Search results for: allocation problem
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7704

Search results for: allocation problem

7254 Cost Analysis of Neglected Tropical Disease in Nigeria: Implication for Programme Control and Elimination

Authors: Lawong Damian Bernsah

Abstract:

Neglected Tropical Diseases (NTDs) are most predominant among the poor and rural populations and are endemic in 149 countries. These diseases are the most prevalent and responsible for infecting 1.4 billion people worldwide. There are 17 neglected tropical diseases recognized by WHO that constitute the fourth largest disease health and economic burden of all communicable diseases. Five of these 17 diseases are considered for the cost analysis of this paper: lymphatic filariasis, onchocerciasis, trachoma, schistosomiasis, and soil transmitted helminth infections. WHO has proposed a roadmap for eradication and elimination by 2020 and treatments have been donated through the London Declaration by pharmaceutical manufacturers. The paper estimates the cost of NTD control programme and elimination for each NTD disease and total in Nigeria. This is necessary as it forms the bases upon which programme budget and expenditure could be based. Again, given the opportunity cost the resources for NTD face it is necessary to estimate the cost so as to provide bases for comparison. Cost of NTDs control and elimination programme is estimated using the population at risk for each NTD diseases and for the total. The population at risk is gotten from the national master plan for the 2015 - 2020, while the cost per person was gotten for similar studies conducted in similar settings and ranges from US$0.1 to US$0.5 for Mass Administration of Medicine (MAM) and between US$1 to US$1.5 for each NTD disease. The combined cost for all the NTDs was estimated to be US$634.88 million for the period 2015-2020 and US$1.9 billion for each NTD disease for the same period. For the purpose of sensitivity analysis and for robustness of the analysis the cost per person was varied and all were still high. Given that health expenditure for Nigeria (% of GDP) averages 3.5% for the period 1995-2014, it is very clear that efforts have to be made to improve allocation to the health sector in general which is hoped could trickle to NTDs control and elimination. Thus, the government and the donor partners would need to step-up budgetary allocation and also to be aware of the costs of NTD control and elimination programme since they have alternative uses. Key Words: Neglected Tropical Disease, Cost Analysis, NTD Programme Control and Elimination, Cost per Person

Keywords: Neglected Tropical Disease, Cost Analysis, Neglected Tropical Disease Programme Control and Elimination, Cost per Person

Procedia PDF Downloads 271
7253 Experiments of a Free Surface Flow in a Hydraulic Channel over an Uneven Bottom

Authors: M. Bouinoun, M. Bouhadef

Abstract:

The present study is concerned with the problem of determining the shape of the free surface flow in a hydraulic channel which has an uneven bottom. For the mathematical formulation of the problem, the fluid of the two-dimensional irrotational steady flow in water is assumed inviscid and incompressible. The solutions of the nonlinear problem are obtained by using the usual conformal mapping theory and Hilbert’s technique. An experimental study, for comparing the obtained results, has been conducted in a hydraulic channel (subcritical regime and supercritical regime).

Keywords: free-surface flow, experiments, numerical method, uneven bottom, supercritical regime, subcritical regime

Procedia PDF Downloads 374
7252 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features

Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova

Abstract:

The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.

Keywords: emotion recognition, facial recognition, signal processing, machine learning

Procedia PDF Downloads 313
7251 Genre Analysis of Postgraduate Theses and Dissertations: Case of Statement of the Problem

Authors: H. Mashhady, H. A. Manzoori, M. Doosti, M. Fatollahi

Abstract:

This study reports a descriptive research in the form of a genre analysis of postgraduates' theses and dissertations at three Iranian universities, including Ferdowsi, Tehran, and Tarbiat Moddares universities. The researchers sought to depict the generic structure of “statement of the problem” section of PhD dissertations and MA theses. Moreover, researchers desired to find any probable variety based on the year the dissertations belonged, to see weather genre-consciousness developed among Iranian postgraduates. To obtain data, “statement of the problem” section of 90 Ph.D. dissertations and MA theses from 2001 to 2013 in Teaching English as a Foreign Language (TEFL) at above-mentioned universities was selected. Frequency counts was employed for the quantitative method of data analysis, while genre analysis was used as the qualitative method. Inter-rater reliability was found to be about 0.93. Results revealed that students in different degrees at each of these universities used various generic structures for writing “statement of the problem”. Moreover, comparison of different time periods (2001-2006, and 2007-2013) revealed that postgraduates in the second time period, regardless of their degree and university, employed more similar generic structures which can be optimistically attributed to a general raise in genre awareness.

Keywords: genre, genre analysis, Ph.D. and MA dissertations, statement of the problem, generic structure

Procedia PDF Downloads 668
7250 Analytic Network Process in Location Selection and Its Application to a Real Life Problem

Authors: Eylem Koç, Hasan Arda Burhan

Abstract:

Location selection presents a crucial decision problem in today’s business world where strategic decision making processes have critical importance. Thus, location selection has strategic importance for companies in boosting their strength regarding competition, increasing corporate performances and efficiency in addition to lowering production and transportation costs. A right choice in location selection has a direct impact on companies’ commercial success. In this study, a store location selection problem of Carglass Turkey which operates in vehicle glass branch is handled. As this problem includes both tangible and intangible criteria, Analytic Network Process (ANP) was accepted as the main methodology. The model consists of control hierarchy and BOCR subnetworks which include clusters of actors, alternatives and criteria. In accordance with the management’s choices, five different locations were selected. In addition to the literature review, a strict cooperation with the actor group was ensured and maintained while determining the criteria and during whole process. Obtained results were presented to the management as a report and its feasibility was confirmed accordingly.

Keywords: analytic network process (ANP), BOCR, multi-actor decision making, multi-criteria decision making, real-life problem, location selection

Procedia PDF Downloads 470
7249 Architecture of a Preliminary Course on Computational Thinking

Authors: Mintu Philip, Renumol V. G.

Abstract:

An introductory programming course is a major challenge faced in Computing Education. Many of the introductory programming courses fail because student concentrate mainly on writing programs using a programming language rather than involving in problem solving. Computational thinking is a general approach to solve problems. This paper proposes a new preliminary course that aims to develop computational thinking skills in students, which may help them to become good programmers. The proposed course is designed based on the four basic components of computational thinking - abstract thinking, logical thinking, modeling thinking and constructive thinking. In this course, students are engaged in hands-on problem solving activities using a new problem solving model proposed in this paper.

Keywords: computational thinking, computing education, abstraction, constructive thinking, modelling thinking

Procedia PDF Downloads 453
7248 Deep Reinforcement Learning Approach for Trading Automation in The Stock Market

Authors: Taylan Kabbani, Ekrem Duman

Abstract:

The design of adaptive systems that take advantage of financial markets while reducing the risk can bring more stagnant wealth into the global market. However, most efforts made to generate successful deals in trading financial assets rely on Supervised Learning (SL), which suffered from various limitations. Deep Reinforcement Learning (DRL) offers to solve these drawbacks of SL approaches by combining the financial assets price "prediction" step and the "allocation" step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. In this paper, a continuous action space approach is adopted to give the trading agent the ability to gradually adjust the portfolio's positions with each time step (dynamically re-allocate investments), resulting in better agent-environment interaction and faster convergence of the learning process. In addition, the approach supports the managing of a portfolio with several assets instead of a single one. This work represents a novel DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem, or what is referred to as The Agent Environment as Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. More specifically, we design an environment that simulates the real-world trading process by augmenting the state representation with ten different technical indicators and sentiment analysis of news articles for each stock. We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, which can learn policies in high-dimensional and continuous action spaces like those typically found in the stock market environment. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of deep reinforcement learning in financial markets over other types of machine learning such as supervised learning and proves its credibility and advantages of strategic decision-making.

Keywords: the stock market, deep reinforcement learning, MDP, twin delayed deep deterministic policy gradient, sentiment analysis, technical indicators, autonomous agent

Procedia PDF Downloads 176
7247 Multiple Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation

Authors: A. Guezane-Lakoud, S. Bensebaa

Abstract:

In this paper, we study a boundary value problem of nonlinear fractional differential equation. Existence and positivity results of solutions are obtained.

Keywords: positive solution, fractional caputo derivative, Banach contraction principle, Avery and Peterson fixed point theorem

Procedia PDF Downloads 412
7246 Interactive Solutions for the Multi-Objective Capacitated Transportation Problem with Mixed Constraints under Fuzziness

Authors: Aquil Ahmed, Srikant Gupta, Irfan Ali

Abstract:

In this paper, we study a multi-objective capacitated transportation problem (MOCTP) with mixed constraints. This paper is comprised of the modelling and optimisation of an MOCTP in a fuzzy environment in which some goals are fractional and some are linear. In real life application of the fuzzy goal programming (FGP) problem with multiple objectives, it is difficult for the decision maker(s) to determine the goal value of each objective precisely as the goal values are imprecise or uncertain. Also, we developed the concept of linearization of fractional goal for solving the MOCTP. In this paper, imprecision of the parameter is handled by the concept of fuzzy set theory by considering these parameters as a trapezoidal fuzzy number. α-cut approach is used to get the crisp value of the parameters. Numerical examples are used to illustrate the method for solving MOCTP.

Keywords: capacitated transportation problem, multi objective linear programming, multi-objective fractional programming, fuzzy goal programming, fuzzy sets, trapezoidal fuzzy number

Procedia PDF Downloads 434
7245 A Second Order Genetic Algorithm for Traveling Salesman Problem

Authors: T. Toathom, M. Munlin, P. Sugunnasil

Abstract:

The traveling salesman problem (TSP) is one of the best-known problems in optimization problem. There are many research regarding the TSP. One of the most usage tool for this problem is the genetic algorithm (GA). The chromosome of the GA for TSP is normally encoded by the order of the visited city. However, the traditional chromosome encoding scheme has some limitations which are twofold: the large solution space and the inability to encapsulate some information. The number of solution for a certain problem is exponentially grow by the number of city. Moreover, the traditional chromosome encoding scheme fails to recognize the misplaced correct relation. It implies that the tradition method focuses only on exact solution. In this work, we relax some of the concept in the GA for TSP which is the exactness of the solution. The proposed work exploits the relation between cities in order to reduce the solution space in the chromosome encoding. In this paper, a second order GA is proposed to solve the TSP. The term second order refers to how the solution is encoded into chromosome. The chromosome is divided into 2 types: the high order chromosome and the low order chromosome. The high order chromosome is the chromosome that focus on the relation between cities such as the city A should be visited before city B. On the other hand, the low order chromosome is a type of chromosome that is derived from a high order chromosome. In other word, low order chromosome is encoded by the traditional chromosome encoding scheme. The genetic operation, mutation and crossover, will be performed on the high order chromosome. Then, the high order chromosome will be mapped to a group of low order chromosomes whose characteristics are satisfied with the high order chromosome. From the mapped set of chromosomes, the champion chromosome will be selected based on the fitness value which will be later used as a representative for the high order chromosome. The experiment is performed on the city data from TSPLIB.

Keywords: genetic algorithm, traveling salesman problem, initial population, chromosomes encoding

Procedia PDF Downloads 269
7244 Bifurcation Curve for Semipositone Problem with Minkowski-Curvature Operator

Authors: Shao-Yuan Huang

Abstract:

We study the shape of the bifurcation curve of positive solutions for the semipositone problem with the Minkowski-curvature operator. The Minkowski-curvature problem plays an important role in certain fundamental issues in differential geometry and in the special theory of relativity. In addition, it is well known that studying the multiplicity of positive solutions is equivalent to studying the shape of the bifurcation curve. By the shape of the bifurcation curve, we can understand the change in the multiplicity of positive solutions with varying parameters. In this paper, our main technique is a time-map method used in Corsato's PhD Thesis. By this method, studying the shape of the bifurcation curve is equivalent to studying the shape of a certain function T with improper integral. Generally speaking, it is difficult to study the shape of T. So, in this paper, we consider two cases that the nonlinearity is convex or concave. Thus we obtain the following results: (i) If f''(u) < 0 for u > 0, then the bifurcation curve is C-shaped. (ii) If f''(u) > 0 for u > 0, then there exists η>β such that the bifurcation curve does not exist for 0 η. Furthermore, we prove that the bifurcation is C-shaped for L > η under a certain condition.

Keywords: bifurcation curve, Minkowski-curvature problem, positive solution, time-map method

Procedia PDF Downloads 100
7243 Classification of Red, Green and Blue Values from Face Images Using k-NN Classifier to Predict the Skin or Non-Skin

Authors: Kemal Polat

Abstract:

In this study, it has been estimated whether there is skin by using RBG values obtained from the camera and k-nearest neighbor (k-NN) classifier. The dataset used in this study has an unbalanced distribution and a linearly non-separable structure. This problem can also be called a big data problem. The Skin dataset was taken from UCI machine learning repository. As the classifier, we have used the k-NN method to handle this big data problem. For k value of k-NN classifier, we have used as 1. To train and test the k-NN classifier, 50-50% training-testing partition has been used. As the performance metrics, TP rate, FP Rate, Precision, recall, f-measure and AUC values have been used to evaluate the performance of k-NN classifier. These obtained results are as follows: 0.999, 0.001, 0.999, 0.999, 0.999, and 1,00. As can be seen from the obtained results, this proposed method could be used to predict whether the image is skin or not.

Keywords: k-NN classifier, skin or non-skin classification, RGB values, classification

Procedia PDF Downloads 246
7242 A Hybrid Based Algorithm to Solve the Multi-objective Minimum Spanning Tree Problem

Authors: Boumesbah Asma, Chergui Mohamed El-amine

Abstract:

Since it has been shown that the multi-objective minimum spanning tree problem (MOST) is NP-hard even with two criteria, we propose in this study a hybrid NSGA-II algorithm with an exact mutation operator, which is only used with low probability, to find an approximation to the Pareto front of the problem. In a connected graph G, a spanning tree T of G being a connected and cycle-free graph, if k edges of G\T are added to T, we obtain a partial graph H of G inducing a reduced size multi-objective spanning tree problem compared to the initial one. With a weak probability for the mutation operator, an exact method for solving the reduced MOST problem considering the graph H is then used to give birth to several mutated solutions from a spanning tree T. Then, the selection operator of NSGA-II is activated to obtain the Pareto front approximation. Finally, an adaptation of the VNS metaheuristic is called for further improvements on this front. It allows finding good individuals to counterbalance the diversification and the intensification during the optimization search process. Experimental comparison studies with an exact method show promising results and indicate that the proposed algorithm is efficient.

Keywords: minimum spanning tree, multiple objective linear optimization, combinatorial optimization, non-sorting genetic algorithm, variable neighborhood search

Procedia PDF Downloads 90
7241 Solving the Refugee Problem in the Modern State System: The Philosophical Dilemma of Sovereignty and Human Right

Authors: Xiaoman Dong

Abstract:

The refugee problem has a long history, but the scale and severity of modern refugee crises demand us to consider if the progress of political history exacerbates the refugee problem. This paper argues that although sovereignty owes its legitimacy to the protection of human rights, the modern state system complicates the refugee problem by first introducing then blurring the line between human rights and civil rights, and making national identity indispensable to basic livelihood and dignity. This paper first explains the source of the modern state system’s legitimacy by putting it in the context of social contract theories and the politics of nation-building. It then discusses how states create the concept of statelessness, which leads to more violations on human rights. Using historical records of the League of Nations High Commission for Refugees and the United Nations High Commissioner for Refugees, this paper reveals that neither the refugee problem of the Cold-War period nor the current refugee crisis is collateral damage of war, but rather the consequence of intentional exclusionary policies produced out of political interests. Finally, it contends that if the modern state system is to sustain, it cannot prioritize the protection of civil rights of a particular group over the protection of basic human rights of all.

Keywords: burden sharing, human rights, legitimacy of state, positive externality, sovereignty

Procedia PDF Downloads 189
7240 Coordinated Multi-Point Scheme Based on Channel State Information in MIMO-OFDM System

Authors: Su-Hyun Jung, Chang-Bin Ha, Hyoung-Kyu Song

Abstract:

Recently, increasing the quality of experience (QoE) is an important issue. Since performance degradation at cell edge extremely reduces the QoE, several techniques are defined at LTE/LTE-A standard to remove inter-cell interference (ICI). However, the conventional techniques have disadvantage because there is a trade-off between resource allocation and reliable communication. The proposed scheme reduces the ICI more efficiently by using channel state information (CSI) smartly. It is shown that the proposed scheme can reduce the ICI with less resources.

Keywords: adaptive beamforming, CoMP, LTE-A, ICI reduction

Procedia PDF Downloads 466
7239 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization

Authors: Soheila Sadeghi

Abstract:

Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.

Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction

Procedia PDF Downloads 55
7238 Using Soft Systems Methodology in the Healthcare Industry of Mauritius

Authors: Arun Kumar, Neelesh Haulder

Abstract:

This paper identifies and resolves some key issues relating to a specific aspect within the supply chain logistics of the public health care industry in the Republic of Mauritius. The analysis and the proposed solution are performed using soft systems methodology (SSM). Through the application of this relevant systematic approach at problem solving, the aim is to obtain an in-depth analysis of the problem, incorporating every possible world view of the problem and consequently to obtain a well explored solution aimed at implementing relevant changes within the current supply chain logistics of the health care industry, with the purpose of tackling the key identified issues.

Keywords: soft systems methodology, CATWOE, healthcare, logistics

Procedia PDF Downloads 514
7237 Homogenization of a Non-Linear Problem with a Thermal Barrier

Authors: Hassan Samadi, Mustapha El Jarroudi

Abstract:

In this work, we consider the homogenization of a non-linear problem in periodic medium with two periodic connected media exchanging a heat flux throughout their common interface. The interfacial exchange coefficient λ is assumed to tend to zero or to infinity following a rate λ=λ(ε) when the size ε of the basic cell tends to zero. Three homogenized problems are determined according to some critical value depending of λ and ε. Our method is based on Γ-Convergence techniques.

Keywords: variational methods, epiconvergence, homogenization, convergence technique

Procedia PDF Downloads 523
7236 Process Modeling and Problem Solving: Connecting Two Worlds by BPMN

Authors: Gionata Carmignani, Mario G. C. A. Cimino, Franco Failli

Abstract:

Business Processes (BPs) are the key instrument to understand how companies operate at an organizational level, taking an as-is view of the workflow, and how to address their issues by identifying a to-be model. In last year’s, the BP Model and Notation (BPMN) has become a de-facto standard for modeling processes. However, this standard does not incorporate explicitly the Problem-Solving (PS) knowledge in the Process Modeling (PM) results. Thus, such knowledge cannot be shared or reused. To narrow this gap is today a challenging research area. In this paper we present a framework able to capture the PS knowledge and to improve a workflow. This framework extends the BPMN specification by incorporating new general-purpose elements. A pilot scenario is also presented and discussed.

Keywords: business process management, BPMN, problem solving, process mapping

Procedia PDF Downloads 411
7235 Determination of the Minimum Time and the Optimal Trajectory of a Moving Robot Using Picard's Method

Authors: Abbes Lounis, Kahina Louadj, Mohamed Aidene

Abstract:

This paper presents an optimal control problem applied to a robot; the problem is to determine a command which makes it possible to reach a final state from a given initial state in record time. The approach followed to solve this optimization problem with constraints on the control starts by presenting the equations of motion of the dynamic system then by applying Pontryagin's maximum principle (PMP) to determine the optimal control, and Picard's successive approximation method combined with the shooting method to solve the resulting differential system.

Keywords: robotics, Pontryagin's Maximum Principle, PMP, Picard's method, shooting method, non-linear differential systems

Procedia PDF Downloads 253
7234 Development of Algorithms for Solving and Analyzing Special Problems Transports Type

Authors: Dmitri Terzi

Abstract:

The article presents the results of an algorithmic study of a special optimization problem of the transport type (traveling salesman problem): 1) To solve the problem, a new natural algorithm has been developed based on the decomposition of the initial data into convex hulls, which has a number of advantages; it is applicable for a fairly large dimension, does not require a large amount of memory, and has fairly good performance. The relevance of the algorithm lies in the fact that, in practice, programs for problems with the number of traversal points of no more than twenty are widely used. For large-scale problems, the availability of algorithms and programs of this kind is difficult. The proposed algorithm is natural because the optimal solution found by the exact algorithm is not always feasible due to the presence of many other factors that may require some additional restrictions. 2) Another inverse problem solved here is to describe a class of traveling salesman problems that have a predetermined optimal solution. The constructed algorithm 2 allows us to characterize the structure of traveling salesman problems, as well as construct test problems to evaluate the effectiveness of algorithms and other purposes. 3) The appendix presents a software implementation of Algorithm 1 (in MATLAB), which can be used to solve practical problems, as well as in the educational process on operations research and optimization methods.

Keywords: traveling salesman problem, solution construction algorithm, convex hulls, optimality verification

Procedia PDF Downloads 70
7233 Solution of the Blast Wave Problem in Dusty Gas

Authors: Triloki Nath, R. K. Gupta, L. P. Singh

Abstract:

The aim of this paper is to find the new exact solution of the blast wave problem in one-dimensional unsteady adiabatic flow for generalized geometry in a compressible, inviscid ideal gas with dust particles. The density of the undisturbed region is assumed to vary according to a power law of the distance from the point of explosion. The exact solution of the problem in form of a power in the distance and the time is obtained. Further, the behaviour of the total energy carried out by the blast wave for planar, cylindrically symmetric and spherically symmetric flow corresponding to different Mach number of the fluid flow in dusty gas is presented. It is observed that the presence of dust particles in the gas yields more complex expression as compared to the ordinary Gasdynamics.

Keywords: shock wave, blast wave, dusty gas, strong shock

Procedia PDF Downloads 331
7232 Improving Order Quantity Model with Emergency Safety Stock (ESS)

Authors: Yousef Abu Nahleh, Alhasan Hakami, Arun Kumar, Fugen Daver

Abstract:

This study considers the problem of calculating safety stocks in disaster situations inventory systems that face demand uncertainties. Safety stocks are essential to make the supply chain, which is controlled by forecasts of customer needs, in response to demand uncertainties and to reach predefined goal service levels. To solve the problem of uncertainties due to the disaster situations affecting the industry sector, the concept of Emergency Safety Stock (ESS) was proposed. While there exists a huge body of literature on determining safety stock levels, this literature does not address the problem arising due to the disaster and dealing with the situations. In this paper, the problem of improving the Order Quantity Model to deal with uncertainty of demand due to disasters is managed by incorporating a new idea called ESS which is based on the probability of disaster occurrence and uses probability matrix calculated from the historical data.

Keywords: Emergency Safety Stocks, safety stocks, Order Quantity Model, supply chain

Procedia PDF Downloads 346
7231 Matrix Completion with Heterogeneous Cost

Authors: Ilqar Ramazanli

Abstract:

The matrix completion problem has been studied broadly under many underlying conditions. The problem has been explored under adaptive or non-adaptive, exact or estimation, single-phase or multi-phase, and many other categories. In most of these cases, the observation cost of each entry is uniform and has the same cost across the columns. However, in many real-life scenarios, we could expect elements from distinct columns or distinct positions to have a different cost. In this paper, we explore this generalization under adaptive conditions. We approach the problem under two different cost models. The first one is that entries from different columns have different observation costs, but within the same column, each entry has a uniform cost. The second one is any two entry has different observation cost, despite being the same or different columns. We provide complexity analysis of our algorithms and provide tightness guarantees.

Keywords: matroid optimization, matrix completion, linear algebra, algorithms

Procedia PDF Downloads 107
7230 Problem Gambling in the Conceptualization of Health Professionals: A Qualitative Analysis of the Discourses Produced by Psychologists, Psychiatrists and General Practitioners

Authors: T. Marinaci, C. Venuleo

Abstract:

Different conceptualizations of disease affect patient care. This study aims to address this gap. It explores how health professionals conceptualize gambling problem, addiction and the goals of recovery process. In-depth, semi-structured, open-ended interviews were conducted with Italian psychologists, psychiatrists, general practitioners, and support staff (N= 114), working within health centres for the treatment of addiction (public health services or therapeutic communities) or medical offices. A Lexical Correspondence Analysis (LCA) was applied to the verbatim transcripts. LCA allowed to identify two main factorial dimensions, which organize similarity and dissimilarity in the discourses of the interviewed. The first dimension labelled 'Models of relationship with the problem', concerns two different models of relationship with the health problem: one related to the request for help and the process of taking charge and the other related to the identification of the psychopathology underlying the disorder. The second dimension, labelled 'Organisers of the intervention' reflects the dialectic between two ways to address the problem. On the one hand, they are the gambling dynamics and its immediate life-consequences to organize the intervention (whatever the request of the user is); on the other hand, they are the procedures and the tools which characterize the health service to organize the way the professionals deal with the user’ s problem (whatever it is and despite the specify of the user’s request). The results highlight how, despite the differences, the respondents share a central assumption: understanding gambling problem implies the reference to the gambler’s identity, more than, for instance, to the relational, social, cultural or political context where the gambler lives. A passive stance is attributed to the user, who does not play any role in the definition of the goal of the intervention. The results will be discussed to highlight the relationship between professional models and users’ ways to understand and deal with the problems related to gambling.

Keywords: cultural models, health professionals, intervention models, problem gambling

Procedia PDF Downloads 154
7229 Practical Problems as Tools for the Development of Secondary School Students’ Motivation to Learn Mathematics

Authors: M. Rodionov, Z. Dedovets

Abstract:

This article discusses plausible reasoning use for solution to practical problems. Such reasoning is the major driver of motivation and implementation of mathematical, scientific and educational research activity. A general, practical problem solving algorithm is presented which includes an analysis of specific problem content to build, solve and interpret the underlying mathematical model. The author explores the role of practical problems such as the stimulation of students' interest, the development of their world outlook and their orientation in the modern world at the different stages of learning mathematics in secondary school. Particular attention is paid to the characteristics of those problems which were systematized and presented in the conclusions.

Keywords: mathematics, motivation, secondary school, student, practical problem

Procedia PDF Downloads 298
7228 Research on the Optimization of Satellite Mission Scheduling

Authors: Pin-Ling Yin, Dung-Ying Lin

Abstract:

Satellites play an important role in our daily lives, from monitoring the Earth's environment and providing real-time disaster imagery to predicting extreme weather events. As technology advances and demands increase, the tasks undertaken by satellites have become increasingly complex, with more stringent resource management requirements. A common challenge in satellite mission scheduling is the limited availability of resources, including onboard memory, ground station accessibility, and satellite power. In this context, efficiently scheduling and managing the increasingly complex satellite missions under constrained resources has become a critical issue that needs to be addressed. The core of Satellite Onboard Activity Planning (SOAP) lies in optimizing the scheduling of the received tasks, arranging them on a timeline to form an executable onboard mission plan. This study aims to develop an optimization model that considers the various constraints involved in satellite mission scheduling, such as the non-overlapping execution periods for certain types of tasks, the requirement that tasks must fall within the contact range of specified types of ground stations during their execution, onboard memory capacity limits, and the collaborative constraints between different types of tasks. Specifically, this research constructs a mixed-integer programming mathematical model and solves it with a commercial optimization package. Simultaneously, as the problem size increases, the problem becomes more difficult to solve. Therefore, in this study, a heuristic algorithm has been developed to address the challenges of using commercial optimization package as the scale increases. The goal is to effectively plan satellite missions, maximizing the total number of executable tasks while considering task priorities and ensuring that tasks can be completed as early as possible without violating feasibility constraints. To verify the feasibility and effectiveness of the algorithm, test instances of various sizes were generated, and the results were validated through feedback from on-site users and compared against solutions obtained from a commercial optimization package. Numerical results show that the algorithm performs well under various scenarios, consistently meeting user requirements. The satellite mission scheduling algorithm proposed in this study can be flexibly extended to different types of satellite mission demands, achieving optimal resource allocation and enhancing the efficiency and effectiveness of satellite mission execution.

Keywords: mixed-integer programming, meta-heuristics, optimization, resource management, satellite mission scheduling

Procedia PDF Downloads 24
7227 Sparsity-Based Unsupervised Unmixing of Hyperspectral Imaging Data Using Basis Pursuit

Authors: Ahmed Elrewainy

Abstract:

Mixing in the hyperspectral imaging occurs due to the low spatial resolutions of the used cameras. The existing pure materials “endmembers” in the scene share the spectra pixels with different amounts called “abundances”. Unmixing of the data cube is an important task to know the present endmembers in the cube for the analysis of these images. Unsupervised unmixing is done with no information about the given data cube. Sparsity is one of the recent approaches used in the source recovery or unmixing techniques. The l1-norm optimization problem “basis pursuit” could be used as a sparsity-based approach to solve this unmixing problem where the endmembers is assumed to be sparse in an appropriate domain known as dictionary. This optimization problem is solved using proximal method “iterative thresholding”. The l1-norm basis pursuit optimization problem as a sparsity-based unmixing technique was used to unmix real and synthetic hyperspectral data cubes.

Keywords: basis pursuit, blind source separation, hyperspectral imaging, spectral unmixing, wavelets

Procedia PDF Downloads 194
7226 Solving Operating Room Scheduling Problem by Using Dispatching Rule

Authors: Yang-Kuei Lin, Yin-Yi Chou

Abstract:

In this research, we have considered operating room scheduling problem. The objective is to minimize total operating cost. The total operating cost includes idle cost and overtime cost. We have proposed a dispatching rule that can guarantee to find feasible solutions for the studied problem efficiently. We compared the proposed dispatching rule with the optimal solutions found by solving Inter Programming, and other solutions found by using modified existing dispatching rules. The computational results indicates that the proposed heuristic can find near optimal solutions efficiently.

Keywords: assignment, dispatching rule, operation rooms, scheduling

Procedia PDF Downloads 232
7225 Understanding Water Governance in the Central Rift Valley of Ethiopia: Zooming into Transparency, Accountability, and Participation

Authors: Endalew Jibat, Feyera Senbeta, Tesfaye Zeleke, Fitsum Hagos

Abstract:

Water governance considers multi-sector participation beyond the state; and for sustainable use of water resources, appropriate laws, policies, regulations, and institutions needs to be developed and put in place. Water policy, a critical and integral instrument of water governance, guided water use schemes and ensures equitable water distribution among users. The Ethiopian Central Rift Valley (CRV) is wealthy of water resources, but these water resources are currently under severe strain owing to an imbalance in human-water interactions. The main aim of the study was to examine the state of water resources governance in the CRV of Ethiopia, and the impact of the Ethiopian Water Resources Management Policy on water governance. Key informant interviews (KII), focused group discussions, and document reviews were used to gather data for the study. The NVivo 11 program was used to organize, code, and analyze the data. The results revealed that water resources governance practices such as water allocation and apportionment, comprehensive and integrated water management plans, water resources protection, and conservation activities were rarely implemented. Water resources management policy mechanisms were not fully put in place. Lack of coherence in water policy implementation, absence of clear roles and responsibilities of stakeholders, absence of transparency and accountability in irrigation water service delivery, and lack of meaningful participation of key actors in water governance decision-making were the primary shortcomings observed. Factors such as over-abstraction, deterioration of buffer zone, and chemical erosion from surrounding farming have contributed to the reduction in water volume and quality in the CRV. These challenges have influenced aquatic ecosystem services and threaten the livelihoods of the surrounding communities. Hence, reforms relating to policy coherence and enforcement, stakeholder involvement, water distribution strategies, and the application of water governance principles must be given more emphasis.

Keywords: water resources, irrigation, governance, water allocation, governance principles, stakeholders engagement, central rift valley

Procedia PDF Downloads 91