Search results for: atmospheric circulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1011

Search results for: atmospheric circulation

561 Effects of Injection of eCG and Oxytocin on Semen Characteristics of Zel Rams in Nonbreeding Season

Authors: Khosro Ghazvinian, Reza Narenji Sani, Touba Khodaiean, Melika Moezifar

Abstract:

Many previous studies have reported that eCG was effective for completing spermatogenesis. In mice, eCG increased testes weight. In addition, Oxytocin (OT) was important in sperm transition and sperm motility in domestic animals. Peripheral circulation of OT also, was increased during sex incitement and ejaculation The objective of this study was to investigate the effect of IM injection of eCG and OT on semen characteristics in Zel rams in out of breeding season. Eighteen 3-year-old Zel adult rams were randomly divided into five equal groups (control and four treatment groups). 0.9% NaCl (1 ml) was injected IM into each ram in the control group, whereas eCG was administered IM at a single dose of 400 IU and 600 IU to each ram in the two eCG treatment groups and OT was administered IM at a single dose of 5 IU and 10 IU to each ram in the other two OT treatment groups. Semen samples were taken by an electroejaculator from all rams 10 min after the IM injection of 0.9% NaCl, eCG, or OT. eCG did not alter semen volume, and OT did not alter sperm motility or abnormal sperm, in comparison to the control values. Mass activity, sperm motility and total sperm number increased significantly in eCG group compared to the control group; and semen volume, mass activity, total sperm number of the OT treatment groups increased significantly compared to the control group. Exogenous 600 IU eCG and 10 IU OT increase mass activity, total sperm number, lived sperm and sperm concentration in Zel rams.

Keywords: eCG, oxytocine, semen characteristics, Zel Ram, nonbreeding season

Procedia PDF Downloads 397
560 Wicking and Evaporation of Liquids in Knitted Fabrics: Analytic Solution of Capillary Rise Restrained by Gravity and Evaporation

Authors: N. S. Achour, M. Hamdaoui, S. Ben Nasrallah

Abstract:

Wicking and evaporation of water in porous knitted fabrics is investigated by combining experimental and analytical approaches: The standard wicking model from Lucas and Washburn is enhanced to account for evaporation and gravity effects. The goal is to model the effect of gravity and evaporation on wicking using simple analytical expressions and investigate the influence of fabrics geometrical parameters, such as porosity and thickness on evaporation impact on maximum reachable height values. The results show that fabric properties have a significant influence on evaporation effect. In this paper, an experimental study of determining water kinetics from different knitted fabrics were gravimetrically investigated permitting the measure of the mass and the height of liquid rising in fabrics in various atmospheric conditions. From these measurements, characteristic pore parameters (capillary radius and permeability) can be determined.

Keywords: evaporation, experimental study, geometrical parameters, model, porous knitted fabrics, wicking

Procedia PDF Downloads 577
559 Application of Deep Learning in Colorization of LiDAR-Derived Intensity Images

Authors: Edgardo V. Gubatanga Jr., Mark Joshua Salvacion

Abstract:

Most aerial LiDAR systems have accompanying aerial cameras in order to capture not only the terrain of the surveyed area but also its true-color appearance. However, the presence of atmospheric clouds, poor lighting conditions, and aerial camera problems during an aerial survey may cause absence of aerial photographs. These leave areas having terrain information but lacking aerial photographs. Intensity images can be derived from LiDAR data but they are only grayscale images. A deep learning model is developed to create a complex function in a form of a deep neural network relating the pixel values of LiDAR-derived intensity images and true-color images. This complex function can then be used to predict the true-color images of a certain area using intensity images from LiDAR data. The predicted true-color images do not necessarily need to be accurate compared to the real world. They are only intended to look realistic so that they can be used as base maps.

Keywords: aerial LiDAR, colorization, deep learning, intensity images

Procedia PDF Downloads 155
558 Nano-emulsion/Nano-suspension as Precursors for Oral Dissolvable Film to Enhance Bioavalabilty for Poor-water Solubility Drugs

Authors: Yuan Yang, Mickey Lam

Abstract:

Oral dissolvable films have been considered as a unique alternative approach to conventional oral dosage forms. The films could be administrated via the gastrointestinal tract as conventional dosages or through sublingual/buccal mucosa membranes, which could enhance drug bioavailability by avoiding the first-pass effect and improving permeability due to high blood flow and lymphatic circulation. This work has described a state-of-art technic using nano-emulsion/nano-suspension as a precursor for the film to enhance the bioavailability of BCS class II drugs. The drug molecules are consequentially processed through the emulsification, gelation, and film-casting processes. The gelation process is critical to stabilizing the nano-emulsion for the film-casting as well as controlling the drug release process. Furthermore, the size of the nanoparticle on the film has a strong correlation with the size of the micelles in the precursor and the condition of the gelation process. It has been discovered that nanoparticle from 200 nm to 300 nm has shown the highest permeability for sublingual administration. In one example shown in work, the bioavailability of a low solubilize drug has been increased from 10% to 24% via sublingual administration of the film. The increasing of the bioavailability was thought to be associated with the enhancement of the diffusion process of the drug in the saliva layer above the mucosa membrane and the fact that the presents of the emulsifier help lose the rigid junction of the mucosa cells.

Keywords: oral dissolvable film, nano-suspension, nano-emulsion, bioavailability

Procedia PDF Downloads 170
557 Design of Aesthetic Acoustic Metamaterials Window Panel Based on Sierpiński Fractal Triangle for Sound-silencing with Free Airflow

Authors: Sanjeet Kumar Singh, Shanatanu Bhattacharaya

Abstract:

Design of high- efficiency low, frequency (<1000Hz) soundproof window or wall absorber which is transparent to airflow is presented. Due to the massive rise in human population and modernization, environmental noise has significantly risen globally. Prolonged noise exposure can cause severe physiological and psychological symptoms like nausea, headaches, fatigue, and insomnia. There has been continuous growth in building construction and infrastructure like offices, bus stops, and airports due to urban population. Generally, a ventilated window is used for getting fresh air into the room, but at the same time, unwanted noise comes along. Researchers used traditional approaches like noise barrier mats in front of the window or designed the entire window using sound-absorbing materials. However, this solution is not aesthetically pleasing, and at the same time, it's heavy and not adequate for low-frequency noise shielding. To address this challenge, we design a transparent hexagonal panel based on Sierpiński fractal triangle, which is aesthetically pleasing, demonstrates normal incident sound absorption coefficient more than 0.96 around 700 Hz and transmission loss around 23 dB while maintaining e air circulation through triangular cutout. Next, we present a concept of fabrication of large acoustic panel for large-scale applications, which lead to suppressing the urban noise pollution.

Keywords: acoustic metamaterials, noise, functional materials, ventilated

Procedia PDF Downloads 71
556 Prediction of Flow Around a NACA 0015 Profile

Authors: Boukhadia Karima

Abstract:

The fluid mechanics is the study of fluid motion laws and their interaction with solid bodies, this project leads to illustrate this interaction with depth studies and approved by experiments on the wind tunnel TE44, ensuring the efficiency, accuracy and reliability of these tests on a NACA0015 profile. A symmetric NACA0015 was placed in a subsonic wind tunnel, and measurements were made of the pressure on the upper and lower surface of the wing and of the velocity across the vortex trailing downstream from the tip of the wing. The aim of this work is to investigate experimentally the scattered pressure profile in a free airflow and the aerodynamic forces acting on this profile. The addition of around-lateral edge to the wing tip was found to eliminate the secondary vortex near the wing tip, but had little effect on the downstream characteristics of the trailing vortex. The increase in wing lift near the tip because of the presence of the trailing vortex was evident in the surface pressure, but was not captured by circulation-box measurements. The circumferential velocity within the vortex was found to reach free-stream values and produce core rotational speeds. Near the wing, the trailing vortex is asymmetric and contains definite zones where the stream wise velocity both exceeds and falls behind the free-stream value. When referenced to the free stream velocity, the maximum vertical velocity of the vortex is directly dependent on α and is independent of Re. A numerical study was conducted through a CFD code called FLUENT 6.0, and the results are compared with experimental.

Keywords: CFD code, NACA Profile, detachment, angle of incidence, wind tunnel

Procedia PDF Downloads 407
555 Character and Evolution of Electronic Waste: A Technologically Developing Country's Experience

Authors: Karen C. Olufokunbi, Odetunji A. Odejobi

Abstract:

The discourse of this paper is the examination of the generation, accumulation and growth of e-waste in a developing country. Images and other data about computer e-waste were collected using a digital camera, 290 copies of questionnaire and three structured interviews using Obafemi Awolowo University (OAU), Ile-Ife, Nigeria environment as a case study. The numerical data were analysed using R data analysis and process tool. Automata-based techniques and Petri net modeling tool were used to design and simulate a computational model for the recovery of saleable materials from e-waste. The R analysis showed that at a 95 percent confidence level, the computer equipment that will be disposed by 2020 will be 417 units. Compared to the 800 units in circulation in 2014, 50 percent of personal computer components will become e-waste. This indicates that personal computer components were in high demand due to their low costs and will be disposed more rapidly when replaced by new computer equipment Also, 57 percent of the respondents discarded their computer e-waste by throwing it into the garbage bin or by dumping it. The simulated model using Coloured Petri net modelling tool for the process showed that the e-waste dynamics is a forward sequential process in the form of a pipeline meaning that an e-waste recovery of saleable materials process occurs in identifiable discrete stages indicating that e-waste will continue to accumulate and grow in volume with time.

Keywords: Coloured Petri net, computational modelling, electronic waste, electronic waste process dynamics

Procedia PDF Downloads 161
554 Monitoring of Formaldehyde over Punjab Pakistan Using Car Max-Doas and Satellite Observation

Authors: Waqas Ahmed Khan, Faheem Khokhaar

Abstract:

Air pollution is one of the main perpetrators of climate change. GHGs cause melting of glaciers and cause change in temperature and heavy rain fall many gasses like Formaldehyde is not direct precursor that damage ozone like CO2 or Methane but Formaldehyde (HCHO) form glyoxal (CHOCHO) that has effect on ozone. Countries around the globe have unique air quality monitoring protocols to describe local air pollution. Formaldehyde is a colorless, flammable, strong-smelling chemical that is used in building materials and to produce many household products and medical preservatives. Formaldehyde also occurs naturally in the environment. It is produced in small amounts by most living organisms as part of normal metabolic processes. Pakistan lacks the monitoring facilities on larger scale to measure the atmospheric gasses on regular bases. Formaldehyde is formed from Glyoxal and effect mountain biodiversity and livelihood. So its monitoring is necessary in order to maintain and preserve biodiversity. Objective: Present study is aimed to measure atmospheric HCHO vertical column densities (VCDs) obtained from ground-base and compute HCHO data in Punjab and elevated areas (Rawalpindi & Islamabad) by satellite observation during the time period of 2014-2015. Methodology: In order to explore the spatial distributing of H2CO, various fields campaigns including international scientist by using car Max-Doas. Major focus was on the cities along national highways and industrial region of Punjab Pakistan. Level 2 data product of satellite instruments OMI retrieved by differential optical absorption spectroscopy (DOAS) technique are used. Spatio-temporal distribution of HCHO column densities over main cities and region of Pakistan has been discussed. Results: Results show the High HCHO column densities exceeding permissible limit over the main cities of Pakistan particularly the areas with rapid urbanization and enhanced economic growth. The VCDs value over elevated areas of Pakistan like Islamabad, Rawalpindi is around 1.0×1016 to 34.01×1016 Molecules’/cm2. While Punjab has values revolving around the figure 34.01×1016. Similarly areas with major industrial activity showed high amount of HCHO concentrations. Tropospheric glyoxal VCDs were found to be 4.75 × 1015 molecules/cm2. Conclusion: Results shows that monitoring site surrounded by Margalla hills (Islamabad) have higher concentrations of Formaldehyde. Wind data shows that industrial areas and areas having high economic growth have high values as they provide pathways for transmission of HCHO. Results obtained from this study would help EPA, WHO and air protection departments in order to monitor air quality and further preservation and restoration of mountain biodiversity.

Keywords: air quality, formaldehyde, Max-Doas, vertical column densities (VCDs), satellite instrument, climate change

Procedia PDF Downloads 205
553 Estimation of Carbon Dioxide Absorption in DKI Jakarta Green Space

Authors: Mario Belseran

Abstract:

The issue of climate change become world attention where one of them increase in air temperature due to greenhouse gas emissions. This climate change is caused by gases in the atmosphere, one of which is CO2. DKI Jakarta as the capital has a dense population with a variety of existing land use. Land use that is dominated by settlements resulting in fewer green space, which functions to absorb atmospheric CO2. Image interpretation SPOT-7 is used to determine the greenness level of vegetation on a green space using the vegetation index NDVI, EVI, GNDVI and OSAVI. Measuring the diameter and height of trees were also performed to obtain the value of biomass that will be used as the CO2 absorption value. The CO2 absorption value that spread in Jakarta are classified into three classes: high, medium, and low. The distribution pattern of CO2 absorption value at green space in Jakarta dominance in the medium class with the distribution pattern is located in South Jakarta, East Jakarta, North Jakarta and West Jakarta. The distribution pattern of green space in Jakarta scattered randomly and more dominate in East Jakarta and South Jakarta

Keywords: carbon dioxide, DKI Jakarta, green space, SPOT-7, vegetation index

Procedia PDF Downloads 270
552 Design of Aesthetic Acoustic Metamaterials Window Panel Based on Sierpiński Fractal Triangle for Sound-Silencing with Free Airflow

Authors: Sanjeet Kumar Singh, Shantanu Bhatacharya

Abstract:

Design of high-efficiency low, frequency (<1000Hz) soundproof window or wall absorber which is transparent to airflow is presented. Due to the massive rise in human population and modernization, environmental noise has significantly risen globally. Prolonged noise exposure can cause severe physiological and psychological symptoms like nausea, headaches, fatigue, and insomnia. There has been continuous growth in building construction and infrastructure like offices, bus stops, and airports due to the urban population. Generally, a ventilated window is used for getting fresh air into the room, but at the same time, unwanted noise comes along. Researchers used traditional approaches like noise barrier mats in front of the window or designed the entire window using sound-absorbing materials. However, this solution is not aesthetically pleasing, and at the same time, it's heavy and not adequate for low-frequency noise shielding. To address this challenge, we design a transparent hexagonal panel based on the Sierpiński fractal triangle, which is aesthetically pleasing and demonstrates a normal incident sound absorption coefficient of more than 0.96 around 700 Hz and transmission loss of around 23 dB while maintaining e air circulation through the triangular cutout. Next, we present a concept of fabrication of large acoustic panels for large-scale applications, which leads to suppressing urban noise pollution.

Keywords: acoustic metamaterials, ventilation, urban noise pollution, noise control

Procedia PDF Downloads 104
551 Numerical Solution of a Mathematical Model of Vortex Using Projection Method: Applications to Tornado Dynamics

Authors: Jagdish Prasad Maurya, Sanjay Kumar Pandey

Abstract:

Inadequate understanding of the complex nature of flow features in tornado vortex is a major problem in modelling tornadoes. Tornadoes are violent atmospheric phenomenon that appear all over the world. Modelling tornadoes aim to reduce the loss of the human lives and material damage caused by the tornadoes. Dynamics of tornado is investigated by a numerical technique, the improved version of the projection method. In this paper, authors solve the problem for axisymmetric tornado vortex by the said method that uses a finite difference approach for getting an accurate and stable solution. The conclusions drawn are that large radial inflow velocity occurs near the ground that leads to increase the tangential velocity. The increased velocity phenomenon occurs close to the boundary and absolute maximum wind is obtained near the vortex core. The results validate previous numerical and theoretical models.

Keywords: computational fluid dynamics, mathematical model, Navier-Stokes equations, tornado

Procedia PDF Downloads 348
550 Hydrodynamics and Heat Transfer Characteristics of a Solar Thermochemical Fluidized Bed Reactor

Authors: Selvan Bellan, Koji Matsubara, Nobuyuki Gokon, Tatsuya Kodama, Hyun Seok-Cho

Abstract:

In concentrated solar thermal industry, fluidized-bed technology has been used to produce hydrogen by thermochemical two step water splitting cycles, and synthetic gas by gasification of coal coke. Recently, couple of fluidized bed reactors have been developed and tested at Niigata University, Japan, for two-step thermochemical water splitting cycles and coal coke gasification using Xe light, solar simulator. The hydrodynamic behavior of the gas-solid flow plays a vital role in the aforementioned fluidized bed reactors. Thus, in order to study the dynamics of dense gas-solid flow, a CFD-DEM model has been developed; in which the contact forces between the particles have been calculated by the spring-dashpot model, based on the soft-sphere method. Heat transfer and hydrodynamics of a solar thermochemical fluidized bed reactor filled with ceria particles have been studied numerically and experimentally for beam-down solar concentrating system. An experimental visualization of particles circulation pattern and mixing of two-tower fluidized bed system has been presented. Simulation results have been compared with experimental data to validate the CFD-DEM model. Results indicate that the model can predict the particle-fluid flow of the two-tower fluidized bed reactor. Using this model, the key operating parameters can be optimized.

Keywords: solar reactor, CFD-DEM modeling, fluidized bed, beam-down solar concentrating system

Procedia PDF Downloads 191
549 Performance Evaluation of an Inventive Co2 Gas Separation Inorganic Ceramic Membrane System

Authors: Ngozi Claribelle Nwogu, Mohammed Nasir Kajama, Oyoh Kechinyere, Edward Gobina

Abstract:

Atmospheric carbon dioxide emissions are considered as the greatest environmental challenge the world is facing today. The challenges to control the emissions include the recovery of CO2 from flue gas. This concern has been improved due to recent advances in materials process engineering resulting in the development of inorganic gas separation membranes with excellent thermal and mechanical stability required for most gas separations. This paper therefore evaluates the performance of a highly selective inorganic membrane for CO2 recovery applications. Analysis of results obtained is in agreement with experimental literature data. Further results show the prediction performance of the membranes for gas separation and the future direction of research. The materials selection and the membrane preparation techniques are discussed. Method of improving the interface defects in the membrane and its effect on the separation performance has also been reviewed and in addition advances to totally exploit the potential usage of this innovative membrane.

Keywords: carbon dioxide, gas separation, inorganic ceramic membrane, permselectivity

Procedia PDF Downloads 329
548 Modelling Magnetohydrodynamics to Investigate Variation of Shielding Gases on Arc Characteristics in the GTAW Process

Authors: Stuart W. Campbell, Alexander M. Galloway, Norman A. McPherson, Duncan Camilleri, Daniel Micallef

Abstract:

Gas tungsten arc welding requires a gas shield to be present in order to protect the arc area from contamination by atmospheric gases. As a result of each gas having its own unique thermophysical properties, the shielding gas selected can have a major influence on the arc stability, welding speed, weld appearance and geometry, mechanical properties and fume generation. Alternating shielding gases is a relatively new method of discreetly supplying two different shielding gases to the welding region in order to take advantage of the beneficial properties of each gas, as well as the inherent pulsing effects generated. As part of an ongoing process to fully evaluate the effects of this novel supply method, a computational fluid dynamics model has been generated to include the gas dependent thermodynamic and transport properties in order to evaluate the effects that an alternating gas supply has on the arc plasma. Experimental trials have also been conducted to validate the model arc profile predictions.

Keywords: Alternating shielding gases, ANSYS CFX, Gas tungsten arc welding(GTAW), magnetohydrodynamics(MHD)

Procedia PDF Downloads 431
547 Urban Heat Island Effects on Human Health in Birmingham and Its Mitigation

Authors: N. A. Parvin, E. B. Ferranti, L. A. Chapman, C. A. Pfrang

Abstract:

This study intends to investigate the effects of the Urban Heat Island on public health in Birmingham. Birmingham is located at the center of the West Midlands and its weather is Highly variable due to geographical factors. Residential developments, road networks and infrastructure often replace open spaces and vegetation. This transformation causes the temperature of urban areas to increase and creates an "island" of higher temperatures in the urban landscape. Extreme heat in the urban area is influencing public health in the UK as well as in the world. Birmingham is a densely built-up area with skyscrapers and congested buildings in the city center, which is a barrier to air circulation. We will investigate the city regarding heat and cold-related human mortality and other impacts. We are using primary and secondary datasets to examine the effect of population shift and land-use change on the UHI in Birmingham. We will also use freely available weather data from the Birmingham Urban Observatory and will incorporate satellite data to determine urban spatial expansion and its effect on the UHI. We have produced a temperature map based on summer datasets of 2020, which has covered 25 weather stations in Birmingham to show the differences between diurnal and nocturnal summer and annual temperature trends. Some impacts of the UHI may be beneficial, such as the lengthening of the plant growing season, but most of them are highly negative. We are looking for various effects of urban heat which is impacting human health and investigating mitigation options.

Keywords: urban heat, public health, climate change

Procedia PDF Downloads 93
546 Risk Assessment of Oil Spill Pollution by Integration of Gnome, Aloha and Gis in Bandar Abbas Coast, Iran

Authors: Mehrnaz Farzingohar, Mehran Yasemi, Ahmad Savari

Abstract:

The oil products are imported and exported via Rajaee’s tanker terminal. Within loading and discharging in several cases the oil is released into the berths and made oil spills. The spills are distributed within short time and seriously affected Rajaee port’s environment and even extended areas. The trajectory and fate of oil spills investigated by modeling and parted by three risk levels base on the modeling results. First GNOME (General NOAA Operational Modeling Environment) applied to trajectory the liquid oil. Second, ALOHA (Areal Location Of Hazardous Atmosphere) air quality model, is integrated to predict the oil evaporation path within the air. Base on the identified zones the high risk areas are signed by colored dots which their densities calculated and clarified on a map which displayed the harm places. Wind and water circulation moved the pollution to the East of Rajaee Port that accumulated about 12 km of coastline. Approximately 20 km of north east of Qeshm Island shore is covered by the three levels of risky areas. Since the main wind direction is SSW the pollution pushed to the east and the highest risk zones formed on the crests edges hence the low risk appeared on the concavities. This assessment help the management and emergency systems to monitor the exposure places base on the priority factors and find the best approaches to protect the environment.

Keywords: oil spill, modeling, pollution, risk assessment

Procedia PDF Downloads 383
545 Impact of Climate Change on Crop Production: Climate Resilient Agriculture Is the Need of the Hour

Authors: Deepak Loura

Abstract:

Climate change is considered one of the major environmental problems of the 21st century and a lasting change in the statistical distribution of weather patterns over periods ranging from decades to millions of years. Agriculture and climate change are internally correlated with each other in various aspects, as the threat of varying global climate has greatly driven the attention of scientists, as these variations are imparting a negative impact on global crop production and compromising food security worldwide. The fast pace of development and industrialization and indiscriminate destruction of the natural environment, more so in the last century, have altered the concentration of atmospheric gases that lead to global warming. Carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (NO) are important biogenic greenhouse gases (GHGs) from the agricultural sector contributing to global warming and their concentration is increasing alarmingly. Agricultural productivity can be affected by climate change in 2 ways: first, directly, by affecting plant growth development and yield due to changes in rainfall/precipitation and temperature and/or CO₂ levels, and second, indirectly, there may be considerable impact on agricultural land use due to snow melt, availability of irrigation, frequency and intensity of inter- and intra-seasonal droughts and floods, soil organic matter transformations, soil erosion, distribution and frequency of infestation by insect pests, diseases or weeds, the decline in arable areas (due to submergence of coastal lands), and availability of energy. An increase in atmospheric CO₂ promotes the growth and productivity of C3 plants. On the other hand, an increase in temperature, can reduce crop duration, increase crop respiration rates, affect the equilibrium between crops and pests, hasten nutrient mineralization in soils, decrease fertilizer- use efficiencies, and increase evapotranspiration among others. All these could considerably affect crop yield in long run. Climate resilient agriculture consisting of adaptation, mitigation, and other agriculture practices can potentially enhance the capacity of the system to withstand climate-related disturbances by resisting damage and recovering quickly. Climate resilient agriculture turns the climate change threats that have to be tackled into new business opportunities for the sector in different regions and therefore provides a triple win: mitigation, adaptation, and economic growth. Improving the soil organic carbon stock of soil is integral to any strategy towards adapting to and mitigating the abrupt climate change, advancing food security, and improving the environment. Soil carbon sequestration is one of the major mitigation strategies to achieve climate-resilient agriculture. Climate-smart agriculture is the only way to lower the negative impact of climate variations on crop adaptation before it might affect global crop production drastically. To cope with these extreme changes, future development needs to make adjustments in technology, management practices, and legislation. Adaptation and mitigation are twin approaches to bringing resilience to climate change in agriculture.

Keywords: climate change, global warming, crop production, climate resilient agriculture

Procedia PDF Downloads 68
544 Analysis of the Impact of Refractivity on Ultra High Frequency Signal Strength over Gusau, North West, Nigeria

Authors: B. G. Ayantunji, B. Musa, H. Mai-Unguwa, L. A. Sunmonu, A. S. Adewumi, L. Sa'ad, A. Kado

Abstract:

For achieving reliable and efficient communication system, both terrestrial and satellite communication, surface refractivity is critical in planning and design of radio links. This study analyzed the impact of atmospheric parameters on Ultra High Frequency (UHF) signal strength over Gusau, North West, Nigeria. The analysis exploited meteorological data measured simultaneously with UHF signal strength for the month of June 2017 using a Davis Vantage Pro2 automatic weather station and UHF signal strength measuring devices respectively. The instruments were situated at the premise of Federal University, Gusau (6° 78' N, 12° 13' E). The refractivity values were computed using ITU-R model. The result shows that the refractivity value attained the highest value of 366.28 at 2200hr and a minimum value of 350.66 at 2100hr local time. The correlation between signal strength and refractivity is 0.350; Humidity is 0.532 and a negative correlation of -0.515 for temperature.

Keywords: refractivity, UHF (ultra high frequency) signal strength, free space, automatic weather station

Procedia PDF Downloads 189
543 Th2 and Th17 Subsets in the Circulation of Psoriasis Patients

Authors: Chakrit Thapphan, Suteeraporn Chaowattanapanit, Sorutsiri Chareonsudjai, Wisitsak Phoksawat, Supranee Phantanawiboon, Kiatichai Faksri, Steve W. Edwards, Kanin Salao

Abstract:

Background: Psoriasis is a chronic inflammatory disease of the skin that is mediated by crosstalk between keratinocytes and immune cells, especially CD4+ T helper (Th) cells. To date, psoriasis is established as a T helper 17 (Th17) cell-mediated inflammatory process driven by the over-expression of Th17. However, the role of other CD4+T helper cells is rather controversial. Objective: Our study, thereby, aimed to characterize and analyze T cell subsets in the circulating blood of psoriasis patients and compare them to healthy controls. Methods: Peripheral blood mononuclear cells were isolated from the participants and stained with fluorescent dye-conjugated monoclonal antibodies specific for intracellular cytokines, including interferon-gamma (IFN- γ), interleukin (IL-4), IL-17 and forkhead box P3 (FOXP3), that can be used to define T helper 1 (Th1) cells, T helper 2 (Th2), T helper 17 (Th17) and regulatory T cells (Treg) respectively. Results: We found that the numbers of Th2 (59.6% ± 17.0) and Th17 (4.0% ± 2.0) cells in the circulating blood of psoriasis patients were significantly higher than those of the healthy controls (p= 0.0007 and 0.0013 respectively). In contrast, the numbers of Th1 and Treg cells were not significantly different between psoriasis patients and healthy controls (p= 0.0593 and 0.8518, respectively). Additionally, when adjusting these numbers of Th cells to Treg, we observed a similar trend that the ratio of Th2/Treg and Th17/Treg also elevated (p = 0.0007 and 0.0047, respectively). Conclusion: Taken together, our results suggest an imbalanced T exhibit toward the Th2 and Th17 skewed-immune responses in psoriasis patients.

Keywords: psoriasis, Th cell subsets, Th2 cells, Th17 cells, Treg cells

Procedia PDF Downloads 72
542 Apricot Insurance Portfolio Risk

Authors: Kasirga Yildirak, Ismail Gur

Abstract:

We propose a model to measure hail risk of an Agricultural Insurance portfolio. Hail is one of the major catastrophic event that causes big amount of loss to an insurer. Moreover, it is very hard to predict due to its strange atmospheric characteristics. We make use of parcel based claims data on apricot damage collected by the Turkish Agricultural Insurance Pool (TARSIM). As our ultimate aim is to compute the loadings assigned to specific parcels, we build a portfolio risk model that makes use of PD and the severity of the exposures. PD is computed by Spherical-Linear and Circular –Linear regression models as the data carries coordinate information and seasonality. Severity is mapped into integer brackets so that Probability Generation Function could be employed. Individual regressions are run on each clusters estimated on different criteria. Loss distribution is constructed by Panjer Recursion technique. We also show that one risk-one crop model can easily be extended to the multi risk–multi crop model by assuming conditional independency.

Keywords: hail insurance, spherical regression, circular regression, spherical clustering

Procedia PDF Downloads 247
541 Enhancement Production and Development of Hot Dry Rock System by Using Supercritical CO2 as Working Fluid Instead of Water to Advance Indonesia's Geothermal Energy

Authors: Dhara Adhnandya Kumara, Novrizal Novrizal

Abstract:

Hot Dry Rock (HDR) is one of geothermal energy which is abundant in many provinces in Indonesia. Heat exploitation from HDR would need a method which injects fluid to subsurface to crack the rock and sweep the heat. Water is commonly used as the working fluid but known to be less effective in some ways. The new research found out that Supercritical CO2 (SCCO2) can be used to replace water as the working fluid. By studying heat transfer efficiency, pumping power, and characteristics of the returning fluid, we might decide how effective SCCO2 to replace water as working fluid. The method used to study those parameters quantitatively could be obtained from pre-existing researches which observe the returning fluids from the same reservoir with same pumping power. The result shows that SCCO2 works better than water. For cold and hot SCCO2 has lower density difference than water, this results in higher buoyancy in the system that allows the fluid to circulate with lower pumping power. Besides, lower viscosity of SCCO2 impacts in higher flow rate in circulation. The interaction between SCCO2 and minerals in reservoir could induce dehydration of the minerals and enhancement of rock porosity and permeability. While the dissolution and transportation of minerals by SCCO2 are unlikely to occur because of the nature of SCCO2 as poor solvent, and this will reduce the mineral scaling in the system. Under those conditions, using SCCO2 as working fluid for HDR extraction would give great advantages to advance geothermal energy in Indonesia.

Keywords: geothermal, supercritical CO2, injection fluid, hot dry rock

Procedia PDF Downloads 213
540 Development of a Wind Resource Assessment Framework Using Weather Research and Forecasting (WRF) Model, Python Scripting and Geographic Information Systems

Authors: Jerome T. Tolentino, Ma. Victoria Rejuso, Jara Kaye Villanueva, Loureal Camille Inocencio, Ma. Rosario Concepcion O. Ang

Abstract:

Wind energy is rapidly emerging as the primary source of electricity in the Philippines, although developing an accurate wind resource model is difficult. In this study, Weather Research and Forecasting (WRF) Model, an open source mesoscale Numerical Weather Prediction (NWP) model, was used to produce a 1-year atmospheric simulation with 4 km resolution on the Ilocos Region of the Philippines. The WRF output (netCDF) extracts the annual mean wind speed data using a Python-based Graphical User Interface. Lastly, wind resource assessment was produced using a GIS software. Results of the study showed that it is more flexible to use Python scripts than using other post-processing tools in dealing with netCDF files. Using WRF Model, Python, and Geographic Information Systems, a reliable wind resource map is produced.

Keywords: wind resource assessment, weather research and forecasting (WRF) model, python, GIS software

Procedia PDF Downloads 437
539 DIAL Measurements of Vertical Distribution of Ozone at the Siberian Lidar Station in Tomsk

Authors: Oleg A. Romanovskii, Vladimir D. Burlakov, Sergey I. Dolgii, Olga V. Kharchenko, Alexey A. Nevzorov, Alexey V. Nevzorov

Abstract:

The paper presents the results of DIAL measurements of the vertical ozone distribution. The ozone lidar operate as part of the measurement complex at Siberian Lidar Station (SLS) of V.E. Zuev Institute of Atmospheric Optics SB RAS, Tomsk (56.5ºN; 85.0ºE) and designed for study of the vertical ozone distribution in the upper troposphere–lower stratosphere. Most suitable wavelengths for measurements of ozone profiles are selected. We present an algorithm for retrieval of vertical distribution of ozone with temperature and aerosol correction during DIAL lidar sounding of the atmosphere. The temperature correction of ozone absorption coefficients is introduced in the software to reduce the retrieval errors. Results of lidar measurement at wavelengths of 299 and 341 nm agree with model estimates, which point to acceptable accuracy of ozone sounding in the 6–18 km altitude range.

Keywords: lidar, ozone distribution, atmosphere, DIAL

Procedia PDF Downloads 489
538 Stroma-Providing Activity of Adipose Derived Mesenchymal Stromal Cells in Tissue-Related O2 Microenvironment

Authors: P. I. Bobyleva, E. R. Andreeva, I. V. Andrianova, E. V. Maslova, L. B. Buravkova

Abstract:

This work studied the ability of adipose tissue-derived mesenchymal stromal cells (MSCs) to form stroma for expansion of cord blood hematopoietic cells. We showed that 72-hour interaction of MSCs with cord blood mononuclear cells (MNCs) in vitro at atmospheric (20%) and low (5%) O2 conditions increased the expression of ICAM-1, HCAM (at the beginning of interaction) on MSCs. Viability of MSCs and MNCs were maintained at high level. Adhesion of MNCs to MSCs was faster at 20% O2. MSCs promoted the proliferation of adhered MNCs to form the suspension containing great number of hematopoietic colony-forming units, and this effect was more pronounced at 5% O2. Thus, adipose-derived MSCs supplied sufficient stromal support to cord blood MNCs both at 20% and 5% О2, providing their adhesion with further expansion of new generation of different hematopoietic lineages.

Keywords: hematopoietic stem and progenitor cells, mesenchymal stromal cells, tissue-related oxygen, adipose tissue

Procedia PDF Downloads 416
537 Theatre, Tea-Time and Harpsichords: Women’s Entertainment and Sensibility in Eighteenth-Century England

Authors: Ayako Otomo

Abstract:

This paper will examines the rise of a feminine orientation regarding arts and culture associated with the notion of Sensibility during the early part of the English long eighteenth century. As is widely known, the prosperous modernisation that occurred in this period was a significant factor in the nation taking a leading role in the emergent Enlightenment via the social, political and scientific advancement of Britain. As a result, this prompted the relaxing of the strictures of class and gender hierarchies in line with the new consumerism and cosmopolitanism of the nation. Accordingly, there was a significant increase of female involvement in artistic and cultural consumption. This can be understood in terms of the notion of Sensibility, associating it further with the fields of physiology, psychology and aesthetics, indebted in their turn to British Empiricism. This paper first traces the background of how women were recognisably involved in artistic and cultural circulation within an historical perspective that is articulated by the notion of Sensibility. Then, the discussion turns to the confluence of the issues of female association, creativity and the feminisation of the aesthetic of the arts and culture employing an interdisciplinary perspective. Arts and culture can also classified by public and private social spheres and gender according to Jürgen Habermas. The relationship between women and the theatre became a public issue. Music-making such as playing the harpsichord, reading, and conversation within the ritualistic teatime space dominated many of the artistic and cultural activities within the domestic private sphere.

Keywords: theatre, arts, sensibility, 18th century England

Procedia PDF Downloads 357
536 The Effect of Particulate Matter on Cardiomyocyte Apoptosis Through Mitochondrial Fission

Authors: Tsai-chun Lai, Szu-ju Fu, Tzu-lin Lee, Yuh-Lien Chen

Abstract:

There is much evidence that exposure to fine particulate matter (PM) from air pollution increases the risk of cardiovascular morbidity and mortality. According to previous reports, PM in the air enters the respiratory tract, contacts the alveoli, and enters the blood circulation, leading to the progression of cardiovascular disease. PM pollution may also lead to cardiometabolic disturbances, increasing the risk of cardiovascular disease. The effects of PM on cardiac function and mitochondrial damage are currently unknown. We used mice and rat cardiomyocytes (H9c2) as animal and in vitro cell models, respectively, to simulate an air pollution environment using PM. These results indicate that the apoptosis-related factor PUMA, a regulator of apoptosis upregulated by p53, is increased in mice treated with PM. Apoptosis was aggravated in cardiomyocytes treated with PM, as measured by TUNEL assay and Annexin V/PI. Western blot results showed that CASPASE3 was significantly increased and BCL2 (B-cell lymphoid 2) was significantly decreased under PM treatment. Concurrent exposure to PM increases mitochondrial reactive oxygen species (ROS) production by MitoSOX Red staining. Furthermore, using Mitotracker staining, PM treatment significantly shortened mitochondrial length, indicating mitochondrial fission. The expression of mitochondrial fission-related proteins p-DRP1 (phosphodynamics-related protein 1) and FIS1 (mitochondrial fission 1 protein) was significantly increased. Based on these results, the exposure to PM worsens mitochondrial function and leads to cardiomyocyte apoptosis.

Keywords: particulate matter, cardiomyocyte, apoptosis, mitochondria

Procedia PDF Downloads 97
535 Measurement of Liquid Film Thickness in a Vertical Annular Two Phase Flow Changing the Gas-Liquid Density Ratio

Authors: Shoji Mori, Kunito Okuyama

Abstract:

Annular two phase flow is encountered in many industrial equipments, including flow near nuclear fuel rods in boiling water reactor (BWR). Especially, disturbance waves play important roles in the pressure drop, the generation of entrainments, and the dryout of the liquid film. Therefore, it is important to clarify the behavior of disturbance waves and base film. However, most of the previous studies have been performed under atmospheric pressure conditions that provides the properties of liquid and gas which are significantly different from those of a BWR. Therefore, the effect of properties in gas and liquid on liquid film characteristics should be clarified. In this paper we focus on the effect of gas-liquid density ratio on liquid film thickness characteristics. The experiments have been conducted at four density ratio conditions (ρL/ρG =763, 451, 231, and 31). As a result, it is found that and interfacial shear stress collapse not only tF ave but also tF max and tF min successfully under the same liquid mass flow rate conditions irrespective of ρL/ρG, and moreover a non-dimensional parameter tends to collapse tF max,tF ave,and tF min in the wide range of experimental conditions (ρL/ρG:31~763,We:10~1800,ReL:500 ~ 2200).

Keywords: two phase flow, liquid film, annular flow, disturbance wave

Procedia PDF Downloads 380
534 Introducing Thermodynamic Variables through Scientific Inquiry for Engineering Students

Authors: Paola Utreras, Yazmina Olmos, Loreto Sanhueza

Abstract:

This work shows how the learning of physics is enriched with scientific inquiry practices, achieving learning that results in the use of higher-level cognitive skills. The activities, which were carried out with students of the 3rd semester of the courses of the Faculty of Sciences of the Engineering of the Austral University of Chile, focused on the understanding of the nature of the thermodynamic variables and how they relate to each other. This, through the analysis of atmospheric data obtained in the meteorological station Miraflores, located on the campus. The proposed activities consisted of the elaboration of time series, linear analysis of variables, as well as the analysis of frequencies and periods. From their results, the students reached conclusions associated with the nature of the thermodynamic variables studied and the relationships between them, to finally make public their results in a report using scientific writing standards. It is observed that introducing topics that are close to them, interesting and which affect their daily lives allows a better understanding of the subjects, which is reflected in higher levels of approval and motivation for the subject.

Keywords: basic sciences, inquiry-based learning, scientific inquiry, thermodynamics

Procedia PDF Downloads 253
533 Impact of the Transport on the Urban Heat Island

Authors: L. Haddad, Z. Aouachria

Abstract:

The development of transport systems has negative impacts on the environment although it has beneficial effects on society.. The car policy caused many problems such as: - the spectacular growth of fuel consumption hence the very vast increase in urban pollution, traffic congestion in certain places and at certain times, the increase in the number of accidents. The exhaust emissions from cars and weather conditions are the main factors that determine the level of pollution in urban atmosphere. These conditions lead to the phenomenon of heat transfer and radiation occurring between the air and the soil surface of any town. These exchanges give rise, in urban areas, to the effects of heat islands that correspond to the appearance of excess air temperature between the city and its surrounding space. In this object, we perform a numerical simulation of the plume generated by the cars exhaust gases and show that these gases form a screening effect above the urban city which cause the heat island in the presence of wind flow. This study allows us: i. To understand the different mechanisms of interactions between these phenomena. ii. To consider appropriate technical solutions to mitigate the effects of the heat island.

Keywords: atmospheric pollution, impact on the health, urban transport, heat island

Procedia PDF Downloads 385
532 Structural Analysis of Multi-Pressure Integrated Vessel for Sport-Multi-Artificial Environment System

Authors: Joon-Ho Lee, Jeong-Hwan Yoon, Jung-Hwan Yoon, Sangmo Kang, Su-Yeon Hong, Hyun-Woo Jeong, Jaeick Chae

Abstract:

There are several dedicated individual chambers for sports that are supplied and used, but none of them are multi-pressured all-in-one chambers that can provide a sports multi-environment simultaneously. In this study, we design a multi-pressure (positive/atmospheric/negative pressure) integrated vessel that can be used for the sport-multi-artificial environment system. We presented additional vessel designs with enlarged space for the tall users; with reinforcement pads added to reduce the maximum stress in the joints of its shells, and then carried out numerical analysis for the structural analysis with maximum stress and structural safety. Under the targeted allowable pressure conditions, maximum stresses occurred at the joint of the shell, and the entrance, the safety of the structure was checked with the allowable stress of its material.

Keywords: structural analysis, multi-pressure, integrated vessel, sport-multi-artificial environment

Procedia PDF Downloads 526