Search results for: nonlinear partial differential equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5191

Search results for: nonlinear partial differential equation

451 Drying Shrinkage of Concrete: Scale Effect and Influence of Reinforcement

Authors: Qier Wu, Issam Takla, Thomas Rougelot, Nicolas Burlion

Abstract:

In the framework of French underground disposal of intermediate level radioactive wastes, concrete is widely used as a construction material for containers and tunnels. Drying shrinkage is one of the most disadvantageous phenomena of concrete structures. Cracks generated by differential shrinkage could impair the mechanical behavior, increase the permeability of concrete and act as a preferential path for aggressive species, hence leading to an overall decrease in durability and serviceability. It is of great interest to understand the drying shrinkage phenomenon in order to predict and even to control the strains of concrete. The question is whether the results obtained from laboratory samples are in accordance with the measurements on a real structure. Another question concerns the influence of reinforcement on drying shrinkage of concrete. As part of a global project with Andra (French National Radioactive Waste Management Agency), the present study aims to experimentally investigate the scale effect as well as the influence of reinforcement on the development of drying shrinkage of two high performance concretes (based on CEM I and CEM V cements, according to European standards). Various sizes of samples are chosen, from ordinary laboratory specimens up to real-scale specimens: prismatic specimens with different volume-to-surface (V/S) ratios, thin slices (thickness of 2 mm), cylinders with different sizes (37 and 160 mm in diameter), hollow cylinders, cylindrical columns (height of 1000 mm) and square columns (320×320×1000 mm). The square columns have been manufactured with different reinforcement rates and can be considered as mini-structures, to approximate the behavior of a real voussoir from the waste disposal facility. All the samples are kept, in a first stage, at 20°C and 50% of relative humidity (initial conditions in the tunnel) in a specific climatic chamber developed by the Laboratory of Mechanics of Lille. The mass evolution and the drying shrinkage are monitored regularly. The obtained results show that the specimen size has a great impact on water loss and drying shrinkage of concrete. The specimens with a smaller V/S ratio and a smaller size have a bigger drying shrinkage. The correlation between mass variation and drying shrinkage follows the same tendency for all specimens in spite of the size difference. However, the influence of reinforcement rate on drying shrinkage is not clear based on the present results. The second stage of conservation (50°C and 30% of relative humidity) could give additional results on these influences.

Keywords: concrete, drying shrinkage, mass evolution, reinforcement, scale effect

Procedia PDF Downloads 152
450 Development and Structural Characterization of a Snack Food with Added Type 4 Extruded Resistant Starch

Authors: Alberto A. Escobar Puentes, G. Adriana García, Luis F. Cuevas G., Alejandro P. Zepeda, Fernando B. Martínez, Susana A. Rincón

Abstract:

Snack foods are usually classified as ‘junk food’ because have little nutritional value. However, due to the increase on the demand and third generation (3G) snacks market, low price and easy to prepare, can be considered as carriers of compounds with certain nutritional value. Resistant starch (RS) is classified as a prebiotic fiber it helps to control metabolic problems and has anti-cancer colon properties. The active compound can be developed by chemical cross-linking of starch with phosphate salts to obtain a type 4 resistant starch (RS4). The chemical reaction can be achieved by extrusion, a process widely used to produce snack foods, since it's versatile and a low-cost procedure. Starch is the major ingredient for snacks 3G manufacture, and the seeds of sorghum contain high levels of starch (70%), the most drought-tolerant gluten-free cereal. Due to this, the aim of this research was to develop a snack (3G), with RS4 in optimal conditions extrusion (previously determined) from sorghum starch, and carry on a sensory, chemically and structural characterization. A sample (200 g) of sorghum starch was conditioned with 4% sodium trimetaphosphate/ sodium tripolyphosphate (99:1) and set to 28.5% of moisture content. Then, the sample was processed in a single screw extruder equipped with rectangular die. The inlet, transport and output temperatures were 60°C, 134°C and 70°C, respectively. The resulting pellets were expanded in a microwave oven. The expansion index (EI), penetration force (PF) and sensory analysis were evaluated in the expanded pellets. The pellets were milled to obtain flour and RS content, degree of substitution (DS), and percentage of phosphorus (% P) were measured. Spectroscopy [Fourier Transform Infrared (FTIR)], X-ray diffraction, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) analysis were performed in order to determine structural changes after the process. The results in 3G were as follows: RS, 17.14 ± 0.29%; EI, 5.66 ± 0.35 and PF, 5.73 ± 0.15 (N). Groups of phosphate were identified in the starch molecule by FTIR: DS, 0.024 ± 0.003 and %P, 0.35±0.15 [values permitted as food additives (<4 %P)]. In this work an increase of the gelatinization temperature after the crosslinking of starch was detected; the loss of granular and vapor bubbles after expansion were observed by SEM; By using X-ray diffraction, loss of crystallinity was observed after extrusion process. Finally, a snack (3G) was obtained with RS4 developed by extrusion technology. The sorghum starch was efficient for snack 3G production.

Keywords: extrusion, resistant starch, snack (3G), Sorghum

Procedia PDF Downloads 288
449 Enhanced Stability of Piezoelectric Crystalline Phase of Poly(Vinylidene Fluoride) (PVDF) and Its Copolymer upon Epitaxial Relationships

Authors: Devi Eka Septiyani Arifin, Jrjeng Ruan

Abstract:

As an approach to manipulate the performance of polymer thin film, epitaxy crystallization within polymer blends of poly(vinylidene fluoride) (PVDF) and its copolymer poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) was studied in this research, which involves the competition between phase separation and crystal growth of constitutive semicrystalline polymers. The unique piezoelectric feature of poly(vinylidene fluoride) crystalline phase is derived from the packing of molecular chains in all-trans conformation, which spatially arranges all the substituted fluorene atoms on one side of the molecular chain and hydrogen atoms on the other side. Therefore, the net dipole moment is induced across the lateral packing of molecular chains. Nevertheless, due to the mutual repulsion among fluorene atoms, this all-trans molecular conformation is not stable, and ready to change above curie temperature, where thermal energy is sufficient to cause segmental rotation. This research attempts to explore whether the epitaxial interactions between piezoelectric crystals and crystal lattice of hexamethylbenzene (HMB) crystalline platelet is able to stabilize this metastable all-trans molecular conformation or not. As an aromatic crystalline compound, the melt of HMB was surprisingly found able to dissolve the poly(vinylidene fluoride), resulting in homogeneous eutectic solution. Thus, after quenching this binary eutectic mixture to room temperature, subsequent heating or annealing processes were designed to explore the involve phase separation and crystallization behavior. The phase transition behaviors were observed in-situ by X-ray diffraction and differential scanning calorimetry (DSC). The molecular packing was observed via transmission electron microscope (TEM) and the principles of electron diffraction were brought to study the internal crystal structure epitaxially developed within thin films. Obtained results clearly indicated the occurrence of heteroepitaxy of PVDF/PVDF-TrFE on HMB crystalline platelet. Both the concentration of poly(vinylidene fluoride) and the mixing ratios of these two constitutive polymers have been adopted as the influential factors for studying the competition between the epitaxial crystallization of PVDF and P(VDF-TrFE) on HMB crystalline. Furthermore, the involved epitaxial relationship is to be deciphered and studied as a potential factor capable of guiding the wide spread of piezoelectric crystalline form.

Keywords: epitaxy, crystallization, crystalline platelet, thin film and mixing ratio

Procedia PDF Downloads 201
448 Exploring Artistic Creation and Autoethnography in the Spatial Context of Geography

Authors: Sinem Tas

Abstract:

This research paper attempts to study the perspective of personal experience in relation to spatial dynamics and artistic outcomes within the realm of cultural identity. This article serves as a partial analysis within a broader PhD investigation that focuses on the cultural dynamics and political structures behind cultural identity through an autoethnography of narrative while presenting its correlation with artistic creation in the context of space and people. Focusing on the artistic/creative practice project AUTRUI, the primary goal is to analyse and understand the influence of personal experiences and culturally constructed identity as an artist in resulting in the compositional modality of the last image considering self-reflective experience. Referencing the works of Joyce Davidson and Christine Milligan - the scholars who emphasise the importance of emotion and spatial experience in geographical studies contribute to this work as they highlight the significance of emotion across various spatial scales in their work Embodying Emotion Sensing Space: Introducing Emotional Geographies (2004). Their perspective suggests that understanding emotions within different spatial contexts is crucial for comprehending human experiences and interactions with space. Incorporating the insights of scholars like Yi-Fu Tuan, particularly his seminal work Space and Place: The Perspective of Experience (1979), is important for creating an in-depth frame of geographical experience. Tuan's humanistic perspective on space and place provides a valuable theoretical framework for understanding the interplay between personal experiences and spatial contexts. A substantial contextualisation of the geopolitics of Turkey - the implications for national identity and cohesion - will be addressed by drawing an outline of the political and geographical frame as a methodological strategy to understand the dynamics behind this research. Besides the bibliographical reading, the methods used to study this relation are participatory observation, memory work along with memoir analysis, personal interviews, and discussion of photographs and news. The utilisation of the self as data requires the analysis of the written sources with personal engagement. By delving into written sources such as written communications or diaries as well as memoirs, the research gains a firsthand perspective, enriching the analytical depth of the study. Furthermore, the examination of photography and news articles serves as a valuable means of contextualising experiences from a journalist's background within specific geographical settings. The inclusion of interviews with close family members access provides firsthand perspectives and intimate insights rooted in shared experiences within similar geographical contexts, offering complementary insights and diversified viewpoints, enhancing the comprehensiveness of the investigation.

Keywords: art, autoethnography, place and space, Turkey

Procedia PDF Downloads 28
447 Teacher Characteristics That Influence Development of Oral Language Skills among Pre-Primary School Pupils: Case Study of Nairobi City County, Kenya

Authors: Kenneth Okelo, Esther Waithaka, Maureen Mweru

Abstract:

Development of oral language skills is a precursor to writing and reading acquisition. Oral skill is a means of communication through which people express their desires, ideas, excitements, amusements, disappointments and exchange information. In addition, oral skills have been found to be an important tool for thinking and concept development in children. Research carried out in industrialised countries have identified some appropriate teaching strategies used to enhance acquisition of oral language skills such as repetition, substitution, explanation, contrast, exemplification and code-switching. However, these studies’ geographical locations do not reflect the diversity of the Kenyan society. In addition, studies conducted in Kenya in the past have not established why pre-primary school teachers are not using appropriate teaching strategies. The purpose of this study was to find out whether teachers’ experience, academic qualification and type of training influences their choice of teaching strategies in the development of oral language skills inside and out of the classroom in selected preschools in Kibra Sub-County, Nairobi County. In addition, this study aimed at finding out the strategies used by teachers in Kibra Sub-County to promote oral skills development among pre-primary school children. The study was guided by Holdaway’s theory of language acquisition. Descriptive survey design was employed during this study. Questionnaires and observation schedules were used to collect data. Eighty-three (83) preschool teachers were sampled using multistage sampling methods for observation. Data was analysed using SPSS version 20. The researcher carried out content analysis on the qualitative data. The main descriptive methods used were tabulation of frequencies and percentages. Chi squire test was the inferential statistic used to test the relationship between variables. The main findings of the study indicate that teaching strategies that were mostly used by pre-primary school teachers were code-switching, examples, repetition, substitution and explanation. While questions, direction, expansion of children words and contrast were the least used teaching strategies when teaching oral language skills. The study revealed that the there is a slight correlation between the type of training of teachers and the teaching strategies as most of DICECE trained teachers used more teaching strategies when teaching oral skills compared to other teachers. The findings also revealed that there was a partial significant correlation between teacher’s academic qualifications and a few teaching strategies. A similar correlation was also observed between teaching experience and a few teaching strategies. Since the strategies used by pre-primary school teachers under the study were less than half of the recommended teaching strategies to promote oral skills, the study recommends that teachers should be encouraged to use more in structural strategies to improve children’s oral language skills.

Keywords: Kenya early childhood education, Kenya education, oral language skills acquisition, teaching methods

Procedia PDF Downloads 232
446 DNA Hypomethylating Agents Induced Histone Acetylation Changes in Leukemia

Authors: Sridhar A. Malkaram, Tamer E. Fandy

Abstract:

Purpose: 5-Azacytidine (5AC) and decitabine (DC) are DNA hypomethylating agents. We recently demonstrated that both drugs increase the enzymatic activity of the histone deacetylase enzyme SIRT6. Accordingly, we are comparing the changes H3K9 acetylation changes in the whole genome induced by both drugs using leukemia cells. Description of Methods & Materials: Mononuclear cells from the bone marrow of six de-identified naive acute myeloid leukemia (AML) patients were cultured with either 500 nM of DC or 5AC for 72 h followed by ChIP-Seq analysis using a ChIP-validated acetylated-H3K9 (H3K9ac) antibody. Chip-Seq libraries were prepared from treated and untreated cells using SMARTer ThruPLEX DNA- seq kit (Takara Bio, USA) according to the manufacturer’s instructions. Libraries were purified and size-selected with AMPure XP beads at 1:1 (v/v) ratio. All libraries were pooled prior to sequencing on an Illumina HiSeq 1500. The dual-indexed single-read Rapid Run was performed with 1x120 cycles at 5 pM final concentration of the library pool. Sequence reads with average Phred quality < 20, with length < 35bp, PCR duplicates, and those aligning to blacklisted regions of the genome were filtered out using Trim Galore v0.4.4 and cutadapt v1.18. Reads were aligned to the reference human genome (hg38) using Bowtie v2.3.4.1 in end-to-end alignment mode. H3K9ac enriched (peak) regions were identified using diffReps v1.55.4 software using input samples for background correction. The statistical significance of differential peak counts was assessed using a negative binomial test using all individuals as replicates. Data & Results: The data from the six patients showed significant (Padj<0.05) acetylation changes at 925 loci after 5AC treatment versus 182 loci after DC treatment. Both drugs induced H3K9 acetylation changes at different chromosomal regions, including promoters, coding exons, introns, and distal intergenic regions. Ten common genes showed H3K9 acetylation changes by both drugs. Approximately 84% of the genes showed an H3K9 acetylation decrease by 5AC versus 54% only by DC. Figures 1 and 2 show the heatmaps for the top 100 genes and the 99 genes showing H3K9 acetylation decrease after 5AC treatment and DC treatment, respectively. Conclusion: Despite the similarity in hypomethylating activity and chemical structure, the effect of both drugs on H3K9 acetylation change was significantly different. More changes in H3K9 acetylation were observed after 5 AC treatments compared to DC. The impact of these changes on gene expression and the clinical efficacy of these drugs requires further investigation.

Keywords: DNA methylation, leukemia, decitabine, 5-Azacytidine, epigenetics

Procedia PDF Downloads 123
445 Catalytic Alkylation of C2-C4 Hydrocarbons

Authors: Bolysbek Utelbayev, Tasmagambetova Aigerim, Toktasyn Raila, Markayev Yergali, Myrzakhanov Maxat

Abstract:

Intensive development of secondary processes of destructive processing of crude oil has led to the occurrence of oil refining factories resources of C2-C4 hydrocarbons. Except for oil gases also contain basically C2-C4 hydrocarbon gases where some of the amounts are burned. All these data has induced interest to the study of producing alkylate from hydrocarbons С2-С4 which being as components of motor fuels. The purpose of this work was studying transformation propane-propene, butane-butene fractions at the presence of the ruthenium-chromic support catalyst whereas the carrier is served pillar - structural montmorillonite containing in native bentonite clay. In this work is considered condition and structure of the bentonite clay from the South-Kazakhstan area of the Republic Kazakhstan. For preparation rhodium support catalyst (0,5-1,0 mass. % Rh) was used chloride of rhodium-RhCl3∙3H2O, as a carrier was used modified bentonite clay. For modifying natural clay to pillar structural form were used polyhydroxy complexes of chromium. To aqueous solution of chloride chromium gradually flowed the solution of sodium hydroxide at gradual hashing up to pH~3-4. The concentration of chloride chromium was paid off proceeding from calculation 5-30 mmole Cr3+ per gram clay. Suspension bentonite (~1,0 mass. %) received by intensive washing it in water during 4 h, pH-water extract of clay makes -8-9. The acidity of environment supervised by means of digital pH meter OP-208/1. In order to prevent coagulation of a solution polyhydroxy complexes of chromium, it was slowly added to a suspension of clay. "Reserve of basicity" Cr3+:/OH-allowing to prevent coagulation chloride of rhodium made 1/3. After endurance processed suspensions of clay during 24 h, a deposit was washed by water and condensed. The sample, after separate from a liquid phase, dried at first at the room temperature, and then at 110°C (2h) with the subsequent rise the temperature up to 180°C (4h). After cooling the firm mass was pounded to a powder, it was shifted infractions with the certain sizes of particles. Fractions of particles modifying clay in the further were impregnated with an aqueous solution with rhodium-RhCl3∙3H2O (0,5-1,0 mаss % Rh ). Obtained pillar structural bentonite approaches heat resistance and its porous structure above the 773K. Pillar structural bentonite was used for preparation 1.0% Ru/Carrier (modifying bentonite) support catalysts where is realised alkylation of C2-C4 hydrocarbons. The process of alkylation is carried out at a partial pressure of hydrogen 0.5-1.0MPa. Outcome 2.2.4 three methyl pentane and 2.2.3 trimethylpentane achieved 40%. At alkylation butane-butene mixture outcome of the isooctane is achieved 60%. In this condition of studying the ethene is not undergoing to alkylation.

Keywords: alkylation, butene, pillar structure, ruthenium catalyst

Procedia PDF Downloads 375
444 Islamic Finance and Trade Promotion in the African Continental Free Trade Area: An Exploratory Study

Authors: Shehu Usman Rano Aliyu

Abstract:

Despite the significance of finance as a major trade lubricant, evidence in the literature alludes to its scarcity and increasing cost, especially in developing countries where small and medium-scale enterprises are worst affected. The creation of the African Continental Free Trade Area (AFCFTA) in 2018, an organ of the African Union (AU), was meant to serve as a beacon for deepening economic integration through the removal of trade barriers inhibiting intra-African trade and movement of persons, among others. Hence, this research explores the role Islamic trade finance (ITF) could play in spurring intra- and inter-African trade. The study involves six countries; Egypt, Kenya, Malaysia, Morocco, Nigeria, and Saudi Arabia, and employs survey research, a total of 430 sample data, and SmartPLS Structural Equation Modelling (SEM) techniques in its analyses. We find strong evidence that Shari’ah, legal and regulatory compliance issues of the ITF institutions rhythm with the internal, national, and international compliance requirements equally as the unique instruments applied in ITF. In addition, ITF was found to be largely driven by global economic and political stability, socially responsible finance, ethical and moral considerations, risk-sharing, and resilience of the global Islamic finance industry. Further, SMEs, Governments, and Importers are the major beneficiary sectors. By and large, AfCFTA’s protocols align with the principles of ITF and are therefore suited for the proliferation of Islamic finance in the continent. And, while AML/KYC and BASEL requirements, compliance to AAOIFI and IFSB standards, paucity of Shari'ah experts, threats to global security, and increasing global economic uncertainty pose as major impediments, the future of ITF would be shaped by a greater need for institutional and policy support, global economic cum political stability, robust regulatory framework, and digital technology/fintech. The study calls for the licensing of more ITF institutions in the continent, participation of multilateral institutions in ITF, and harmonization of Shariah standards.

Keywords: AfCFTA, islamic trade finance, murabaha, letter of credit, forwarding

Procedia PDF Downloads 30
443 Effect of Supplementation of Hay with Noug Seed Cake (Guizotia abyssinica), Wheat Bran and Their Mixtures on Feed Utilization, Digestiblity and Live Weight Change in Farta Sheep

Authors: Fentie Bishaw Wagayie

Abstract:

This study was carried out with the objective of studying the response of Farta sheep in feed intake and live weight change when fed on hay supplemented with noug seed cake (NSC), wheat bran (WB), and their mixtures. The digestibility trial of 7 days and 90 days of feeding trial was conducted using 25 intact male Farta sheep with a mean initial live weight of 16.83 ± 0.169 kg. The experimental animals were arranged randomly into five blocks based on the initial live weight, and the five treatments were assigned randomly to each animal in a block. Five dietary treatments used in the experiment comprised of grass hay fed ad libitum (T1), grass hay ad libitum + 300 g DM WB (T2), grass hay ad libitum + 300 g DM (67% WB: 33% NSC mixture) (T3), grass hay ad libitum + 300 g DM (67% NSC: 33% WB) (T4) and 300 g DM/ head/day NSC (T5). Common salt and water were offered ad libitum. The supplements were offered twice daily at 0800 and 1600 hours. The experimental sheep were kept in individual pens. Supplementation of NSC, WB, and their mixtures significantly increased (p < 0.01) the total dry matter (DM) (665.84-788 g/head/day) and (p < 0.001) crude protein (CP) intake. Unsupplemented sheep consumed significantly higher (p < 0.01) grass hay DM (540.5g/head/day) as compared to the supplemented treatments (365.8-488 g/h/d), except T2. Among supplemented sheep, T5 had significantly higher (p < 0.001) CP intake (99.98 g/head/day) than the others (85.52-90.2 g/head/day). Supplementation significantly improved (p < 0.001) the digestibility of CP (66.61-78.9%), but there was no significant effect (p > 0.05) on DM, OM, NDF, and ADF digestibility between supplemented and control treatments. Very low CP digestibility (11.55%) observed in the basal diet (grass hay) used in this study indicated that feeding sole grass hay could not provide nutrients even for the maintenance requirement of growing sheep. Significant final and daily live weight gain (p < 0.001) in the range of 70.11-82.44 g/head/day was observed in supplemented Farta sheep, but unsupplemented sheep lost weight by 9.11g/head/day. Numerically, among the supplemented treatments, sheep supplemented with a higher proportion of NSC in T4 (201 NSC + 99 g WB) gained more weight than the rest, though not statistically significant (p > 0.05). The absence of statistical difference in daily body weight gain between all supplemented sheep indicated that the supplementation of NSC, WB, and their mixtures had similar potential to provide nutrients. Generally, supplementation of NSC, WB, and their mixtures to the basal grass hay diet improved feed conversion ratio, total DM intake, CP intake, and CP digestibility, and it also improved the growth performance with a similar trend for all supplemented Farta sheep over the control group. Therefore, from a biological point of view, to attain the required level of slaughter body weight within a short period of the growing program, sheep producer can use all the supplement types depending upon their local availability, but in the order of priority, T4, T5, T3, and T2, respectively. However, based on partial budget analysis, supplementation of 300 g DM/head /day NSC (T5) could be recommended as profitable for producers with no capital limitation, whereas T4 supplementation (201 g NSC + 99 WB DM/day) is recommended when there is capital scarcity.

Keywords: weight gain, supplement, Farta sheep, hay as basal diet

Procedia PDF Downloads 35
442 Estimation of Relative Subsidence of Collapsible Soils Using Electromagnetic Measurements

Authors: Henok Hailemariam, Frank Wuttke

Abstract:

Collapsible soils are weak soils that appear to be stable in their natural state, normally dry condition, but rapidly deform under saturation (wetting), thus generating large and unexpected settlements which often yield disastrous consequences for structures unwittingly built on such deposits. In this study, a prediction model for the relative subsidence of stressed collapsible soils based on dielectric permittivity measurement is presented. Unlike most existing methods for soil subsidence prediction, this model does not require moisture content as an input parameter, thus providing the opportunity to obtain accurate estimation of the relative subsidence of collapsible soils using dielectric measurement only. The prediction model is developed based on an existing relative subsidence prediction model (which is dependent on soil moisture condition) and an advanced theoretical frequency and temperature-dependent electromagnetic mixing equation (which effectively removes the moisture content dependence of the original relative subsidence prediction model). For large scale sub-surface soil exploration purposes, the spatial sub-surface soil dielectric data over wide areas and high depths of weak (collapsible) soil deposits can be obtained using non-destructive high frequency electromagnetic (HF-EM) measurement techniques such as ground penetrating radar (GPR). For laboratory or small scale in-situ measurements, techniques such as an open-ended coaxial line with widely applicable time domain reflectometry (TDR) or vector network analysers (VNAs) are usually employed to obtain the soil dielectric data. By using soil dielectric data obtained from small or large scale non-destructive HF-EM investigations, the new model can effectively predict the relative subsidence of weak soils without the need to extract samples for moisture content measurement. Some of the resulting benefits are the preservation of the undisturbed nature of the soil as well as a reduction in the investigation costs and analysis time in the identification of weak (problematic) soils. The accuracy of prediction of the presented model is assessed by conducting relative subsidence tests on a collapsible soil at various initial soil conditions and a good match between the model prediction and experimental results is obtained.

Keywords: collapsible soil, dielectric permittivity, moisture content, relative subsidence

Procedia PDF Downloads 334
441 Poly(ε-caprolactone)/Halloysite Nanotube Nanocomposites Scaffolds for Tissue Engineering

Authors: Z. Terzopoulou, I. Koliakou, D. Bikiaris

Abstract:

Tissue engineering offers a new approach to regenerate diseased or damaged tissues such as bone. Great effort is devoted to eliminating the need of removing non-degradable implants at the end of their life span, with biodegradable polymers playing a major part. Poly(ε-caprolactone) (PCL) is one of the best candidates for this purpose due to its high permeability, good biodegradability and exceptional biocompatibility, which has stimulated extensive research into its potential application in the biomedical fields. However, PCL degrades much slower than other known biodegradable polymers and has a total degradation of 2-4 years depending on the initial molecular weight of the device. This is due to its relatively hydrophobic character and high crystallinity. Consequently, much attention has been given to the tunable degradation of PCL to meet the diverse requirements of biomedicine. Poly(ε-caprolactone) (PCL) is a biodegradable polyester that lacks bioactivity, so when used in bone tissue engineering, new bone tissue cannot bond tightly on the polymeric surface. Therefore, it is important to incorporate reinforcing fillers into PCL matrix in order to result in a promising combination of bioactivity, biodegradability, and strength. Natural clay halloysite nanotubes (HNTs) were incorporated into PCL polymeric matrix, via in situ ring-opening polymerization of caprolactone, in concentrations 0.5, 1 and 2.5 wt%. Both unmodified and modified with aminopropyltrimethoxysilane (APTES) HNTs were used in this study. The effect of nanofiller concentration and functionalization with end-amino groups on the physicochemical properties of the prepared nanocomposites was studied. Mechanical properties were found enhanced after the incorporation of nanofillers, while the modification increased further the values of tensile and impact strength. Thermal stability of PCL was not affected by the presence of nanofillers, while the crystallization rate that was studied by Differential Scanning Calorimetry (DSC) and Polarized Light Optical Microscopy (POM) increased. All materials were subjected to enzymatic hydrolysis in phosphate buffer in the presence of lipases. Due to the hydrophilic nature of HNTs, the biodegradation rate of nanocomposites was higher compared to neat PCL. In order to confirm the effect of hydrophilicity, contact angle measurements were also performed. In vitro biomineralization test confirmed that all samples were bioactive as mineral deposits were detected by X-ray diffractometry after incubation in SBF. All scaffolds were tested in relevant cell culture using osteoblast-like cells (MG-63) to demonstrate their biocompatibility

Keywords: biomaterials, nanocomposites, scaffolds, tissue engineering

Procedia PDF Downloads 291
440 Improved Food Security and Alleviation of Cyanide Intoxication through Commercialization and Utilization of Cassava Starch by Tanzania Industries

Authors: Mariam Mtunguja, Henry Laswai, Yasinta Muzanilla, Joseph Ndunguru

Abstract:

Starchy tuberous roots of cassava provide food for people but also find application in various industries. Recently there has been the focus of concentrated research efforts to fully exploit its potential as a sustainable multipurpose crop. High starch yield is the important trait for commercial cassava production for the starch industries. Furthermore, cyanide present in cassava root poses a health challenge in the use of cassava for food. Farming communities where cassava is a staple food, prefer bitter (high cyanogenic) varieties as protection from predators and thieves. As a result, food insecure farmers prefer growing bitter cassava. This has led to cyanide intoxication to this farming communities. Cassava farmers can benefit from marketing cassava to starch producers thereby improving their income and food security. This will decrease dependency on cassava as staple food as a result of increased income and be able to afford other food sources. To achieve this, adequate information is required on the right cassava cultivars and appropriate harvesting period so as to maximize cassava production and profitability. This study aimed at identifying suitable cassava cultivars and optimum time of harvest to maximize starch production. Six commonly grown cultivars were identified and planted in a complete random block design and further analysis was done to assess variation in physicochemical characteristics, starch yield and cyanogenic potentials across three environments. The analysis showed that there is a difference in physicochemical characteristics between landraces (p ≤ 0.05), and can be targeted to different industrial applications. Among landraces, dry matter (30-39%), amylose (11-19%), starch (74-80%) and reducing sugars content (1-3%) varied when expressed on a dry weight basis (p ≤ 0.05); however, only one of the six genotypes differed in crystallinity and mean starch granule particle size, while glucan chain distribution and granule morphology were the same. In contrast, the starch functionality features measured: swelling power, solubility, syneresis, and digestibility differed (p ≤ 0.05). This was supported by Partial least square discriminant analysis (PLS-DA), which highlighted the divergence among the cassavas based on starch functionality, permitting suggestions for the targeted uses of these starches in diverse industries. The study also illustrated genotypic difference in starch yield and cyanogenic potential. Among landraces, Kiroba showed potential for maximum starch yield (12.8 t ha-1) followed by Msenene (12.3 t ha-1) and third was Kilusungu (10.2 t ha-1). The cyanide content of cassava landraces was between 15 and 800 ppm across all trial sites. GGE biplot analysis further confirmed that Kiroba was a superior cultivar in terms of starch yield. Kilusungu had the highest cyanide content and average starch yield, therefore it can also be suitable for use in starch production.

Keywords: cyanogen, cassava starch, food security, starch yield

Procedia PDF Downloads 196
439 Psychogeographic Analysis of Campus Design: Spatial Appropriation via Walking Practice in the Cases of Van Yüzüncü Yıl University and Ankara Middle East Technical University in Turkey

Authors: Yasemin İlkay

Abstract:

Street is not only a crucial spatial unit in urban design and planning discipline but also the context of walking practice in urban space. Moreover, psychogeography concentrates on both ‘walking’ and, therefore, the differentiated forms of (urban) streets to examine the influence of the built environment on the feelings and attitudes of human beings. This paper focuses on ‘walking practice’ in university campuses with reference to spatial appropriation forms via a psychogeographic lens on the phenomenon of alle in two different cities of Turkey, Ankara, the capital city, and Van, in the eastern part of the country. Alle, as an extension of ‘street’ in university campuses, is the constructive spatial structure in university campuses, and as a result, it should be the (both physical and mental) spine of design policy while conceiving and constructing a university campus. The main question of the paper is: How does the interrelation of ‘campus design’ and ‘walking practice’ on alle penetrate reciprocally on the spatial representations of citizens within their urban daily lives. The body contacts with and at urban space (with other objects and subjects) via its movements and stops; this interaction occurs through the spatial pattern of occupancy and vacancy. Walking practice leads to a set of cognitive mental representations in relation to the repertoire of place attachment and spatial appropriation. University campuses are autonomous and fruitful urban spaces to investigate such an interaction. There are both physical/real and psychogeographic representations of the same urban spaces and urban spatial practices. This separation would indicate the invisible dimensions of the difference between ‘what is conceived’ and ‘what is perceived.’ This study aims to compare and contrast the role of alle in both campus design and spatial appropriation via walking at two differentiated university campuses by collecting the mental representations, doing in-depth interviews, and attending walks with the interviewees by psychogeographic techniques. Campus design and spatial appropriation will be compared [with reference to the conception and perception of alle] in three scales: (1) the historical spatial development stories and design approaches of university campuses, (2) the spatial pattern of campuses on the basis of alle, and (3) sub-behavioral regions of the alle in campuses in relation with mental representations and psychogeographic attentive walks. The sub-questions of the research are: [1] How and why do the design approaches differentiate in two university campuses in Turkey, [2] How the interrelation among alle design and spatial appropriation differs in these two cases, and [3] What do the differentiated gaps among real and psychographic maps indicate about the design and spatial appropriation interrelation. METU, as a well-designed, readable campus with its alle, promise a rich walking practice with in-depth and fruitful spatial appropriation regions; however, Van YYÜ limits both the practice and place attachment with its partial design with an alle which is later added to the campus. This research both displays the role of alle in the campus design, walking practice and spatial appropriation and opens a new methodological path to discover hidden knowledge within urban spaces.

Keywords: alle, campus design, cognitive geography, psychogeography, spatial appropriation, Turkey

Procedia PDF Downloads 75
438 Implicit U-Net Enhanced Fourier Neural Operator for Long-Term Dynamics Prediction in Turbulence

Authors: Zhijie Li, Wenhui Peng, Zelong Yuan, Jianchun Wang

Abstract:

Turbulence is a complex phenomenon that plays a crucial role in various fields, such as engineering, atmospheric science, and fluid dynamics. Predicting and understanding its behavior over long time scales have been challenging tasks. Traditional methods, such as large-eddy simulation (LES), have provided valuable insights but are computationally expensive. In the past few years, machine learning methods have experienced rapid development, leading to significant improvements in computational speed. However, ensuring stable and accurate long-term predictions remains a challenging task for these methods. In this study, we introduce the implicit U-net enhanced Fourier neural operator (IU-FNO) as a solution for stable and efficient long-term predictions of the nonlinear dynamics in three-dimensional (3D) turbulence. The IU-FNO model combines implicit re-current Fourier layers to deepen the network and incorporates the U-Net architecture to accurately capture small-scale flow structures. We evaluate the performance of the IU-FNO model through extensive large-eddy simulations of three types of 3D turbulence: forced homogeneous isotropic turbulence (HIT), temporally evolving turbulent mixing layer, and decaying homogeneous isotropic turbulence. The results demonstrate that the IU-FNO model outperforms other FNO-based models, including vanilla FNO, implicit FNO (IFNO), and U-net enhanced FNO (U-FNO), as well as the dynamic Smagorinsky model (DSM), in predicting various turbulence statistics. Specifically, the IU-FNO model exhibits improved accuracy in predicting the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and instantaneous spatial structures of the flow field. Furthermore, the IU-FNO model addresses the stability issues encountered in long-term predictions, which were limitations of previous FNO models. In addition to its superior performance, the IU-FNO model offers faster computational speed compared to traditional large-eddy simulations using the DSM model. It also demonstrates generalization capabilities to higher Taylor-Reynolds numbers and unseen flow regimes, such as decaying turbulence. Overall, the IU-FNO model presents a promising approach for long-term dynamics prediction in 3D turbulence, providing improved accuracy, stability, and computational efficiency compared to existing methods.

Keywords: data-driven, Fourier neural operator, large eddy simulation, fluid dynamics

Procedia PDF Downloads 48
437 Molecular Dynamics Study of Ferrocene in Low and Room Temperatures

Authors: Feng Wang, Vladislav Vasilyev

Abstract:

Ferrocene (Fe(C5H5)2, i.e., di-cyclopentadienyle iron (FeCp2) or Fc) is a unique example of ‘wrong but seminal’ in chemistry history. It has significant applications in a number of areas such as homogeneous catalysis, polymer chemistry, molecular sensing, and nonlinear optical materials. However, the ‘molecular carousel’ has been a ‘notoriously difficult example’ and subject to long debate for its conformation and properties. Ferrocene is a dynamic molecule. As a result, understanding of the dynamical properties of ferrocene is very important to understand the conformational properties of Fc. In the present study, molecular dynamic (MD) simulations are performed. In the simulation, we use 5 geometrical parameters to define the overall conformation of Fc and all the rest is a thermal noise. The five parameters are defined as: three parameters d---the distance between two Cp planes, α and δ to define the relative positions of the Cp planes, in which α is the angle of the Cp tilt and δ the angle the two Cp plane rotation like a carousel. Two parameters to position the Fe atom between two Cps, i.e., d1 for Fe-Cp1 and d2 for Fe-Cp2 distances. Our preliminary MD simulation discovered the five parameters behave differently. Distances of Fe to the Cp planes show that they are independent, practically identical without correlation. The relative position of two Cp rings, α, indicates that the two Cp planes are most likely not in a parallel position, rather, they tilt in a small angle α≠ 0°. The mean plane dihedral angle δ ≠ 0°. Moreover, δ is neither 0° nor 36°, indicating under those conditions, Fc is neither in a perfect eclipsed structure nor a perfect staggered structure. The simulations show that when the temperature is above 80K, the conformers are virtually in free rotations, A very interesting result from the MD simulation is the five C-Fe bond distances from the same Cp ring. They are surprisingly not identical but in three groups of 2, 2 and 1. We describe the pentagon formed by five carbon atoms as ‘turtle swimming’ for the motion of the Cp rings of Fc as shown in their dynamical animation video. The Fe- C(1) and Fe-C(2) which are identical as ‘the turtle back legs’, Fe-C(3) and Fe-C(4) which are also identical as turtle front paws’, and Fe-C(5) ---’the turtle head’. Such as ‘turtle swimming’ analog may be able to explain the single substituted derivatives of Fc. Again, the mean Fe-C distance obtained from MD simulation is larger than the quantum mechanically calculated Fe-C distances for eclipsed and staggered Fc, with larger deviation with respect to the eclipsed Fc than the staggered Fc. The same trend is obtained for the five Fe-C-H angles from same Cp ring of Fc. The simulated mean IR spectrum at 7K shows split spectral peaks at approximately 470 cm-1 and 488 cm-1, in excellent agreement with quantum mechanically calculated gas phase IR spectrum for eclipsed Fc. As the temperature increases over 80K, the clearly splitting IR spectrum become a very board single peak. Preliminary MD results will be presented.

Keywords: ferrocene conformation, molecular dynamics simulation, conformer orientation, eclipsed and staggered ferrocene

Procedia PDF Downloads 190
436 Avian Esophagus: A Comparative Microscopic Study In Birds With Different Feeding Habits

Authors: M. P. S. Tomar, Himanshu R. Joshi, P. Jagapathi Ramayya, Rakhi Vaish, A. B. Shrivastav

Abstract:

The morphology of an organ system varies according to the feeding habit, habitat and nature of their life-style. This phenomenon is called adaptation. During evolution these morphological changes make the system species specific so the study on the differential characteristics of them makes the understanding regarding the morpho-physiological adaptation easier. Hence the present study was conducted on esophagus of pariah kite, median egret, goshawk, dove and duck. Esophagus in all birds was comprised of four layers viz. Tunica mucosa, Tunica submucosa, Tunica muscularis and Tunica adventitia. The mucosa of esophagus showed longitudinal folds thus the lumen was irregular. The epithelium was stratified squamous in all birds but in Median egret the cells were large and vacuolated. Among these species very thick epithelium was observed in goshawk and duck but keratinization was highest in dove. The stratum spongiosum was 7-8 layers thick in both Pariah kite and Goshawk. In all birds, the glands were alveolar mucous secreting type. In Median egret and Pariah kite, these were round or oval in shape and with or without lumen depending upon the functional status whereas in Goshawk the shape of the glands varied from spherical / oval to triangular with openings towards the lumen according to the functional activity and in dove these glands were oval in shape. The glands were numerous in number in egret while one or two in each fold in goshawk and less numerous in other three species. The core of the mucosal folds was occupied by the lamina propria and showed large number of collagen fibers and cellular infiltration in pariah kite, egret and dove where as in goshawk and duck, collagen and reticular fibers were fewer and cellular infiltration was lesser. Lamina muscularis was very thick in all species and it was comprised of longitudinally arranged smooth muscle fibers. In Median egret, it was in wavy pattern. Tunica submucosa was very thin in all species. Tunica muscularis was mostly comprised of circular smooth muscle bundles in all species but the longitudinal bundles were very few in number and not continuous. The tunica adventitia was comprised of loose connective tissue fibers containing collagen and elastic fibers with numerous small blood vessels in all species. Further, it was observed that the structure of esophagus in birds varies according to their feeding habits.

Keywords: dove, duck, egret, esophagus, goshawk, kite

Procedia PDF Downloads 411
435 Comprehensive Analysis of Electrohysterography Signal Features in Term and Preterm Labor

Authors: Zhihui Liu, Dongmei Hao, Qian Qiu, Yang An, Lin Yang, Song Zhang, Yimin Yang, Xuwen Li, Dingchang Zheng

Abstract:

Premature birth, defined as birth before 37 completed weeks of gestation is a leading cause of neonatal morbidity and mortality and has long-term adverse consequences for health. It has recently been reported that the worldwide preterm birth rate is around 10%. The existing measurement techniques for diagnosing preterm delivery include tocodynamometer, ultrasound and fetal fibronectin. However, they are subjective, or suffer from high measurement variability and inaccurate diagnosis and prediction of preterm labor. Electrohysterography (EHG) method based on recording of uterine electrical activity by electrodes attached to maternal abdomen, is a promising method to assess uterine activity and diagnose preterm labor. The purpose of this study is to analyze the difference of EHG signal features between term labor and preterm labor. Free access database was used with 300 signals acquired in two groups of pregnant women who delivered at term (262 cases) and preterm (38 cases). Among them, EHG signals from 38 term labor and 38 preterm labor were preprocessed with band-pass Butterworth filters of 0.08–4Hz. Then, EHG signal features were extracted, which comprised classical time domain description including root mean square and zero-crossing number, spectral parameters including peak frequency, mean frequency and median frequency, wavelet packet coefficients, autoregression (AR) model coefficients, and nonlinear measures including maximal Lyapunov exponent, sample entropy and correlation dimension. Their statistical significance for recognition of two groups of recordings was provided. The results showed that mean frequency of preterm labor was significantly smaller than term labor (p < 0.05). 5 coefficients of AR model showed significant difference between term labor and preterm labor. The maximal Lyapunov exponent of early preterm (time of recording < the 26th week of gestation) was significantly smaller than early term. The sample entropy of late preterm (time of recording > the 26th week of gestation) was significantly smaller than late term. There was no significant difference for other features between the term labor and preterm labor groups. Any future work regarding classification should therefore focus on using multiple techniques, with the mean frequency, AR coefficients, maximal Lyapunov exponent and the sample entropy being among the prime candidates. Even if these methods are not yet useful for clinical practice, they do bring the most promising indicators for the preterm labor.

Keywords: electrohysterogram, feature, preterm labor, term labor

Procedia PDF Downloads 538
434 Radiographic Evaluation of Odontogenic Keratocyst: A 14 Years Retrospective Study

Authors: Nor Hidayah Reduwan, Jira Chindasombatjaroen, Suchaya Pornprasersuk-Damrongsri, Sopee Pomsawat

Abstract:

INTRODUCTION: Odontogenic keratocyst (OKC) remain as a controversial pathologic entity under the scrutiny of many researchers and maxillofacial surgeons alike. The high recurrence rate and relatively aggressive nature of this lesion demand a meticulous analysis of the radiographic characteristic of OKC leading to the formulation of an accurate diagnosis. OBJECTIVE: This study aims to determine the radiographic characteristic of odontogenic keratocyst (OKC) using conventional radiographs and cone beam computed tomography (CBCT) images. MATERIALS AND METHODS: Patients histopathologically diagnosed as OKC from 2003 to 2016 by Oral and Maxillofacial Pathology Department were retrospectively reviewed. Radiographs of these cases from the archives of the Department of Oral and Maxillofacial Radiology, Faculty of Dentistry Mahidol University were retrieved. Assessment of the location, shape, border, cortication, locularity, the relationship of lesion to embedded tooth, displacement of adjacent tooth, root resorption and bony expansion of the lesion were conducted. RESULTS: Radiographs of 91 patients (44 males, 47 females) with the mean age of 31 years old (10 to 84 years) were analyzed. Among all patients, 5 cases were syndromic patients. Hence, a total of 103 OKCs were studied. The most common location was at the ramus of mandible (32%) followed by posterior maxilla (29%). Most cases presented as a well-defined unilocular radiolucency with smooth and corticated border. The lesion was in associated with embedded tooth in 48 lesions (47%). Eighty five percent of embedded tooth are impacted 3rd molar. Thirty-seven percentage of embedded tooth were entirely encapsulated in the lesion. The lesion attached to the embedded tooth at the cementoenamel junction (CEJ) in 40% and extended to part of root in 23% of cases. Teeth displacement and root resorption were found in 29% and 6% of cases, respectively. Bony expansion in bucco-lingual dimension was seen in 63% of cases. CONCLUSION: OKCs were predominant in the posterior region of the mandible with radiographic features of a well-defined, unilocular radiolucency with smooth and corticated margin. The lesions might relate to an embedded tooth by surrounding an entire tooth, attached to the CEJ level or extending to part of root. Bony expansion could be found but teeth displacement and root resorption were not common. These features might help in giving the differential diagnosis.

Keywords: cone beam computed tomography, imaging dentistry, odontogenic keratocyst, radiographic features

Procedia PDF Downloads 110
433 Cloning and Expression a Gene of β-Glucosidase from Penicillium echinulatum in Pichia pastoris

Authors: Amanda Gregorim Fernandes, Lorena Cardoso Cintra, Rosalia Santos Amorim Jesuino, Fabricia Paula De Faria, Marcio José Poças Fonseca

Abstract:

Bioethanol is one of the most promising biofuels and able to replace fossil fuels and reduce its different environmental impacts and can be generated from various agroindustrial waste. The Brazil is in first place in bioethanol production to be the largest producer of sugarcane. The bagasse sugarcane (SCB) has lignocellulose which is composed of three major components: cellulose, hemicellulose and lignin. Cellulose is a homopolymer of glucose units connected by glycosidic linkages. Among all species of Penicillium, Penicillium echinulatum has been the focus of attention because they produce high quantities of cellulase and the mutant strain 9A02S1 produces higher enzyme levels compared to the wild. Among the cellulases, the cellobiohydrolases enzymes are the main components of the cellulolytic system of fungi, and are also responsible for most of the potential hydrolytic in enzyme cocktails for the industrial processing of plant biomass and several cellobiohydrolases Penicillium had higher specific activity against cellulose compared to CBH I from Trichoderma reesei. This fact makes it an interesting pattern for higher yields in the enzymatic hydrolysis, and also they are important enzymes in the hydrolysis of crystalline regions of cellulose. Therefore, finding new and more active enzymes become necessary. Meanwhile, β-glycosidases act on soluble substrates and are highly dependent on cellobiohydrolases and endoglucanases action to provide the substrate in the hydrolysis of the biomass, but the cellobiohydrolases and endoglucanases are highly dependent β-glucosidases to maintain efficient hydrolysis. Thus, there is a need to understand the structure-function relationships that govern the catalytic activity of cellulolytic enzymes to elucidate its mechanism of action and optimize its potential as industrial biocatalysts. To evaluate the enzyme β-glucosidase of Penicillium echinulatum (PeBGL1) the gene was synthesized from the assembly sequence from a library in induction conditions and then the PeBGL1 gene was cloned in the vector pPICZαA and transformed into P. pastoris GS115. After processing, the producers of PeBGL1 were analyzed for enzyme activity and protein profile where a band of approximately 100 kDa was viewed. It was also carried out the zymogram. In partial characterization it was determined optimum temperature of 50°C and optimum pH of 6,5. In addition, to increase the secreted recombinant PeBGL1 production by Pichia pastoris, three parameters of P. pastoris culture medium were analysed: methanol, nitrogen source concentrations and the inoculum size. A 23 factorial design was effective in achieving the optimum condition. Altogether, these results point to the potential application of this P. echinulatum β-glucosidase in hydrolysis of cellulose for the production of bioethanol.

Keywords: bioethanol, biotechnology, beta-glucosidase, penicillium echinulatum

Procedia PDF Downloads 219
432 Ultra-Tightly Coupled GNSS/INS Based on High Degree Cubature Kalman Filtering

Authors: Hamza Benzerrouk, Alexander Nebylov

Abstract:

In classical GNSS/INS integration designs, the loosely coupled approach uses the GNSS derived position and the velocity as the measurements vector. This design is suboptimal from the standpoint of preventing GNSSoutliers/outages. The tightly coupled GPS/INS navigation filter mixes the GNSS pseudo range and inertial measurements and obtains the vehicle navigation state as the final navigation solution. The ultra‐tightly coupled GNSS/INS design combines the I (inphase) and Q(quadrature) accumulator outputs in the GNSS receiver signal tracking loops and the INS navigation filter function intoa single Kalman filter variant (EKF, UKF, SPKF, CKF and HCKF). As mentioned, EKF and UKF are the most used nonlinear filters in the literature and are well adapted to inertial navigation state estimation when integrated with GNSS signal outputs. In this paper, it is proposed to move a step forward with more accurate filters and modern approaches called Cubature and High Degree cubature Kalman Filtering methods, on the basis of previous results solving the state estimation based on INS/GNSS integration, Cubature Kalman Filter (CKF) and High Degree Cubature Kalman Filter with (HCKF) are the references for the recent developed generalized Cubature rule based Kalman Filter (GCKF). High degree cubature rules are the kernel of the new solution for more accurate estimation with less computational complexity compared with the Gauss-Hermite Quadrature (GHQKF). Gauss-Hermite Kalman Filter GHKF which is not selected in this work because of its limited real-time implementation in high-dimensional state-spaces. In ultra tightly or a deeply coupled GNSS/INS system is dynamics EKF is used with transition matrix factorization together with GNSS block processing which is well described in the paper and assumes available the intermediary frequency IF by using a correlator samples with a rate of 500 Hz in the presented approach. GNSS (GPS+GLONASS) measurements are assumed available and modern SPKF with Cubature Kalman Filter (CKF) are compared with new versions of CKF called high order CKF based on Spherical-radial cubature rules developed at the fifth order in this work. Estimation accuracy of the high degree CKF is supposed to be comparative to GHKF, results of state estimation are then observed and discussed for different initialization parameters. Results show more accurate navigation state estimation and more robust GNSS receiver when Ultra Tightly Coupled approach applied based on High Degree Cubature Kalman Filter.

Keywords: GNSS, INS, Kalman filtering, ultra tight integration

Procedia PDF Downloads 261
431 Modeling Acceptability of a Personalized and Contextualized Radio Embedded in Vehicles

Authors: Ludivine Gueho, Sylvain Fleury, Eric Jamet

Abstract:

Driver distraction is known to be a major contributing factor of car accidents. Since many years, constructors have been designing embedded technologies to face this problem and reduce distraction. Being able to predict user acceptance would further be helpful in the development process to build appropriate systems. The present research aims at modelling the acceptability of a specific system, an innovative personalized and contextualized embedded radio, through an online survey of 202 people in France that assessed the psychological variables determining intentions to use the system. The questionnaire instantiated the dimensions of the extended version of the UTAUT acceptability model. Because of the specific features of the system assessed, we added 4 dimensions: perceived security, anxiety, trust and privacy concerns. Results showed that hedonic motivation, i.e., the fun or pleasure derived from using a technology, and performance expectancy, i.e., the degree to which individuals believe that the characteristics of the system meet their needs, are the most important dimensions in determining behavioral intentions about the innovative radio. To a lesser extent, social influence, i.e., the degree to which individuals think they can use the system while respecting their social group’s norms and while giving a positive image of themselves, had an effect on behavioral intentions. Moreover, trust, that is, the positive belief about the perceived reliability of, dependability of, and confidence in a person, object or process, had a significant effect, mediated by performance expectancy. In an applicative way, the present research reveals that, to be accepted, in-car embedded new technology has to address individual needs, for instance by facilitating the driving activity or by providing useful information. If it shows hedonic qualities by being entertaining, pretty or comfortable, this may improve the intentions to use it. Therefore, it is clearly important to include reflection about user experience in the design process. Finally, the users have to be reassured on the system’s reliability. For example, improving the transparency of the system by providing information about the system functioning, could improve trust. These results bring some highlights on determinant of acceptance of an in-vehicle technology and are useful for constructors to design acceptable systems.

Keywords: acceptability, innovative embedded radio, structural equation, user-centric evaluation, UTAUT

Procedia PDF Downloads 249
430 Genetically Modified Fuel-Ethanol Industrial Yeast Strains as Biocontrol Agents

Authors: Patrícia Branco, Catarina Prista, Helena Albergaria

Abstract:

Industrial fuel-ethanol fermentations are carried out under non-sterile conditions, which favors the development of microbial contaminants, leading to huge economic losses. Wild yeasts such as Brettanomyces bruxellensis and lactic acid bacteria are the main contaminants of industrial bioethanol fermentation, affecting Saccharomyces cerevisiae performance and decreasing ethanol yields and productivity. In order to control microbial contaminations, the fuel-ethanol industry uses different treatments, including acid washing and antibiotics. However, these control measures carry environmental risks such as acid toxicity and the rise of antibiotic-resistant bacteria. Therefore, it is crucial to develop and apply less toxic and more environmentally friendly biocontrol methods. In the present study, an industrial fuel-ethanol starter, S. cerevisiae Ethanol-Red, was genetically modified to over-express AMPs with activity against fuel-ethanol microbial contaminants and evaluated regarding its biocontrol effect during mixed-culture alcoholic fermentations artificially contaminated with B. bruxellensis. To achieve this goal, S. cerevisiae Ethanol-Red strain was transformed with a plasmid containing the AMPs-codifying genes, i.e., partial sequences of TDH1 (925-963 bp) and TDH2/3 (925-963 bp) and a geneticin resistance marker. The biocontrol effect of those genetically modified strains was evaluated against B. bruxellensis and compared with the antagonistic effect exerted by the modified strain with an empty plasmid (without the AMPs-codifying genes) and the non-modified strain S. cerevisiae Ethanol-Red. For that purpose, mixed-culture alcoholic fermentations were performed in a synthetic must use the modified S. cerevisiae Ethanol-Red strains together with B. bruxellensis. Single-culture fermentations of B. bruxellensis strains were also performed as a negative control of the antagonistic effect exerted by S. cerevisiae strains. Results clearly showed an improved biocontrol effect of the genetically-modified strains against B. bruxellensis when compared with the modified Ethanol-Red strain with the empty plasmid (without the AMPs-codifying genes) and with the non-modified Ethanol-Red strain. In mixed-culture fermentation with the modified S. cerevisiae strain, B. bruxellensis culturability decreased from 5×104 CFU/mL on day-0 to less than 1 CFU/mL on day-10, while in single-culture B. bruxellensis increased its culturability from 6×104 to 1×106 CFU/mL in the first 6 days and kept this value until day-10. Besides, the modified Ethanol-Red strain exhibited an enhanced antagonistic effect against B. bruxellensis when compared with that induced by the non-modified Ethanol-Red strain. Indeed, culturability loss of B. bruxellensis after 10 days of fermentation with the modified Ethanol-Red strain was 98.7 and 100% higher than that occurred in fermentations performed with the non-modified Ethanol-Red and the empty-plasmid modified strain, respectively. Therefore, one can conclude that the S. cerevisiae genetically modified strain obtained in the present work may be a valuable solution for the mitigation of microbial contamination in fuel-ethanol fermentations, representing a much safer and environmentally friendly preservation strategy than the antimicrobial treatments (acid washing and antibiotics) currently applied in fuel-ethanol industry.

Keywords: antimicrobial peptides, fuel-ethanol microbial contaminations, fuel-ethanol fermentation, biocontrol agents, genetically-modified yeasts

Procedia PDF Downloads 77
429 Evolving Credit Scoring Models using Genetic Programming and Language Integrated Query Expression Trees

Authors: Alexandru-Ion Marinescu

Abstract:

There exist a plethora of methods in the scientific literature which tackle the well-established task of credit score evaluation. In its most abstract form, a credit scoring algorithm takes as input several credit applicant properties, such as age, marital status, employment status, loan duration, etc. and must output a binary response variable (i.e. “GOOD” or “BAD”) stating whether the client is susceptible to payment return delays. Data imbalance is a common occurrence among financial institution databases, with the majority being classified as “GOOD” clients (clients that respect the loan return calendar) alongside a small percentage of “BAD” clients. But it is the “BAD” clients we are interested in since accurately predicting their behavior is crucial in preventing unwanted loss for loan providers. We add to this whole context the constraint that the algorithm must yield an actual, tractable mathematical formula, which is friendlier towards financial analysts. To this end, we have turned to genetic algorithms and genetic programming, aiming to evolve actual mathematical expressions using specially tailored mutation and crossover operators. As far as data representation is concerned, we employ a very flexible mechanism – LINQ expression trees, readily available in the C# programming language, enabling us to construct executable pieces of code at runtime. As the title implies, they model trees, with intermediate nodes being operators (addition, subtraction, multiplication, division) or mathematical functions (sin, cos, abs, round, etc.) and leaf nodes storing either constants or variables. There is a one-to-one correspondence between the client properties and the formula variables. The mutation and crossover operators work on a flattened version of the tree, obtained via a pre-order traversal. A consequence of our chosen technique is that we can identify and discard client properties which do not take part in the final score evaluation, effectively acting as a dimensionality reduction scheme. We compare ourselves with state of the art approaches, such as support vector machines, Bayesian networks, and extreme learning machines, to name a few. The data sets we benchmark against amount to a total of 8, of which we mention the well-known Australian credit and German credit data sets, and the performance indicators are the following: percentage correctly classified, area under curve, partial Gini index, H-measure, Brier score and Kolmogorov-Smirnov statistic, respectively. Finally, we obtain encouraging results, which, although placing us in the lower half of the hierarchy, drive us to further refine the algorithm.

Keywords: expression trees, financial credit scoring, genetic algorithm, genetic programming, symbolic evolution

Procedia PDF Downloads 95
428 Generalized Synchronization in Systems with a Complex Topology of Attractor

Authors: Olga I. Moskalenko, Vladislav A. Khanadeev, Anastasya D. Koloskova, Alexey A. Koronovskii, Anatoly A. Pivovarov

Abstract:

Generalized synchronization is one of the most intricate phenomena in nonlinear science. It can be observed both in systems with a unidirectional and mutual type of coupling including the complex networks. Such a phenomenon has a number of practical applications, for example, for the secure information transmission through the communication channel with a high level of noise. Known methods for the secure information transmission needs in the increase of the privacy of data transmission that arises a question about the observation of such phenomenon in systems with a complex topology of chaotic attractor possessing two or more positive Lyapunov exponents. The present report is devoted to the study of such phenomenon in two unidirectionally and mutually coupled dynamical systems being in chaotic (with one positive Lyapunov exponent) and hyperchaotic (with two or more positive Lyapunov exponents) regimes, respectively. As the systems under study, we have used two mutually coupled modified Lorenz oscillators and two unidirectionally coupled time-delayed generators. We have shown that in both cases the generalized synchronization regime can be detected by means of the calculation of Lyapunov exponents and phase tube approach whereas due to the complex topology of attractor the nearest neighbor method is misleading. Moreover, the auxiliary system approaches being the standard method for the synchronous regime observation, for the mutual type of coupling results in incorrect results. To calculate the Lyapunov exponents in time-delayed systems we have proposed an approach based on the modification of Gram-Schmidt orthogonalization procedure in the context of the time-delayed system. We have studied in detail the mechanisms resulting in the generalized synchronization regime onset paying a great attention to the field where one positive Lyapunov exponent has already been become negative whereas the second one is a positive yet. We have found the intermittency here and studied its characteristics. To detect the laminar phase lengths the method based on a calculation of local Lyapunov exponents has been proposed. The efficiency of the method has been verified using the example of two unidirectionally coupled Rössler systems being in the band chaos regime. We have revealed the main characteristics of intermittency, i.e. the distribution of the laminar phase lengths and dependence of the mean length of the laminar phases on the criticality parameter, for all systems studied in the report. This work has been supported by the Russian President's Council grant for the state support of young Russian scientists (project MK-531.2018.2).

Keywords: complex topology of attractor, generalized synchronization, hyperchaos, Lyapunov exponents

Procedia PDF Downloads 246
427 Dynamic Capability: An Exploratory Study Applied to Social Enterprise in South East Asia

Authors: Atiwat Khatpibunchai, Taweesak Kritjaroen

Abstract:

A social enterprise is the innovative hybrid organizations where its ultimate goal is to generate revenue and use it as a fund to solve the social and environmental problem. Although the evidence shows the clear value of economic, social and environmental aspects, the limitations of most of the social enterprises are the expanding impact of social and environmental aspects through the normal market mechanism. This is because the major sources of revenues of social enterprises derive from the business advocates who merely wish to support society and environment by using products and services of social enterprises rather than expect the satisfaction and the distinctive advantage of products and services. Thus, social enterprises cannot reach the achievement as other businesses do. The relevant concepts from the literature review revealed that dynamic capability is the ability to sense, integrate and reconfigure internal resources and utilize external resources to adapt to changing environments, create innovation and achieve competitive advantage. The objective of this research is to study the influence of dynamic capability that affects competitive advantage and sustainable performance, as well as to determine important elements of dynamic capability. The researchers developed a conceptual model from the related concepts and theories of dynamic capability. A conceptual model will support and show the influence of dynamic capability on competitive advantage and sustainable performance of social enterprises. The 230 organizations in South-East Asia served as participants in this study. The results of the study were analyzed by the structural equation model (SEM) and it was indicated that research model is consistent with empirical research. The results also demonstrated that dynamic capability has a direct and indirect influence on competitive advantage and sustainable performance. Moreover, it can be summarized that dynamic capability consists of the five elements: 1) the ability to sense an opportunity; 2) the ability to seize an opportunity; 3) the ability to integrate resources; 4) the ability to absorb resources; 5) the ability to create innovation. The study recommends that related sectors can use this study as a guideline to support and promote social enterprises. The focus should be pointed to the important elements of dynamic capability that are the development of the ability to transform existing resources in the organization and the ability to seize opportunity from changing market.

Keywords: dynamic capability, social enterprise, sustainable competitive advantage, sustainable performance

Procedia PDF Downloads 228
426 Associations between Mindfulness, Temporal Discounting, Locus of Control, and Reward-Based Eating in a Sample of Overweight and Obese Adults

Authors: Andrea S. Badillo-Perez, Alexis D. Mitchell, Sara M. Levens

Abstract:

Overeating, and obesity have been associated with addictive behavior, primarily due to behaviors like reward-based eating, the tendency to overeat due to factors such as lack of control, preoccupation over food, and lack of satiation. Temporal discounting (TD), the ability to select future rewards over short term gains, and mindfulness, the process of maintaining present moment awareness, have been suggested to have significant, differential impacts on health-related behaviors. An individual’s health locus of control, the degree to which they feel that they have control over their health is also known to have an impact on health outcomes. The goal of this study was to investigate the relationship between health locus of control and reward-based eating, as well as the relation between TD and mindfulness in a sample (N = 126) of overweight or obese participants from larger health-focused study. Through the use of questionnaires (including the Five Facet Mindfulness Questionnaire (FFMQ), Reward-Based Eating Drive (RED), and Multidimensional Health Locus of Control (MHLOC)), anthropometric measurements, and a computerized TD task, a series of regressions tested the association between subscales of these measures. Results revealed differences in how the mindfulness subscales are associated with TD measures. Specifically the ‘Observing’ (beta =-.203) and ‘Describing’ (beta =.26) subscales were associated with lower TD rates and a longer subjective devaluation time-frame respectively. In contrast, the ‘Acting with Awareness’ subscale was associated with a shorter subjective devaluation timeframe (beta =-.23). These findings suggest that the reflective perspective initiated through the observing and describing components of mindfulness may facilitate delay of gratification, whereas the acting with awareness component of mindfulness, which focuses on the present moment, may make delay of gratification more challenging. Results also indicated that a higher degree of reward-based eating was associated with a higher degree of an external health locus of control based on the power of chance (beta =.10). However, an external locus of control based on the power of others had no significant association with reward-based eating. This finding implies that the belief that health is due to chance is associated with greater reward-based eating behavior, suggesting that interventions that focus on locus of control may be helpful. Overall, findings demonstrate that weight loss interventions may benefit from health locus of control and mindfulness exercises, but caution should be taken as the components of mindfulness appear to have different effects on increasing or decreasing delay of gratification.

Keywords: health locus of control, mindfulness, obesity, reward-based eating, temporal discounting

Procedia PDF Downloads 102
425 Development of an Instrument for Measurement of Thermal Conductivity and Thermal Diffusivity of Tropical Fruit Juice

Authors: T. Ewetumo, K. D. Adedayo, Festus Ben

Abstract:

Knowledge of the thermal properties of foods is of fundamental importance in the food industry to establish the design of processing equipment. However, for tropical fruit juice, there is very little information in literature, seriously hampering processing procedures. This research work describes the development of an instrument for automated thermal conductivity and thermal diffusivity measurement of tropical fruit juice using a transient thermal probe technique based on line heat principle. The system consists of two thermocouple sensors, constant current source, heater, thermocouple amplifier, microcontroller, microSD card shield and intelligent liquid crystal. A fixed distance of 6.50mm was maintained between the two probes. When heat is applied, the temperature rise at the heater probe measured with time at time interval of 4s for 240s. The measuring element conforms as closely as possible to an infinite line source of heat in an infinite fluid. Under these conditions, thermal conductivity and thermal diffusivity are simultaneously measured, with thermal conductivity determined from the slope of a plot of the temperature rise of the heating element against the logarithm of time while thermal diffusivity was determined from the time it took the sample to attain a peak temperature and the time duration over a fixed diffusivity distance. A constant current source was designed to apply a power input of 16.33W/m to the probe throughout the experiment. The thermal probe was interfaced with a digital display and data logger by using an application program written in C++. Calibration of the instrument was done by determining the thermal properties of distilled water. Error due to convection was avoided by adding 1.5% agar to the water. The instrument has been used for measurement of thermal properties of banana, orange and watermelon. Thermal conductivity values of 0.593, 0.598, 0.586 W/m^o C and thermal diffusivity values of 1.053 ×〖10〗^(-7), 1.086 ×〖10〗^(-7), and 0.959 ×〖10〗^(-7) 〖m/s〗^2 were obtained for banana, orange and water melon respectively. Measured values were stored in a microSD card. The instrument performed very well as it measured the thermal conductivity and thermal diffusivity of the tropical fruit juice samples with statistical analysis (ANOVA) showing no significant difference (p>0.05) between the literature standards and estimated averages of each sample investigated with the developed instrument.

Keywords: thermal conductivity, thermal diffusivity, tropical fruit juice, diffusion equation

Procedia PDF Downloads 329
424 Synthesis of Belite Cements at Low Temperature from Silica Fume and Natural Commercial Zeolite

Authors: Tatiana L. Avalos-Rendon, Elias A. Pasten Chelala, Carlos J. Mendoza EScobedo, Ignacio A. Figueroa, Victor H. Lara, Luis M. Palacios-Romero

Abstract:

The cement industry is facing cost increments in energy supply, requirements for reduction of CO₂, and insufficient supply of raw materials of good quality. According to all these environmental issues, cement industry must change its consumption patterns and reduce CO₂ emissions to the atmosphere. This can be achieved by generating environmental consciousness, which encourages the use of industrial by-products and/or recycling for the production of cement, as well as alternate, environment-friendly methods of synthesis which reduce CO₂. Calcination is the conventional method for the obtainment of Portland cement clinker. This method consists of grinding and mixing of raw materials (limestone, clay, etc.) in an adequate dosage. Resulting mix has a clinkerization temperature of 1450 °C so that the formation of the main component occur: alite (Ca₃SiO₅, C₃S). Considering that the energy required to produce C₃S is 1810 kJ kg -1, calcination method for the obtainment of clinker represents two major disadvantages: long thermal treatment and elevated temperatures of synthesis, both of which cause high emissions of carbon dioxide (CO₂) to the atmosphere. Belite Portland clinker is characterized by having a low content of calcium oxide (CaO), causing the presence of alite to diminish and favoring the formation of belite (β-Ca₂SiO₄, C₂S), so production of clinker requires a reduced energy consumption (1350 kJ kg-1), releasing less CO₂ to the atmosphere. Conventionally, β-Ca₂SiO₄ is synthetized by the calcination of calcium carbonate (CaCO₃) and silicon dioxide (SiO₂) through the reaction in solid state at temperatures greater than 1300 °C. Resulting belite shows low hydraulic reactivity. Therefore, this study concerns a new simple modified combustion method for the synthesis of two belite cements at low temperatures (1000 °C). Silica fume, as subproduct of metallurgic industry and commercial natural zeolite were utilized as raw materials. These are considered low-cost materials and were utilized with no additional purification process. Belite cements properties were characterized by XRD, SEM, EDS and BET techniques. Hydration capacity of belite cements was calculated while the mechanical strength was determined in ordinary Portland cement specimens (PC) with a 10% partial replacement of the belite cements obtained. Results showed belite cements presented relatively high surface áreas, at early ages mechanical strengths similar to those of alite cement and comparable to strengths of belite cements obtained by different synthesis methods. Cements obtained in this work present good hydraulic reactivity properties.

Keywords: belite, silica fume, zeolite, hydraulic reactivity

Procedia PDF Downloads 328
423 Neuromyelitis Optica area Postrema Syndrome(NMOSD-APS) in a Fifteen-year-old Girl: A Case Report

Authors: Merilin Ivanova Ivanova, Kalin Dimitrov Atanasov, Stefan Petrov Enchev

Abstract:

Backgroud: Neuromyelitis optica spectrum disorder, also known as Devic’s disease, is a relapsing demyelinating autoimmune inflammatory disorder of the central nervous system associated with anti-aquaporin 4 (AQP4) antibodies that can manifest with devastating secondary neurological deficits. Most commonly affected are the optic nerves and the spinal cord-clinically this is often presented with optic neuritis (loss of vision), transverse myelitis(weakness or paralysis of extremities),lack of bladder and bowel control, numbness. APS is a core clinical entity of NMOSD and adds to the clinical representation the following symptoms: intractable nausea, vomiting and hiccup, it usually occurs isolated at onset, and can lead to a significant delay in the diagnosis. The condition may have features similar to multiple sclerosis (MS) but the episodes are worse in NMO and it is treated differently. It could be relapsing or monophasic. Possible complications are visual field defects and motor impairment, with potential blindness and irreversible motor deficits. In severe cases, myogenic respiratory failure ensues. The incidence of reported cases is approximately 0.3–4.4 per 100,000. Paediatric cases of NMOSD are rare but have been reported occasionally, comprising less than 5% of the reported cases. Objective: The case serves to show the difficulty when it comes to the diagnostic processes regarding a rare autoimmune disease with non- specific symptoms, taking large interval of rimes to reveal as complete clinical manifestation of the aforementioned syndrome, as well as the necessity of multidisciplinary approach in the setting of а general paediatric department in аn emergency hospital. Methods: itpatient's history, clinical presentation, and information from the used diagnostic tools(MRI with contrast of the central nervous system) lead us to the conclusion .This was later on confirmed by the positive results from the anti-aquaporin 4 (AQP4) antibody serology test. Conclusion: APS is a common symptom of NMOSD and is considered a challenge in a differential-diagnostic plan. Gaining an increased awareness of this disease/syndrome, obtaining a detailed patient history, and performing thorough physical examinations are essential if we are to reduce and avoid misdiagnosis.

Keywords: neuromyelitis, devic's disease, hiccup, autoimmune, MRI

Procedia PDF Downloads 22
422 Different Stages for the Creation of Electric Arc Plasma through Slow Rate Current Injection to Single Exploding Wire, by Simulation and Experiment

Authors: Ali Kadivar, Kaveh Niayesh

Abstract:

This work simulates the voltage drop and resistance of the explosion of copper wires of diameters 25, 40, and 100 µm surrounded by 1 bar nitrogen exposed to a 150 A current and before plasma formation. The absorption of electrical energy in an exploding wire is greatly diminished when the plasma is formed. This study shows the importance of considering radiation and heat conductivity in the accuracy of the circuit simulations. The radiation of the dense plasma formed on the wire surface is modeled with the Net Emission Coefficient (NEC) and is mixed with heat conductivity through PLASIMO® software. A time-transient code for analyzing wire explosions driven by a slow current rise rate is developed. It solves a circuit equation coupled with one-dimensional (1D) equations for the copper electrical conductivity as a function of its physical state and Net Emission Coefficient (NEC) radiation. At first, an initial voltage drop over the copper wire, current, and temperature distribution at the time of expansion is derived. The experiments have demonstrated that wires remain rather uniform lengthwise during the explosion and can be simulated utilizing 1D simulations. Data from the first stage are then used as the initial conditions of the second stage, in which a simplified 1D model for high-Mach-number flows is adopted to describe the expansion of the core. The current was carried by the vaporized wire material before it was dispersed in nitrogen by the shock wave. In the third stage, using a three-dimensional model of the test bench, the streamer threshold is estimated. Electrical breakdown voltage is calculated without solving a full-blown plasma model by integrating Townsend growth coefficients (TdGC) along electric field lines. BOLSIG⁺ and LAPLACE databases are used to calculate the TdGC at different mixture ratios of nitrogen/copper vapor. The simulations show both radiation and heat conductivity should be considered for an adequate description of wire resistance, and gaseous discharges start at lower voltages than expected due to ultraviolet radiation and the exploding shocks, which may have ionized the nitrogen.

Keywords: exploding wire, Townsend breakdown mechanism, streamer, metal vapor, shock waves

Procedia PDF Downloads 63