounds with different structural frameworks. This investigation represents the first computational study of these molecules using an in silico approach incorporating 2D-QSAR data. The analysis involved various computational techniques, including 2D-QSAR modelling, molecular docking studies and subsequent validation by molecular dynamics simulation and assessment of ADMET properties. The chemical composition was identified by 1D and 2D NMR. Eight new alkaloids were isolated, 5 monomers and 3 dimers. In this section, we focus on the biological activity of 4 new alkaloids belonging to two different skeletons, the affinisine skeleton.

Keywords: affinisine, talcarpine, macroline, cytotoxicity, alkaloids

Procedia PDF Downloads 350
2405 Assessment of Fluid Flow Hydrodynamics for Cylindrical and Conical Fluidized Bed Reactor

Authors: N. G. Thangan, A. B. Deoghare, P. M. Padole

Abstract:

Computational Fluid Dynamics (CFD) aids in modeling the prototype of a real world processes. CFD approach is useful in predicting the fluid flow, heat transfer mass transfer and other flow related phenomenon. In present study, hydrodynamic characteristics of gas-solid cylindrical fluidized bed is compared with conical fluidized beds. A 2D fluidized bed consists of different configurations of particle size of iron oxide, bed height and superficial velocities of nitrogen. Simulations are performed to capture the complex physics associated with it. The Eulerian multiphase model is prepared in ANSYS FLUENT v.14 which is used to simulate fluidization process. It is analyzed with nitrogen as primary phase and iron oxide as secondary phase. The bed hydrodynamics is assessed prominently to examine effect on fluidization time, pressure drop, minimum fluidization velocity, and gas holdup in the system.

Keywords: fluidized bed, bed hydrodynamics, Eulerian multiphase approach, computational fluid dynamics

Procedia PDF Downloads 452
2404 Numerical Investigation of the Operating Parameters of the Vertical Axis Wind Turbine

Authors: Zdzislaw Kaminski, Zbigniew Czyz, Tytus Tulwin

Abstract:

This paper describes the geometrical model, algorithm and CFD simulation of an airflow around a Vertical Axis Wind Turbine rotor. A solver, ANSYS Fluent, was applied for the numerical simulation. Numerical simulation, unlike experiments, enables us to validate project assumptions when it is designed to avoid a costly preparation of a model or a prototype for a bench test. This research focuses on the rotor designed according to patent no PL 219985 with its blades capable of modifying their working surfaces, i.e. absorbing wind kinetic energy. The operation of this rotor is based on a regulation of blade angle α between the top and bottom parts of blades mounted on an axis. If angle α increases, the working surface which absorbs wind kinetic energy also increases. CFD calculations enable us to compare aerodynamic characteristics of forces acting on rotor working surfaces and specify rotor operation parameters like torque or turbine assembly power output. This paper is part of the research to improve an efficiency of a rotor assembly and it contains investigation of the impact of a blade angle of wind turbine working blades on the power output as a function of rotor torque, specific rotational speed and wind speed. The simulation was made for wind speeds ranging from 3.4 m/s to 6.2 m/s and blade angles of 30°, 60°, 90°. The simulation enables us to create a mathematical model to describe how aerodynamic forces acting each of the blade of the studied rotor are generated. Also, the simulation results are compared with the wind tunnel ones. This investigation enables us to estimate the growth in turbine power output if a blade angle changes. The regulation of blade angle α enables a smooth change in turbine rotor power, which is a kind of safety measures if the wind is strong. Decreasing blade angle α reduces the risk of damaging or destroying a turbine that is still in operation and there is no complete rotor braking as it is in other Horizontal Axis Wind Turbines. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: computational fluid dynamics, mathematical model, numerical analysis, power, renewable energy, wind turbine

Procedia PDF Downloads 337
2403 Utilizing Grid Computing to Enhance Power Systems Performance

Authors: Rafid A. Al-Khannak, Fawzi M. Al-Naima

Abstract:

Power load is one of the most important controlling keys which decide power demands and illustrate power usage to shape power market. Hence, power load forecasting is the parameter which facilitates understanding and analyzing all these aspects. In this paper, power load forecasting is solved under MATLAB environment by constructing a neural network for the power load to find an accurate simulated solution with the minimum error. A developed algorithm to achieve load forecasting application with faster technique is the aim for this paper. The algorithm is used to enable MATLAB power application to be implemented by multi machines in the Grid computing system, and to accomplish it within much less time, cost and with high accuracy and quality. Grid Computing, the modern computational distributing technology, has been used to enhance the performance of power applications by utilizing idle and desired Grid contributor(s) by sharing computational power resources.

Keywords: DeskGrid, Grid Server, idle contributor(s), grid computing, load forecasting

Procedia PDF Downloads 474
2402 Computational Investigation of V599 Mutations of BRAF Protein and Its Control over the Therapeutic Outcome under the Malignant Condition

Authors: Mayank, Navneet Kaur, Narinder Singh

Abstract:

The V599 mutations in the BRAF protein are extremely oncogenic, responsible for countless of malignant conditions. Along with wild type, V599E, V599D, and V599R are the important mutated variants of the BRAF proteins. The BRAF inhibitory anticancer agents are continuously developing, and sorafenib is a BRAF inhibitor that is under clinical use. The crystal structure of sorafenib bounded to wild type, and V599 is known, showing a similar interaction pattern in both the case. The mutated 599th residue, in both the case, is also found not interacting directly with the co-crystallized sorafenib molecule. However, the IC50 value of sorafenib was found extremely different in both the case, i.e., 22 nmol/L for wild and 38 nmol/L for V599E protein. Molecular docking study and MMGBSA binding energy results also revealed a significant difference in the binding pattern of sorafenib in both the case. Therefore, to explore the role of distinctively situated 599th residue, we have further conducted comprehensive computational studies. The molecular dynamics simulation, residue interaction network (RIN) analysis, and residue correlation study results revealed the importance of the 599th residue on the therapeutic outcome and overall dynamic of the BRAF protein. Therefore, although the position of 599th residue is very much distinctive from the ligand-binding cavity of BRAF, still it has exceptional control over the overall functional outcome of the protein. The insight obtained here may seem extremely important and guide us while designing ideal BRAF inhibitory anticancer molecules.

Keywords: BRAF, oncogenic, sorafenib, computational studies

Procedia PDF Downloads 115
2401 Computational Fluid Dynamics Modeling of Liquefaction of Wood and It's Model Components Using a Modified Multistage Shrinking-Core Model

Authors: K. G. R. M. Jayathilake, S. Rudra

Abstract:

Wood degradation in hot compressed water is modeled with a Computational Fluid Dynamics (CFD) code using cellulose, xylan, and lignin as model compounds. Model compounds are reacted under catalyst-free conditions in a temperature range from 250 to 370 °C. Using a simplified reaction scheme where water soluble products, methanol soluble products, char like compounds and gas are generated through intermediates with each model compound. A modified multistage shrinking core model is developed to simulate particle degradation. In the modified shrinking core model, each model compound is hydrolyzed in separate stages. Cellulose is decomposed to glucose/oligomers before producing degradation products. Xylan is decomposed through xylose and then to degradation products where lignin is decomposed into soluble products before producing the total guaiacol, organic carbon (TOC) and then char and gas. Hydrolysis of each model compound is used as the main reaction of the process. Diffusion of water monomers to the particle surface to initiate hydrolysis and dissolution of the products in water is given importance during the modeling process. In the developed model the temperature variation depends on the Arrhenius relationship. Kinetic parameters from the literature are used for the mathematical model. Meanwhile, limited initial fast reaction kinetic data limit the development of more accurate CFD models. Liquefaction results of the CFD model are analyzed and validated using the experimental data available in the literature where it shows reasonable agreement.

Keywords: computational fluid dynamics, liquefaction, shrinking-core, wood

Procedia PDF Downloads 125
2400 Evaluation of the Adsorption Adaptability of Activated Carbon Using Dispersion Force

Authors: Masao Fujisawa, Hirohito Ikeda, Tomonori Ohata, Miho Yukawa, Hatsumi Aki, Takayoshi Kimura

Abstract:

We attempted to predict adsorption coefficients by utilizing dispersion energies. We performed liquid-phase free energy calculations based on gas-phase geometries of organic compounds using the DFT and studied the relationship between the adsorption of organic compounds by activated carbon and dispersion energies of the organic compounds. A linear correlation between absorption coefficients and dispersion energies was observed.

Keywords: activated carbon, adsorption, prediction, dispersion energy

Procedia PDF Downloads 233
2399 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization

Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın

Abstract:

There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.

Keywords: aircraft, fatigue, joint, life, optimization, prediction.

Procedia PDF Downloads 175
2398 Optimizing Quantum Machine Learning with Amplitude and Phase Encoding Techniques

Authors: Om Viroje

Abstract:

Quantum machine learning represents a frontier in computational technology, promising significant advancements in data processing capabilities. This study explores the significance of data encoding techniques, specifically amplitude and phase encoding, in this emerging field. By employing a comparative analysis methodology, the research evaluates how these encoding techniques affect the accuracy, efficiency, and noise resilience of quantum algorithms. Our findings reveal that amplitude encoding enhances algorithmic accuracy and noise tolerance, whereas phase encoding significantly boosts computational efficiency. These insights are crucial for developing robust quantum frameworks that can be effectively applied in real-world scenarios. In conclusion, optimizing encoding strategies is essential for advancing quantum machine learning, potentially transforming various industries through improved data processing and analysis.

Keywords: quantum machine learning, data encoding, amplitude encoding, phase encoding, noise resilience

Procedia PDF Downloads 13
2397 Anodic Stability of Li₆PS₅Cl/PEO Composite Polymer Electrolytes for All-Solid-State Lithium Batteries: A First-Principles Molecular Dynamics Study

Authors: Hao-Wen Chang, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

All-solid-state lithium batteries (ASSLBs) are increasingly recognized as a safer and more reliable alternative to conventional lithium-ion batteries due to their non-flammable nature and enhanced safety performance. ASSLBs utilize a range of solid-state electrolytes, including solid polymer electrolytes (SPEs), inorganic solid electrolytes (ISEs), and composite polymer electrolytes (CPEs). SPEs are particularly valued for their flexibility, ease of processing, and excellent interfacial compatibility with electrodes, though their ionic conductivity remains a significant limitation. ISEs, on the other hand, provide high ionic conductivity, broad electrochemical windows, and strong mechanical properties but often face poor interfacial contact with electrodes, impeding performance. CPEs, which merge the strengths of SPEs and ISEs, represent a compelling solution for next-generation ASSLBs by addressing both electrochemical and mechanical challenges. Despite their potential, the mechanisms governing lithium-ion transport within these systems remain insufficiently understood. In this study, we designed CPEs based on argyrodite-type Li₆PS₅Cl (LPSC) combined with two distinct polymer matrices: poly(ethylene oxide) (PEO) with 24.5 wt% lithium bis(trifluoromethane)sulfonimide (LiTFSI) and polycaprolactone (PCL) with 25.7 wt% LiTFSI. Through density functional theory (DFT) calculations, we investigated the interfacial chemistry of these materials, revealing critical insights into their stability and interactions. Additionally, ab initio molecular dynamics (AIMD) simulations of lithium electrodes interfaced with LPSC layers containing polymers and LiTFSI demonstrated that the polymer matrix significantly mitigates LPSC decomposition, compared to systems with only a lithium electrode and LPSC layers. These findings underscore the pivotal role of CPEs in improving the performance and longevity of ASSLBs, offering a promising path forward for next-generation energy storage technologies.

Keywords: all-solid-state lithium-ion batteries, composite solid electrolytes, DFT calculations, Li-ion transport

Procedia PDF Downloads 20
2396 Aerodynamic Analysis by Computational Fluids Dynamics in Building: Case Study

Authors: Javier Navarro Garcia, Narciso Vazquez Carretero

Abstract:

Eurocode 1, part 1-4, wind actions, includes in its article 1.5 the possibility of using numerical calculation methods to obtain information on the loads acting on a building. On the other hand, the analysis using computational fluids dynamics (CFD) in aerospace, aeronautical, and industrial applications is already in widespread use. The application of techniques based on CFD analysis on the building to study its aerodynamic behavior now opens a whole alternative field of possibilities for civil engineering and architecture; optimization of the results with respect to those obtained by applying the regulations, the possibility of obtaining information on pressures, speeds at any point of the model for each moment, the analysis of turbulence and the possibility of modeling any geometry or configuration. The present work compares the results obtained on a building, with respect to its aerodynamic behavior, from a mathematical model based on the analysis by CFD with the results obtained by applying Eurocode1, part1-4, wind actions. It is verified that the results obtained by CFD techniques suppose an optimization of the wind action that acts on the building with respect to the wind action obtained by applying the Eurocode1, part 1-4, wind actions. In order to carry out this verification, a 45m high square base truncated pyramid building has been taken. The mathematical model on CFD, based on finite volumes, has been calculated using the FLUENT commercial computer application using a scale-resolving simulation (SRS) type large eddy simulation (LES) turbulence model for an atmospheric boundary layer wind with turbulent component in the direction of the flow.

Keywords: aerodynamic, CFD, computacional fluids dynamics, computational mechanics

Procedia PDF Downloads 137
2395 Artificial Neural Network Based Parameter Prediction of Miniaturized Solid Rocket Motor

Authors: Hao Yan, Xiaobing Zhang

Abstract:

The working mechanism of miniaturized solid rocket motors (SRMs) is not yet fully understood. It is imperative to explore its unique features. However, there are many disadvantages to using common multi-objective evolutionary algorithms (MOEAs) in predicting the parameters of the miniaturized SRM during its conceptual design phase. Initially, the design variables and objectives are constrained in a lumped parameter model (LPM) of this SRM, which leads to local optima in MOEAs. In addition, MOEAs require a large number of calculations due to their population strategy. Although the calculation time for simulating an LPM just once is usually less than that of a CFD simulation, the number of function evaluations (NFEs) is usually large in MOEAs, which makes the total time cost unacceptably long. Moreover, the accuracy of the LPM is relatively low compared to that of a CFD model due to its assumptions. CFD simulations or experiments are required for comparison and verification of the optimal results obtained by MOEAs with an LPM. The conceptual design phase based on MOEAs is a lengthy process, and its results are not precise enough due to the above shortcomings. An artificial neural network (ANN) based parameter prediction is proposed as a way to reduce time costs and improve prediction accuracy. In this method, an ANN is used to build a surrogate model that is trained with a 3D numerical simulation. In design, the original LPM is replaced by a surrogate model. Each case uses the same MOEAs, in which the calculation time of the two models is compared, and their optimization results are compared with 3D simulation results. Using the surrogate model for the parameter prediction process of the miniaturized SRMs results in a significant increase in computational efficiency and an improvement in prediction accuracy. Thus, the ANN-based surrogate model does provide faster and more accurate parameter prediction for an initial design scheme. Moreover, even when the MOEAs converge to local optima, the time cost of the ANN-based surrogate model is much lower than that of the simplified physical model LPM. This means that designers can save a lot of time during code debugging and parameter tuning in a complex design process. Designers can reduce repeated calculation costs and obtain accurate optimal solutions by combining an ANN-based surrogate model with MOEAs.

Keywords: artificial neural network, solid rocket motor, multi-objective evolutionary algorithm, surrogate model

Procedia PDF Downloads 90
2394 Transition Metal Bis(Dicarbollide) Complexes in Design of Molecular Switches

Authors: Igor B. Sivaev

Abstract:

Design of molecular machines is an extraordinary growing and very important area of research that it was recognized by awarding Sauvage, Stoddart and Feringa the Nobel Prize in Chemistry in 2016 'for the design and synthesis of molecular machines'. Based on the type of motion being performed, molecular machines can be divided into two main types: molecular motors and molecular switches. Molecular switches are molecules or supramolecular complexes having bistability, i.e., the ability to exist in two or more stable forms, among which may be reversible transitions under external influence (heating, lighting, changing the medium acidity, the action of chemicals, exposure to magnetic or electric field). Molecular switches are the main structural element of any molecular electronics devices. Therefore, the design and the study of molecules and supramolecular systems capable of performing mechanical movement is an important and urgent problem of modern chemistry. There is growing interest in molecular switches and other devices of molecular electronics based on transition metal complexes; therefore choice of suitable stable organometallic unit is of great importance. An example of such unit is bis(dicarbollide) complexes of transition metals [3,3’-M(1,2-C₂B₉H₁₁)₂]ⁿ⁻. The control on the ligand rotation in such complexes can be reached by introducing substituents which could provide stabilization of certain rotamers due to specific interactions between the ligands, on the one hand, and which can participate as Lewis bases in complex formation with external metals resulting in a change in the rotation angle of the ligands, on the other hand. A series of isomeric methyl sulfide derivatives of cobalt bis(dicarbollide) complexes containing methyl sulfide substituents at boron atoms in different positions of the pentagonal face of the dicarbollide ligands [8,8’-(MeS)₂-3,3’-Co(1,2-C₂B₉H₁₀)₂]⁻, rac-[4,4’-(MeS)₂-3,3’-Co(1,2-C₂B₉H₁₀)₂]⁻ and meso-[4,7’-(MeS)₂-3,3’-Co(1,2-C₂B₉H₁₀)₂]⁻ were synthesized by the reaction of CoCl₂ with the corresponding methyl sulfide carborane derivatives [10-MeS-7,8-C₂B₉H₁₁)₂]⁻ and [10-MeS-7,8-C₂B₉H₁₁)₂]⁻. In the case of asymmetrically substituted cobalt bis(dicarbollide) complexes the corresponding rac- and meso-isomers were successfully separated by column chromatography as the tetrabutylammonium salts. The compounds obtained were studied by the methods of ¹H, ¹³C, and ¹¹B NMR spectroscopy, single crystal X-ray diffraction, cyclic voltammetry, controlled potential coulometry and quantum chemical calculations. It was found that in the solid state, the transoid- and gauche-conformations of the 8,8’- and 4,4’-isomers are stabilized by four intramolecular CH···S(Me)B hydrogen bonds each one (2.683-2.712 Å and 2.709-2.752 Å, respectively), whereas gauche-conformation of the 4,7’-isomer is stabilized by two intramolecular CH···S hydrogen bonds (2.699-2.711 Å). The existence of the intramolecular CH·S(Me)B hydrogen bonding in solutions was supported by the 1H NMR spectroscopy. These data are in a good agreement with results of the quantum chemical calculations. The corresponding iron and nickel complexes were synthesized as well. The reaction of the methyl sulfide derivatives of cobalt bis(dicarbollide) with various labile transition metal complexes results in rupture of intramolecular hydrogen bonds and complexation of the methyl sulfide groups with external metal. This results in stabilization of other rotational conformation of cobalt bis(dicarbollide) and can be used in design of molecular switches. This work was supported by the Russian Science Foundation (16-13-10331).

Keywords: molecular switches, NMR spectroscopy, single crystal X-ray diffraction, transition metal bis(dicarbollide) complexes, quantum chemical calculations

Procedia PDF Downloads 172