Search results for: mixed matrix membrane
1146 Determinants of Customer Satisfaction: The Case of Abyssinia Bank Customers in Addis Ababa Ethiopia
Authors: Yosef Ferede Bogale
Abstract:
The purpose of this study was to evaluate the degree of customer satisfaction and the variables influencing it in the instance of the Bank of Abyssinia branches in the districts of Arada and Bole in Addis Ababa. The study was carried out utilizing a mixed research approach and a descriptive and explanatory research design in Addis Ababa, the capital city of Ethiopia. Both primary and secondary data were employed in this investigation. The study's target population consisted of 1000 of the bank's most prestigious clients. With a 93% response rate, 265 respondents from both genders in the active age group had higher levels of education and work experience and were in the active age group. Customers of the case bank under consideration comprised the study's target audience. The respondents, who belonged to both gender groups, were in the active age bracket with superior levels of education and work experience. As a result, this investigation discovered that the degree of client satisfaction was assigned a medium rating. Additionally given a middling rating were the company's image practices, employee competency, technology, and service quality. Further, the results also demonstrate that corporate image, employees’ competency, technology, and service quality all positively and significantly affect customer happiness. This study found that, to varying degrees, company image, technology, competence, and high-quality financial services will all improve consumer happiness. According to this report, banks should monitor customer satisfaction and service quality at least twice a year. This is because there is a growing movement among bank service providers for accountability, and measuring these factors is crucial. This study also recommends that banks make every effort to satisfy consumers' expectations to the highest level.Keywords: customer satisfaction, corporate image, quality services risk, bank
Procedia PDF Downloads 631145 Long-Term Follow-Up of Dynamic Balance, Pain and Functional Performance in Cruciate Retaining, Posterior Stabilized Total Knee Arthroplasty
Authors: Ahmed R. Z. Baghdadi, Mona H. Gamal Eldein
Abstract:
Background: With the perceived pain and poor function experienced following knee arthroplasty, patients usually feel unsatisfied. Yet, a controversy still persists on the appropriate operative technique that doesn’t affect proprioception much. Purpose: This study compared the effects of Cruciate Retaining (CR) and Posterior Stabilized (PS) total knee arthroplasty (TKA on dynamic balance, pain and functional performance following rehabilitation. Methods: Thirty patients with CRTKA (group I), thirty with PSTKA (group II) and fifteen indicated for arthroplasty but weren’t operated on yet (group III) participated in the study. The mean age was 54.53±3.44, 55.13±3.48 and 55.33±2.32 years and BMI 35.7±3.03, 35.7±1.99 and 35.73±1.03 kg/m2 for group I, II, and III respectively. The Berg Balance Scale (BBS), WOMAC pain subscale and Timed-Up-and-Go (TUG) and Stair-Climbing (SC) tests were used for assessment. Assessments were conducted four weeks pre- and post-operatively, three, six and twelve months post-operatively with the control group being assessed at the same time intervals. The post-operative rehabilitation involved hospitalization (1st week), home-based (2nd-4th weeks), and outpatient clinic (5th-12th weeks) programs, follow-up to all groups for twelve months. Results: The Mixed design MANOVA revealed that group I had significantly lower pain scores and SC time compared with group II three, six and twelve months post-operatively. Moreover, the BBS scores increased significantly and the pain scores and TUG and SC time decreased significantly six months post-operatively compared with four weeks pre- and post-operatively and three months post-operatively in group I and II with the opposite being true four weeks post-operatively. But no significant differences in BBS scores, pain scores and TUG and SC time between six and twelve months post-operatively in group I and II. Interpretation/Conclusion: CRTKA is preferable to PSTKA, possibly due to the preserved human proprioceptors in the un-excised PCL.Keywords: dynamic balance, functional performance, knee arthroplasty, long-term
Procedia PDF Downloads 4111144 Coupled Field Formulation – A Unified Method for Formulating Structural Mechanics Problems
Authors: Ramprasad Srinivasan
Abstract:
Engineers create inventions and put their ideas in concrete terms to design new products. Design drivers must be established, which requires, among other things, a complete understanding of the product design, load paths, etc. For Aerospace Vehicles, weight/strength ratio, strength, stiffness and stability are the important design drivers. A complex built-up structure is made up of an assemblage of primitive structural forms of arbitrary shape, which include 1D structures like beams and frames, 2D structures like membranes, plate and shell structures, and 3D solid structures. Justification through simulation involves a check for all the quantities of interest, namely stresses, deformation, frequencies, and buckling loads and is normally achieved through the finite element (FE) method. Over the past few decades, Fiber-reinforced composites are fast replacing the traditional metallic structures in the weight-sensitive aerospace and aircraft industries due to their high specific strength, high specific stiffness, anisotropic properties, design freedom for tailoring etc. Composite panel constructions are used in aircraft to design primary structure components like wings, empennage, ailerons, etc., while thin-walled composite beams (TWCB) are used to model slender structures like stiffened panels, helicopter, and wind turbine rotor blades, etc. The TWCB demonstrates many non-classical effects like torsional and constrained warping, transverse shear, coupling effects, heterogeneity, etc., which makes the analysis of composite structures far more complex. Conventional FE formulations to model 1D structures suffer from many limitations like shear locking, particularly in slender beams, lower convergence rates due to material coupling in composites, inability to satisfy, equilibrium in the domain and natural boundary conditions (NBC) etc. For 2D structures, the limitations of conventional displacement-based FE formulations include the inability to satisfy NBC explicitly and many pathological problems such as shear and membrane locking, spurious modes, stress oscillations, lower convergence due to mesh distortion etc. This mandates frequent re-meshing to even achieve an acceptable mesh (satisfy stringent quality metrics) for analysis leading to significant cycle time. Besides, currently, there is a need for separate formulations (u/p) to model incompressible materials, and a single unified formulation is missing in the literature. Hence coupled field formulation (CFF) is a unified formulation proposed by the author for the solution of complex 1D and 2D structures addressing the gaps in the literature mentioned above. The salient features of CFF and its many advantages over other conventional methods shall be presented in this paper.Keywords: coupled field formulation, kinematic and material coupling, natural boundary condition, locking free formulation
Procedia PDF Downloads 661143 Characterisation of Extracellular Polymeric Substances from Bacteria Isolated from Acid Mine Decant in Gauteng, South Africa
Authors: Nonhlanhla Nkosi, Kulsum Kondiah
Abstract:
The toxicological manifestation of heavy metals motivates interest towards the development of a reliable, eco-friendly biosorption process. With that being said, the aim of the current study was to characterise the EPS from heavy-metal resistant bacteria isolated from acid mine decant on the West Rand, Gauteng, South Africa. To achieve this, six exopolysaccharide (EPS) producing, metal resistant strains (Pb101, Pb102, Pb103, Pb204, Co101, and Ni101) were identified as Bacillus safensis strain NBRC 100820, Bacillus proteolyticus, Micrococcus luteus, Enterobacter sp. Pb204, Bacillus wiedmannii and Bacillus zhangzhouensis, respectively with 16S rRNA sequencing. Thereafter, EPS was extracted using chemical (formaldehyde/NaOH) and physical (ultrasonification) methods followed by physicochemical characterisation of carbohydrate, DNA, and protein contents using chemical assays and spectroscopy (FTIR- Fourier transformed infrared and 3DEEM- three-dimensional excitation-emission matrix fluorescence spectroscopy). EPS treated with formaldehyde/NaOH showed better recovery of macromolecules than ultrasonification. The results of the present study showed that carbohydrates were more abundant than proteins, with carbohydrate and protein concentrations of 8.00 mg/ml and 0.22 mg/ml using chemical method in contrast to 5.00 mg/ml and 0.77 mg/ml using physical method, respectively. The FTIR spectroscopy results revealed that the extracted EPS contained hydroxyl, amide, acyl, and carboxyl groups that corresponded to the aforementioned chemical analysis results, thus asserting the presence of carbohydrates, DNA, polysaccharides, and proteins in the EPS. These findings suggest that identified functional groups of EPS form surface charges, which serve as the binding sites for suspended particles, thus possibly mediating adsorption of divalent cations and heavy metals. Using the extracted EPS in the development of a cost-effective biosorption solution for industrial wastewater treatment is attainable.Keywords: biosorbent, exopolysaccharides, heavy metals, wastewater treatment
Procedia PDF Downloads 1491142 Multi-Agent System Based Solution for Operating Agile and Customizable Micro Manufacturing Systems
Authors: Dylan Santos De Pinho, Arnaud Gay De Combes, Matthieu Steuhlet, Claude Jeannerat, Nabil Ouerhani
Abstract:
The Industry 4.0 initiative has been launched to address huge challenges related to ever-smaller batch sizes. The end-user need for highly customized products requires highly adaptive production systems in order to keep the same efficiency of shop floors. Most of the classical Software solutions that operate the manufacturing processes in a shop floor are based on rigid Manufacturing Execution Systems (MES), which are not capable to adapt the production order on the fly depending on changing demands and or conditions. In this paper, we present a highly modular and flexible solution to orchestrate a set of production systems composed of a micro-milling machine-tool, a polishing station, a cleaning station, a part inspection station, and a rough material store. The different stations are installed according to a novel matrix configuration of a 3x3 vertical shelf. The different cells of the shelf are connected through horizontal and vertical rails on which a set of shuttles circulate to transport the machined parts from a station to another. Our software solution for orchestrating the tasks of each station is based on a Multi-Agent System. Each station and each shuttle is operated by an autonomous agent. All agents communicate with a central agent that holds all the information about the manufacturing order. The core innovation of this paper lies in the path planning of the different shuttles with two major objectives: 1) reduce the waiting time of stations and thus reduce the cycle time of the entire part, and 2) reduce the disturbances like vibration generated by the shuttles, which highly impacts the manufacturing process and thus the quality of the final part. Simulation results show that the cycle time of the parts is reduced by up to 50% compared with MES operated linear production lines while the disturbance is systematically avoided for the critical stations like the milling machine-tool.Keywords: multi-agent systems, micro-manufacturing, flexible manufacturing, transfer systems
Procedia PDF Downloads 1301141 Anaerobic Fermentation Process for Production of Biohydrogen from Pretreated Fruit Wastes
Authors: A. K. R. Gobinath, He Jianzhong, Kun-Lin Yang
Abstract:
Fruit waste was used as a feedstock to produce biohydrogen in this study. Fruit waste used in this study was collected from several fruit juice stalls in Singapore. Based on our observation, the fruit waste contained 35-40% orange, 10-20% watermelon, 10-15% apple, 10-15% pineapple, 1-5% mango. They were mixed with water (1:1 ratio based on wet biomass) and blended to attain homogenous mixtures. Later, fruit waste was subjected to one of the following pretreatments: autoclave (121 °C for 20min), microwave (20min) or both. After pretreatment, the total sugar concentration in the hydrolysate was high (>12g/l) when both autoclave and microwave were applied. In contrast, samples without pretreatment measured only less than 2g/l of sugar. While using these hydrolysates as carbon sources, Clostridium strain BOH3 produces 2526-3126 ml/l of hydrogen after 72h of anaerobic fermentation. The hydrogen yield was 295-300 ml/g of sugar which is close to the hydrogen yields from glucose (338 ml/gm) and xylose (330 ml/gm). Our HPLC analysis showed that fruit waste hydrolysate contained oligosugars (25-27%), sucrose (18-23%), fructose (25-30%), glucose (10-15%) and mannose (2-5%). Additionally, pretreatment led to the release of free amino acids (160-512 mg/l), calcium (7.8-12.9 ppm), magnesium (4.32-6.55 ppm), potassium (5.4-65.1 ppm) and sodium (0.4-0.5 ppm) into the hydrolysate. These nutrients were able to support strain-BOH3 to grow and produce high level of hydrogen. Notably, unlike other pretreatment methods (with strong acids and bases), these pretreatment techniques did not generate any inhibitors (e.g. furfural and phenolic acids) to suppress the hydrogen production. Interestingly, strain BOH3 can also ferment pretreated fruit waste slurry and produce hydrogen with a high yield (156-343 ml/gm fruit waste). While fermenting pretreated fruit waste slurry, strain-BOH3 excreted several saccharolytic enzymes majorly xylanase (1.84U/ml), amylase (1.10U/ml), pectinase (0.36U/ml) and cellulase (0.43U/ml). Due to expressions of these enzymes, strain BOH3 was able to directly utilize pretreated fruit waste hydrolysate and produces high-level of hydrogen.Keywords: autoclave pretreatment, biohydrogen production, clostridial fermentation, fruit waste, and microwave pretreatment
Procedia PDF Downloads 5351140 Integrated Approach to Reduce Intimate Partner Violence and Improve Mental Health among Pregnant Women: Mixed-Method Study from Nepal
Authors: Diksha Sapkota, Kathleen Baird, Amornrat Saito, Debra Anderson
Abstract:
Background: Violence during pregnancy is global public health problem incurring huge amount of social, economic and human costs. It is of particular concern as it affects health of mother, neonates and also disrupt family functioning. Mental illness is one of its commonest consequences affecting both mother and baby and likely to be chronic if left unattended. Past decade has seen advances in knowledge about different forms of violence, its health impacts and intervention/s helping to confront the violence. However, limited range and lack of consistency in measurable outcomes undermine overall effect of interventions, and available evidence are largely slanted towards high-income countries. Despite recognition of integrating screening and counselling for abused pregnant women in health settings, there is a dearth of evidence on its effectiveness from developing countries limiting its applicability and feasibility. This study intends to summarise the high-quality evidence on intimate partner violence interventions in reducing violence and improving mental health and implement the promising intervention in our context. Methods: Quantitative systematic review will be done using PRISMA statement and based on its finding; randomised controlled intervention will be carried out. The study will be conducted among women attending ANC clinic of Dhulikhel Hospital, Nepal. Being the pilot study, samples just adequate to draw the inferences i.e. not less than 30 in each arm will be taken. Phenomological approach will be used to explore the strengths and weaknesses of tested intervention and recommendations for better planning in future. Conclusion: This study intends to provide concrete evidence on what works best in our context and will assist policymakers, programme planners, donors in informed decision making.Keywords: intimate partner violence/prevention and control, mental health, Nepal, pregnant
Procedia PDF Downloads 2611139 Collagen Gel in Hip Cartilage Repair: in vivo Preliminary Study
Authors: A. Bajek, J. Skopinska-Wisniewska, A. Rynkiewicz, A. Jundzill, M. Bodnar, A. Marszalek, T. Drewa
Abstract:
Traumatic injury and age-related degenerative diseases associated with cartilage are major health problems worldwide. The articular cartilage is comprised of a relatively small number of cells, which have a relatively slow rate of turnover. Therefore, damaged articular cartilage has a limited capacity for self-repair. New clinical methods have been designed to achieve better repair of injured cartilage. However, there is no treatment that enables full restoration of it. The aim of this study was to evaluate how collagen gel with bone marrow mesenchymal stem cells (MSCs) and collagen gel alone will influence on the hip cartilage repair after injury. Collagen type I was isolated from rats’ tails and cross-linked with N-hydroxysuccinimide in 24-hour process. MSCs were isolated from rats’ bone marrow. The experiments were conducted according to the guidelines for animal experiments of Ethics Committee. Fifteen 8-week-old Wistar rats were used in this study. All animals received hip joint surgery with a total of 30 created cartilage defects. Then, animals were randomly divided into three groups and filled, respectively, with collagen gel (group 1), collagen gel cultured with MSCs (group II) or left untreated as a control (control group). Immunohistochemy and radiological evaluation was carried out 11 weeks post implantation. It has been proved that the surface of the matrix is non-toxic, and its porosity promotes cell adhesion and growth. However, the in vivo regeneration process was poor. We observed the low integration rate of biomaterial. Immunohistochemical evaluation of cartilage after 11 weeks of treatment showed low II and high X collagen expression in two tested groups in comparison to the control one, in which we observed the high II collagen expression. What is more, after radiological analysis, we observed the best regeneration process in control group. The biomaterial construct and mesenchymal stem cells, as well as the use of the biomaterial itself was not sufficient to regenerate the hip cartilage surfaces. These results suggest that the collagen gel based biomaterials, even with MSCs, are not satisfactory in repar of hip cartilage defect. However, additional evaluation is needed to confirm these results.Keywords: collafen gel, MSCs, cartilage repair, hip cartilage
Procedia PDF Downloads 4561138 Double Liposomes Based Dual Drug Delivery System for Effective Eradication of Helicobacter pylori
Authors: Yuvraj Singh Dangi, Brajesh Kumar Tiwari, Ashok Kumar Jain, Kamta Prasad Namdeo
Abstract:
The potential use of liposomes as drug carriers by i.v. injection is limited by their low stability in blood stream. Firstly, phospholipid exchange and transfer to lipoproteins, mainly HDL destabilizes and disintegrates liposomes with subsequent loss of content. To avoid the pain associated with injection and to obtain better patient compliance studies concerning various dosage forms, have been developed. Conventional liposomes (unilamellar and multilamellar) have certain drawbacks like low entrapment efficiency, stability and release of drug after single breach in external membrane, have led to the new type of liposomal systems. The challenge has been successfully met in the form of Double Liposomes (DL). DL is a recently developed type of liposome, consisting of smaller liposomes enveloped in lipid bilayers. The outer lipid layer of DL can protect inner liposomes against various enzymes, therefore DL was thought to be more effective than ordinary liposomes. This concept was also supported by in vitro release characteristics i.e. DL formation inhibited the release of drugs encapsulated in inner liposomes. DL consists of several small liposomes encapsulated in large liposomes, i.e., multivesicular vesicles (MVV), therefore, DL should be discriminated from ordinary classification of multilamellar vesicles (MLV), large unilamellar vesicles (LUV), small unilamellar vesicles (SUV). However, for these liposomes, the volume of inner phase is small and loading volume of water-soluble drugs is low. In the present study, the potential of phosphatidylethanolamine (PE) lipid anchored double liposomes (DL) to incorporate two drugs in a single system is exploited as a tool to augment the H. pylori eradication rate. Preparation of DL involves two steps, first formation of primary (inner) liposomes by thin film hydration method containing one drug, then addition of suspension of inner liposomes on thin film of lipid containing the other drug. The success of formation of DL was characterized by optical and transmission electron microscopy. Quantitation of DL-bacterial interaction was evaluated in terms of percent growth inhibition (%GI) on reference strain of H. pylori ATCC 26695. To confirm specific binding efficacy of DL to H. pylori PE surface receptor we performed an agglutination assay. Agglutination in DL treated H. pylori suspension suggested selectivity of DL towards the PE surface receptor of H. pylori. Monotherapy is generally not recommended for treatment of a H. pylori infection due to the danger of development of resistance and unacceptably low eradication rates. Therefore, combination therapy with amoxicillin trihydrate (AMOX) as anti-H. pylori agent and ranitidine bismuth citrate (RBC) as antisecretory agent were selected for the study with an expectation that this dual-drug delivery approach will exert acceptable anti-H. pylori activity.Keywords: Helicobacter pylorI, amoxicillin trihydrate, Ranitidine Bismuth citrate, phosphatidylethanolamine, multi vesicular systems
Procedia PDF Downloads 2081137 Identification and Correlation of Structural Parameters and Gas Accumulation Capacity of Shales From Poland
Authors: Anna Pajdak, Mateusz Kudasik, Aleksandra Gajda, Katarzyna Kozieł
Abstract:
Shales are a type of fine-grained sedimentary rocks, which are composed of small grains of several to several dozen μm in size and consist of a variable mixture of clay minerals, quartz, feldspars, carbonates, sulphides, amorphous material and organic matter. The study involved an analysis of the basic physical properties of shale rocks from several research wells in Poland. The structural, sorption and seepage parameters of these rocks were determined. The total porosity of granular rock samples reached several percent, including the share of closed pores up to half a percent. The volume and distribution of pores, which are of significant importance in the context of the mechanisms of methane binding to the rock matrix and methods of stimulating its desorption and the possibility of CO₂ storage, were determined. The BET surface area of the samples ranged from a few to a dozen or so m²/g, and the share of micropores was dominant. In order to determine the interaction of rocks with gases, the sorption capacity in relation to CO₂ and CH₄ was determined at a pressure of 0-1.4 MPa. Sorption capacities, sorption isotherms and diffusion coefficients were also determined. Studies of competitive sorption of CO₂/CH₄ on shales showed a preference for CO₂ sorption over CH₄, and the selectivity of CO₂/CH₄ sorption decreased with increasing pressure. In addition to the pore structure, the adsorption capacity of gases in shale rocks is significantly influenced by the carbon content in their organic matter. The sorbed gas can constitute from 20% to 80% of the total gas contained in the shales. With the increasing depth of shale gas occurrence, the share of free gas to sorbed gas increases, among others, due to the increase in temperature and surrounding pressure. Determining the share of free gas to sorbed gas in shale, depending on the depth of its deposition, is one of the key elements of recognizing the gas/sorption exchange processes of CO₂/CH₄, which are the basis of CO₂-ESGR technology. The main objective of the work was to identify the correlation between different forms of gas occurrence in rocks and the parameters describing the pore space of shales.Keywords: shale, CH₄, CO₂, shale gas, CO₂ -ESGR, pores structure
Procedia PDF Downloads 111136 Tourism and Marketing: An Exploration Study to the Strategic Market Analysis of Moses Mabhida Stadium as a Major Tourism Destination in Kwazulu-Natal
Authors: Nduduzo Andrias Ngxongo, Nsizwazikhona Simon Chili
Abstract:
This analytical exploration illustrates how the non-existence of a proper marketing strategy for a tourism destination may have resulted in a radical decline in both financial outputs and visitor arrivals. The marketing strategy is considered as the foundation for any tourism destination’s marketing tactics. Tourism destinations are ought to have dynamic and adaptive marketing strategies that will develop a promotional approach to help the destination to gain market share, identify its target markets, stay relevant to its existing clients, attract new visitors, and increase profits-earned. Accordingly, the Moses Mabhida Stadium (MMS), one of the prominent tourist attractions in KwaZulu-Natal; boasting a world-class architectural design, several international prestigious awards, and vibrant, adventurous activities, has in recent years suffered a gradual slump in both visitors and profits. Therefore, the basis of this paper was to thoroughly establish precisely how the existing MMS marketing strategy may be a basis for a decline in the number of visitors and profits-earned in recent years. The study adopted mixed method research strategy, with 380 participants. The outcome of the study suggests some costly disparities in the marketing strategy of MMS which has led to poor performance and a loss in tourism market share. In consequence, the outcome further suggests that the non-existence of market research analysis and destination marketing tools contributed vastly to the in-progress dilemma. This fact-finding exploration provides a birds-eye outlook of MMS marketing strategy, and based on the results, the study recommends for the introduction of a more far-reaching and revitalising marketing strategy through; constant and persistent market research initiatives, minimal political interference in the administration of state-funded organisations, reassessment of the feasibility study, vigorous, and sourcing of proficient personnel.Keywords: tourism, destination, marketing , marketing strategy
Procedia PDF Downloads 2701135 Combining Multiscale Patterns of Weather and Sea States into a Machine Learning Classifier for Mid-Term Prediction of Extreme Rainfall in North-Western Mediterranean Sea
Authors: Pinel Sebastien, Bourrin François, De Madron Du Rieu Xavier, Ludwig Wolfgang, Arnau Pedro
Abstract:
Heavy precipitation constitutes a major meteorological threat in the western Mediterranean. Research has investigated the relationship between the states of the Mediterranean Sea and the atmosphere with the precipitation for short temporal windows. However, at a larger temporal scale, the precursor signals of heavy rainfall in the sea and atmosphere have drawn little attention. Moreover, despite ongoing improvements in numerical weather prediction, the medium-term forecasting of rainfall events remains a difficult task. Here, we aim to investigate the influence of early-spring environmental parameters on the following autumnal heavy precipitations. Hence, we develop a machine learning model to predict extreme autumnal rainfall with a 6-month lead time over the Spanish Catalan coastal area, based on i) the sea pattern (main current-LPC and Sea Surface Temperature-SST) at the mesoscale scale, ii) 4 European weather teleconnection patterns (NAO, WeMo, SCAND, MO) at synoptic scale, and iii) the hydrological regime of the main local river (Rhône River). The accuracy of the developed model classifier is evaluated via statistical analysis based on classification accuracy, logarithmic and confusion matrix by comparing with rainfall estimates from rain gauges and satellite observations (CHIRPS-2.0). Sensitivity tests are carried out by changing the model configuration, such as sea SST, sea LPC, river regime, and synoptic atmosphere configuration. The sensitivity analysis suggests a negligible influence from the hydrological regime, unlike SST, LPC, and specific teleconnection weather patterns. At last, this study illustrates how public datasets can be integrated into a machine learning model for heavy rainfall prediction and can interest local policies for management purposes.Keywords: extreme hazards, sensitivity analysis, heavy rainfall, machine learning, sea-atmosphere modeling, precipitation forecasting
Procedia PDF Downloads 1361134 Conjunctive Management of Surface and Groundwater Resources under Uncertainty: A Retrospective Optimization Approach
Authors: Julius M. Ndambuki, Gislar E. Kifanyi, Samuel N. Odai, Charles Gyamfi
Abstract:
Conjunctive management of surface and groundwater resources is a challenging task due to the spatial and temporal variability nature of hydrology as well as hydrogeology of the water storage systems. Surface water-groundwater hydrogeology is highly uncertain; thus it is imperative that this uncertainty is explicitly accounted for, when managing water resources. Various methodologies have been developed and applied by researchers in an attempt to account for the uncertainty. For example, simulation-optimization models are often used for conjunctive water resources management. However, direct application of such an approach in which all realizations are considered at each iteration of the optimization process leads to a very expensive optimization in terms of computational time, particularly when the number of realizations is large. The aim of this paper, therefore, is to introduce and apply an efficient approach referred to as Retrospective Optimization Approximation (ROA) that can be used for optimizing conjunctive use of surface water and groundwater over a multiple hydrogeological model simulations. This work is based on stochastic simulation-optimization framework using a recently emerged technique of sample average approximation (SAA) which is a sampling based method implemented within the Retrospective Optimization Approximation (ROA) approach. The ROA approach solves and evaluates a sequence of generated optimization sub-problems in an increasing number of realizations (sample size). Response matrix technique was used for linking simulation model with optimization procedure. The k-means clustering sampling technique was used to map the realizations. The methodology is demonstrated through the application to a hypothetical example. In the example, the optimization sub-problems generated were solved and analysed using “Active-Set” core optimizer implemented under MATLAB 2014a environment. Through k-means clustering sampling technique, the ROA – Active Set procedure was able to arrive at a (nearly) converged maximum expected total optimal conjunctive water use withdrawal rate within a relatively few number of iterations (6 to 7 iterations). Results indicate that the ROA approach is a promising technique for optimizing conjunctive water use of surface water and groundwater withdrawal rates under hydrogeological uncertainty.Keywords: conjunctive water management, retrospective optimization approximation approach, sample average approximation, uncertainty
Procedia PDF Downloads 2311133 Comparative Performance of Standing Whole Body Monitor and Shielded Chair Counter for In-vivo Measurements
Authors: M. Manohari, S. Priyadharshini, K. Bajeer Sulthan, R. Santhanam, S. Chandrasekaran, B. Venkatraman
Abstract:
In-vivo monitoring facility at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, caters to the monitoring of internal exposure of occupational radiation workers from various radioactive facilities of IGCAR. Internal exposure measurement is done using Na(Tl) based Scintillation detectors. Two types of whole-body counters, namely Shielded Chair Counter (SC) and Standing Whole-Body Monitor (SWBM), are being used. The shielded Chair is based on a NaI detector of 20.3 cm diameter and 10.15 cm thick. The chair of the system is shielded using lead shots of 10 cm lead equivalent and the detector with 8 cm lead bricks. Counting geometry is sitting geometry. Calibration is done using 95 percentile BOMAB phantom. The minimum Detectable Activity (MDA) for 137Cs for the 60s is 1150 Bq. Standing Wholebody monitor (SWBM) has two NaI(Tl) detectors of size 10.16 x 10.16 x 40.64 cm3 positioned serially, one over the other. It has a shielding thickness of 5cm lead equivalent. Counting is done in standup geometry. Calibration is done with the help of Ortec Phantom, having a uniform distribution of mixed radionuclides for the thyroid, thorax and pelvis. The efficiency of SWBM is 2.4 to 3.5 times higher than that of the shielded chair in the energy range of 279 to 1332 keV. MDA of 250 Bq for 137Cs can be achieved with a counting time of 60s. MDA for 131I in the thyroid was estimated as 100 Bq from the MDA of whole-body for one-day post intake. Standing whole body monitor is better in terms of efficiency, MDA and ease of positioning. In case of emergency situations, the optimal MDAs for in-vivo monitoring service are 1000 Bq for 137Cs and 100 Bq for 131I. Hence, SWBM is more suitable for the rapid screening of workers as well as the public in the case of an emergency. While a person reports for counting, there is a potential for external contamination. In SWBM, there is a feasibility to discriminate them as the subject can be counted in anterior or posterior geometry which is not possible in SC.Keywords: minimum detectable activity, shielded chair, shielding thickness, standing whole body monitor
Procedia PDF Downloads 461132 The Approach to Develop Value Chain to Enhance the Management Efficiency of Thai Tour Operators in Order to Support Free Trade within the Framework of ASEAN Cooperation
Authors: Yalisa Tonsorn
Abstract:
The objectives of this study are 1) to study the readiness of Thai tour operators in order to prepare for being ASEAN members, 2) to study opportunity and obstacles of the management of Thai tour operators, and 3) to find approach for developing value chain in order to enhance the management efficiency of Thai tour operators in order to support free trade within the framework of ASEAN cooperation. The research methodology is mixed between qualitative method and quantitative method. In-depth interview was done with key informants, including management supervisors, medium managers, and officers of the travel agencies. The questionnaire was conducted with 300 sampling. According to the study, it was found that the approach for developing value chain to enhance the management efficiency of Thai travel agencies in order to support free trade within the framework of ASEAN cooperation, the tour operators must give priority to the customer and deliver the service exceeding the customer’s expectation. There are 2 groups of customers: 1) external customers referring to tourist, and 2) internal customers referring to staff who deliver the service to the customers, including supervisors, colleagues, or subordinates. There are 2 issues which need to be developed: 1) human resource development in order to cultivate the working concept by focusing on importance of customers, and excellent service providing, and 2) working system development by building value and innovation in operational process including services to the company in order to deliver the highest impressive service to both internal and external customers. Moreover, the tour operators could support the increased number of tourists significantly. This could enhance the capacity of the business and affect the increase of competition capability in the economic dimension of the country.Keywords: AEC (ASEAN Economic Eommunity), core activities, support activities, values chain
Procedia PDF Downloads 3521131 Synthesis and Two-Photon Polymerization of a Cytocompatibility Tyramine Functionalized Hyaluronic Acid Hydrogel That Mimics the Chemical, Mechanical, and Structural Characteristics of Spinal Cord Tissue
Authors: James Britton, Vijaya Krishna, Manus Biggs, Abhay Pandit
Abstract:
Regeneration of the spinal cord after injury remains a great challenge due to the complexity of this organ. Inflammation and gliosis at the injury site hinder the outgrowth of axons and hence prevent synaptic reconnection and reinnervation. Hyaluronic acid (HA) is the main component of the spinal cord extracellular matrix and plays a vital role in cell proliferation and axonal guidance. In this study, we have synthesized and characterized a photo-cross-linkable HA-tyramine (tyr) hydrogel from a chemical, mechanical, electrical, biological and structural perspective. From our experimentation, we have found that HA-tyr can be synthesized with controllable degrees of tyramine substitution using click chemistry. The complex modulus (G*) of HA-tyr can be tuned to mimic the mechanical properties of the native spinal cord via optimization of the photo-initiator concentration and UV exposure. We have examined the degree of tyramine-tyramine covalent bonding (polymerization) as a function of UV exposure and photo-initiator use via Photo and Nuclear magnetic resonance spectroscopy. Both swelling and enzymatic degradation assays were conducted to examine the resilience of our 3D printed hydrogel constructs in-vitro. Using a femtosecond 780nm laser, the two-photon polymerization of HA-tyr hydrogel in the presence of riboflavin photoinitiator was optimized. A laser power of 50mW and scan speed of 30,000 μm/s produced high-resolution spatial patterning within the hydrogel with sustained mechanical integrity. Using dorsal root ganglion explants, the cytocompatibility of photo-crosslinked HA-tyr was assessed. Using potentiometry, the electrical conductivity of photo-crosslinked HA-tyr was assessed and compared to that of native spinal cord tissue as a function of frequency. In conclusion, we have developed a biocompatible hydrogel that can be used for photolithographic 3D printing to fabricate tissue engineered constructs for neural tissue regeneration applications.Keywords: 3D printing, hyaluronic acid, photolithography, spinal cord injury
Procedia PDF Downloads 1521130 Ramification of Pemphigus Vulgaris Sera and the Monoclonal Antibody Against Desmoglein-3 on Nrf2 Expression in Keratinocyte Cultures
Authors: Faris Mohsin Alabeedi
Abstract:
Pemphigus Vulgaris (PV) is a life-threatening autoimmune blistering disease characterized by the presence of autoantibodies directed against the epidermis's surface proteins. There are two forms of PV, mucocutaneous and mucosal-dominant PV. Disruption of the cell junctions is a hallmark of PV due to the autoantibodies targeting the desmosomal cadherins, desmoglein-3 (Dsg3) and desmoglein-1, leading to acantholysis in the skin and mucous membrane. Although the pathogenesis of PV is known, the detailed molecular events remain not fully understood. Our recent study has shown that both the PV sera and pathogenic anti-Dsg3 antibody AK23 can induce ROS and cause oxidative stress in cultured keratinocytes. In line with our finding, other independent studies also demonstrate oxidative stress in PV. Since Nrf2 plays a crucial role in cellular anti-oxidative stress response, we hypothesize that the expression of Nrf2 may alter in PV. Thus, treatment of cells with PV sera or AK23 may cause changes in Nrf2 expression and distribution. The purpose of this study was to examine the effect of AK23 and PV sera on Nrf2 in a normal human keratinocyte cell line, such as NTERT cells. Both a time-course and dose-dependent experiments with AK23, alongside the matched isotype control IgG, were performed in keratinocyte cultures and analysed by immunofluorescence for Nrf2 and Dsg3. Additionally, the same approach was conducted with the sera from PV patients and healthy individuals that served as a control in this study. All the fluorescent images were analysed using ImageJ software. Each experiment was repeated twice. In general, variations were observed throughout this study. In the dose-response experiments, although enhanced Dsg3 expression was consistently detected in AK23 treated cells, the expression of Nrf2 showed no consistent findings between the experiments, although changes in its expression were noticeable in cells treated with AK23. In the time-course study, a trend with induction of Nrf2 over time was shown in control cells treated with mouse isotype IgG. Treatment with AK23 showed a reduction of Nrf2 in a time-dependent manner, especially at the 24-hour time point. However, the earlier time points, such as 2 hours and 6 hours with AK23 treatments, detected somewhat variations. Finally, PV sera caused a decrease of Dsg3, but on the other hand, variations were observed in Nrf2 expression in PV sera treated cells. In general, PV sera seemed to cause a reduction of Nrf2 in the majority of PV sera treated samples. In addition, more pronounced cytoplasmic expression of Nrf2 has been observed in PV sera treated cells than those treated with AK23, suggesting that polyclonal and monoclonal IgG might induce a different effect on Nrf2 expression and distribution. Further experimental studies are crucial to obtain a more coincide global view of Nrf2-mediated gene regulation. In particular, Pemphigus Voulgaris studies assessing how the Nrf2-dependent network changes from a physiological to a pathological condition can provide insight into disease mechanisms and perhaps initiate further treatment approaches.Keywords: pemphigus vulgaris, monoclonal antibody against desmoglein-3, Nrf2 oxidative stress, keratinocyte cultures
Procedia PDF Downloads 761129 La₀.₈Ba₀.₂FeO₃ Perovskite as an Additive in the Three-Way Catalyst (TWCs) for Reduction of PGMs Loading
Authors: Mahshid Davoodpoor, Zahra Shamohammadi Ghahsareh, Saeid Razfar, Alaleh Dabbaghi
Abstract:
Nowadays, air pollution has become a topic of great concern all over the world. One of the main sources of air pollution is automobile exhaust gas, which introduces a large number of toxic gases, including CO, unburned hydrocarbons (HCs), NOx, and non-methane hydrocarbons (NMHCs), into the air. The application of three-way catalysts (TWCs) is still the most effective strategy to mitigate the emission of these pollutants. Due to the stringent environmental regulations which continuously become stricter, studies on the TWCs are ongoing despite several years of research and development. This arises from the washcoat complexity and the several numbers of parameters involved in the redox reactions. The main objectives of these studies are the optimization of washcoat formulation and the investigation of different coating modes. Perovskite (ABO₃), as a promising class of materials, has unique features that make it versatile to use as an alternative to commonly mixed oxides in washcoats. High catalytic activity for oxidation reactions and its relatively high oxygen storage capacity are important properties of perovskites in catalytic applications. Herein, La₀.₈Ba₀.₂FeO₃ perovskite material was synthesized using the co-precipitation method and characterized by XRD, ICP, and BET analysis. The effect of synthesis conditions, including B site metal (Fe and Co), metal precursor concentration, and dopant (Ba), were examined on the phase purity of the products. The selected perovskite sample was used as one of the components in the TWC formulation to evaluate its catalytic performance through Light-off, oxygen storage capacity, and emission analysis. Results showed a remarkable increment in oxygen storage capacity and also revealed that T50 and emission of CO, HC, and NOx reduced in the presence of perovskite structure which approves the enhancement of catalytic performance for the new washcoat formulation. This study shows the brilliant future of advanced oxide structures in the TWCs.Keywords: Perovskite, three-way catalyst, PGMs, PGMs reduction
Procedia PDF Downloads 671128 Isolation and Culture of Keratinocytes and Fibroblasts to Develop Artificial Skin Equivalent in Cats
Authors: Lavrentiadou S. N., Angelou V., Chatzimisios K., Papazoglou L.
Abstract:
The aim of this study was the isolation and culture of keratinocytes and fibroblasts from feline skin to ultimately create an artificial engineered skin (including dermis and epidermis) useful for the effective treatment of large cutaneous deficits in cats. Epidermal keratinocytes and dermal fibroblasts were freshly isolated from skin biopsies using an 8 mm biopsy punch obtained from 8 healthy cats that had undergone ovariohysterectomy. The owner’s consent was obtained. All cats had a complete blood count and a serum biochemical analysis and were screened for feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) preoperatively. The samples were cut into small pieces and incubated with collagenase (2 mg/ml) for 5-6 hours. Following digestion, cutaneous cells were filtered through a 100 μm cell strainer, washed with DMEM, and grown in DMEM supplemented with 10% FBS. The undigested epidermis was washed with DMEM and incubated with 0.05% Trypsin/0.02% EDTA (TE) solution. Keratinocytes recovered in the TE solution were filtered through a 100 μm and a 40 μm cell strainer and, following washing, were grown on a collagen type I matrix in DMEM: F12 (3:1) medium supplemented with 10% FΒS, 1 μm hydrocortisone, 1 μm isoproterenol and 0.1 μm insulin. Both fibroblasts and keratinocytes were grown in a humidified atmosphere with 5% CO2 at 37oC. The medium was changed twice a week and cells were cultured up to passage 4. Cells were grown to 70-85% confluency, at which point they were trypsinized and subcultured in a 1:4 dilution. The majority of the cells in each passage were transferred to a freezing medium and stored at -80oC. Fibroblasts were frozen in DMEM supplemented with 30% FBS and 10% DMSO, whereas keratinocytes were frozen in a complete keratinocyte growth medium supplemented with 10% DMSO. Both cell types were thawed and successfully grown as described above. Therefore, we can create a bank of fibroblasts and keratinocytes, from which we can recover cells for further culture and use for the generation of skin equivalent in vitro. In conclusion, cutaneous cell isolation and cell culture and expansion were successfully developed. To the authors’ best knowledge, this is the first study reporting isolation and culture of keratinocytes and fibroblasts from feline skin. However, these are preliminary results and thus, the development of autologous-engineered feline skin is still in process.Keywords: cat, fibroblasts, keratinocytes, skin equivalent, wound
Procedia PDF Downloads 1081127 Four-Electron Auger Process for Hollow Ions
Authors: Shahin A. Abdel-Naby, James P. Colgan, Michael S. Pindzola
Abstract:
A time-dependent close-coupling method is developed to calculate a total, double and triple autoionization rates for hollow atomic ions of four-electron systems. This work was motivated by recent observations of the four-electron Auger process in near K-edge photoionization of C+ ions. The time-dependent close-coupled equations are solved using lattice techniques to obtain a discrete representation of radial wave functions and all operators on a four-dimensional grid with uniform spacing. Initial excited states are obtained by relaxation of the Schrodinger equation in imaginary time using a Schmidt orthogonalization method involving interior subshells. The radial wave function grids are partitioned over the cores on a massively parallel computer, which is essential due to the large memory requirements needed to store the coupled-wave functions and the long run times needed to reach the convergence of the ionization process. Total, double, and triple autoionization rates are obtained by the propagation of the time-dependent close-coupled equations in real-time using integration over bound and continuum single-particle states. These states are generated by matrix diagonalization of one-electron Hamiltonians. The total autoionization rates for each L excited state is found to be slightly above the single autoionization rate for the excited configuration using configuration-average distorted-wave theory. As expected, we find the double and triple autoionization rates to be much smaller than the total autoionization rates. Future work can be extended to study electron-impact triple ionization of atoms or ions. The work was supported in part by grants from the American University of Sharjah and the US Department of Energy. Computational work was carried out at the National Energy Research Scientific Computing Center (NERSC) in Berkeley, California, USA.Keywords: hollow atoms, autoionization, auger rates, time-dependent close-coupling method
Procedia PDF Downloads 1531126 Protonic Conductivity Highlighted by Impedance Measurement of Y-Doped BaZrO3 Synthesized by Supercritical Hydrothermal Process
Authors: Melanie Francois, Gilles Caboche, Frederic Demoisson, Francois Maeght, Maria Paola Carpanese, Lionel Combemale, Pascal Briois
Abstract:
Finding new clean, and efficient way for energy production is one of the actual global challenges. Advances in fuel cell technology have shown that, for few years, Protonic Ceramic Fuel Cell (PCFC) has attracted much attention in the field of new hydrogen energy thanks to their lower working temperature, possible higher efficiency, and better durability than classical SOFC. On the contrary of SOFC, where O²⁻ oxygen ion is the charge carrier, PCFC works with H⁺ proton as a charge carrier. Consequently, the lower activation energy of proton diffusion compared to the one of oxygen ion explains those benefits and allows PCFC to work in the 400-600°C temperature range. Doped-BaCeO₃ is currently the most chosen material for this application because of its high protonic conductivity; for example, BaCe₀.₉Y₀.₁O₃ δ exhibits a total conductivity of 1.5×10⁻² S.cm⁻¹ at 600°C in wet H₂. However, BaCeO₃ based perovskite has low stability in H₂O and/or CO₂ containing atmosphere, which limits their practical application. On the contrary, BaZrO₃ based perovskite exhibits good chemical stability but lower total conductivity than BaCeO₃ due to its larger grain boundary resistance. By substituting zirconium with 20% of yttrium, it is possible to achieve a total conductivity of 2.5×10⁻² S.cm⁻¹ at 600°C in wet H₂. However, the high refractory property of BaZr₀.₈Y₀.₂O₃-δ (noted BZY20) causes problems to obtain a dense membrane with large grains. Thereby, using a synthesis process that gives fine particles could allow better sinterability and thus decrease the number of grain boundaries leading to a higher total conductivity. In this work, BaZr₀.₈Y₀.₂O₃-δ have been synthesized by classical batch hydrothermal device and by a continuous hydrothermal device developed at ICB laboratory. The two variants of this process are able to work in supercritical conditions, leading to the formation of nanoparticles, which could be sintered at a lower temperature. The as-synthesized powder exhibits the right composition for the perovskite phase, impurities such as BaCO₃ and YO-OH were detected at very low concentration. Microstructural investigation and densification rate measurement showed that the addition of 1 wt% of ZnO as sintering aid and a sintering at 1550°C for 5 hours give high densified electrolyte material. Furthermore, it is necessary to heat the synthesized powder prior to the sintering to prevent the formation of secondary phases. It is assumed that this thermal treatment homogenizes the crystal structure of the powder and reduces the number of defects into the bulk grains. Electrochemical impedance spectroscopy investigations in various atmospheres and a large range of temperature (200-700°C) were then performed on sintered samples, and the protonic conductivity of BZY20 has been highlighted. Further experiments on half-cell, NiO-BZY20 as anode and BZY20 as electrolyte, are in progress.Keywords: hydrothermal synthesis, impedance measurement, Y-doped BaZrO₃, proton conductor
Procedia PDF Downloads 1381125 Self-Healing Coatings and Electrospun Fibers
Authors: M. Grandcolas, N. Rival, H. Bu, S. Jahren, R. Schmid, H. Johnsen
Abstract:
The concept of an autonomic self-healing material, where initiation of repair is integrated to the material, is now being considered for engineering applications and is a hot topic in the literature. Among several concepts/techniques, two are most interesting: i) Capsules: Integration of microcapsules in or at the surface of coatings or fibre-like structures has recently gained much attention. Upon damage-induced cracking, the microcapsules are broken by the propagating crack fronts resulting in a release of an active chemical (healing agent) by capillary action, subsequently repairing and avoiding further crack growth. ii) Self-healing polymers: Interestingly, the introduction of dynamic covalent bonds into polymer networks has also recently been used as a powerful approach towards the design of various intrinsically self-healing polymer systems. The idea behind this is to reconnect the chemical crosslinks which are broken when a material fractures, restoring the integrity of the material and thereby prolonging its lifetime. We propose here to integrate both self-healing concepts (capsules, self-healing polymers) in electrospun fibres and coatings. Different capsule preparation approaches have been investigated in SINTEF. The most advanced method to produce capsules is based on emulsification to create a water-in-oil emulsion before polymerisation. The healing agent is a polyurethane-based dispersion that was encapsulated in shell materials consisting of urea-benzaldehyde resins. Results showed the successful preparation of microcapsules and release of the agent when capsules break. Since capsules are produced in water-in-oil systems we mainly investigated organic solvent based coatings while a major challenge resides in the incorporation of capsules into water-based coatings. We also focused on developing more robust microcapsules to prevent premature rupture of the capsules. The capsules have been characterized in terms of size, and encapsulation and release might be visualized by incorporating fluorescent dyes and examine the capsules by microscopy techniques. Alternatively, electrospinning is an innovative technique that has attracted enormous attention due to unique properties of the produced nano-to-micro fibers, ease of fabrication and functionalization, and versatility in controlling parameters. Especially roll-to-roll electrospinning is a unique method which has been used in industry to produce nanofibers continuously. Electrospun nanofibers can usually reach a diameter down to 100 nm, depending on the polymer used, which is of interest for the concept with self-healing polymer systems. In this work, we proved the feasibility of fabrication of POSS-based (POSS: polyhedral oligomeric silsesquioxanes, tradename FunzioNano™) nanofibers via electrospinning. Two different formulations based on aqueous or organic solvents have shown nanofibres with a diameter between 200 – 450nm with low defects. The addition of FunzioNano™ in the polymer blend also showed enhanced properties in term of wettability, promising for e.g. membrane technology. The self-healing polymer systems developed are here POSS-based materials synthesized to develop dynamic soft brushes.Keywords: capsules, coatings, electrospinning, fibers
Procedia PDF Downloads 2611124 Evaluation of Compatibility between Produced and Injected Waters and Identification of the Causes of Well Plugging in a Southern Tunisian Oilfield
Authors: Sonia Barbouchi, Meriem Samcha
Abstract:
Scale deposition during water injection into aquifer of oil reservoirs is a serious problem experienced in the oil production industry. One of the primary causes of scale formation and injection well plugging is mixing two waters which are incompatible. Considered individually, the waters may be quite stable at system conditions and present no scale problems. However, once they are mixed, reactions between ions dissolved in the individual waters may form insoluble products. The purpose of this study is to identify the causes of well plugging in a southern Tunisian oilfield, where fresh water has been injected into the producing wells to counteract the salinity of the formation waters and inhibit the deposition of halite. X-ray diffraction (XRD) mineralogical analysis has been carried out on scale samples collected from the blocked well. Two samples collected from both formation water and injected water were analysed using inductively coupled plasma atomic emission spectroscopy, ion chromatography and other standard laboratory techniques. The results of complete waters analysis were the typical input parameters, to determine scaling tendency. Saturation indices values related to CaCO3, CaSO4, BaSO4 and SrSO4 scales were calculated for the water mixtures at different share, under various conditions of temperature, using a computerized scale prediction model. The compatibility study results showed that mixing the two waters tends to increase the probability of barite deposition. XRD analysis confirmed the compatibility study results, since it proved that the analysed deposits consisted predominantly of barite with minor galena. At the studied temperatures conditions, the tendency for barite scale is significantly increasing with the increase of fresh water share in the mixture. The future scale inhibition and removal strategies to be implemented in the concerned oilfield are being derived in a large part from the results of the present study.Keywords: compatibility study, produced water, scaling, water injection
Procedia PDF Downloads 1661123 Impact of Private Oil Palm Expansion on Indonesia Tropical Forest Deforestation Rate: Case Study in the Province of Riau
Authors: Arzyana Sunkar, Yanto Santosa, Intan Purnamasari, Yohanna Dalimunthe
Abstract:
A variety of negative allegations have criticized the Indonesian oil palm plantations as being environmentally unfriendly. One of the important allegations thus must be verified is that expansion of Indonesian oil palm plantation has increased the deforestation rate of primary tropical forest. In relation to this, a research was conducted to study the origin or history of the status and land use of 8 private oil palm plantations (with a total of 46,372.38 ha) located in Riau Province. Several methods were employed: (1) conducting analysis of overlay maps between oil palm plantation studied with the 1986 Forest Map Governance Agreement (TGHK) and the 1994 and 2014 Riau Provincial Spatial Plans(RTRWP); (2) studying the Cultivation Right on Land (HGU) documents including the Forestry Ministerial Decree on the release of forest area and (3) interpretation of lands at imagery of bands 542, covering 3 years before and after the oil palm industries operated. In addition, field cross-checked, and interviews were conducted with National Land Agency, Plantation and Forestry Office and community figures. The results indicated that as much as 1.95% of the oil palm plantations under study were converted from production forest, 30.34% from limited production forest and 67.70% from area for other usage /conversion production forest. One year prior to the establishment of the plantations, the land cover types comprised of rubber plantations (49.96%), secondary forest (35.99%), bare land (10.17%), shrubs (3.03%) and mixed dryland farming-shrubs (0.84%), whereas the land use types comprised of 35.99% forest concession areas, 14.04% migrants dryland farms, and 49.96% Cultivation Right on Land of other companies. These results indicated that most of the private oil palm plantations under study, resulted from the conversion of production forests and the previous land use were not primary forest but rubber plantations and secondary forests.Keywords: land cover types, land use history, primary forest, private oil palm plantations
Procedia PDF Downloads 2381122 The Impact of the Flipped Classroom Instructional Model on MPharm Students in Two Pharmacy Schools in the UK
Authors: Mona Almanasef, Angel Chater, Jane Portlock
Abstract:
Introduction: A 'flipped classroom' uses technology to shift the traditional lecture outside the scheduled class time and uses the face-to-face time to engage students in interactive activities. Aim of the Study: Assess the feasibility, acceptability, and effectiveness of using the 'flipped classroom' teaching format with MPharm students in two pharmacy schools in the UK: UCL School of Pharmacy and the School of Pharmacy and Biomedical Sciences at University of Portsmouth. Methods: An experimental mixed methods design was employed, with final year MPharm students in two phases; 1) a qualitative study using focus groups, 2) a quasi-experiment measuring knowledge acquisition and satisfaction by delivering a session on rheumatoid arthritis, in two teaching formats: the flipped classroom and the traditional lecture. Results: The flipped classroom approach was preferred over the traditional lecture for delivering a pharmacy practice topic, and it was comparable or better than the traditional lecture with respect to knowledge acquisition. In addition, this teaching approach was found to overcome the perceived challenges of the traditional lecture method such as fast pace instructions, student disengagement and boredom due to lack of activities and/or social anxiety. However, high workload and difficult or new concepts could be barriers to pre-class preparation, and therefore successful flipped classroom. The flipped classroom encouraged learning scaffolding where students could benefit from application of knowledge, and interaction with peers and the lecturer, which might, in turn, facilitate learning consolidation and deep understanding. This research indicated that the flipped classroom was beneficial for all learning styles. Conclusion: Implementing the flipped classroom at both pharmacy institutions was successful and well received by final year MPharm students. Given the attention now being put on the Teaching Excellence Framework (TEF), understanding effective methods of teaching to enhance student achievement and satisfaction is now more valuable than ever.Keywords: blended learning, flipped classroom, inverted classroom, pharmacy education
Procedia PDF Downloads 1361121 Characterization of Surface Microstructures on Bio-Based PLA Fabricated with Nano-Imprint Lithography
Authors: D. Bikiaris, M. Nerantzaki, I. Koliakou, A. Francone, N. Kehagias
Abstract:
In the present study, the formation of structures in poly(lactic acid) (PLA) has been investigated with respect to producing areas of regular, superficial features with dimensions comparable to those of cells or biological macromolecules. Nanoimprint lithography, a method of pattern replication in polymers, has been used for the production of features ranging from tens of micrometers, covering areas up to 1 cm², down to hundreds of nanometers. Both micro- and nano-structures were faithfully replicated. Potentially, PLA has wide uses within biomedical fields, from implantable medical devices, including screws and pins, to membrane applications, such as wound covers, and even as an injectable polymer for, for example, lipoatrophy. The possibility of fabricating structured PLA surfaces, with structures of the dimensions associated with cells or biological macro- molecules, is of interest in fields such as cellular engineering. Imprint-based technologies have demonstrated the ability to selectively imprint polymer films over large areas resulting in 3D imprints over flat, curved or pre-patterned surfaces. Here, we compare nano-patterned with nano-patterned by nanoimprint lithography (NIL) PLA film. A silicon nanostructured stamp (provided by Nanotypos company) having positive and negative protrusions was used to pattern PLA films by means of thermal NIL. The polymer film was heated from 40°C to 60°C above its Tg and embossed with a pressure of 60 bars for 3 min. The stamp and substrate were demolded at room temperature. Scanning electron microscope (SEM) images showed good replication fidelity of the replicated Si stamp. Contact-angle measurements suggested that positive microstructuring of the polymer (where features protrude from the polymer surface) produced a more hydrophilic surface than negative micro-structuring. The ability to structure the surface of the poly(lactic acid), allied to the polymer’s post-processing transparency and proven biocompatibility. Films produced in this were also shown to enhance the aligned attachment behavior and proliferation of Wharton’s Jelly Mesenchymal Stem cells, leading to the observed growth contact guidance. The bacterial attachment patterns of some bacteria, highlighted that the nano-patterned PLA structure can reduce the propensity for the bacteria to attach to the surface, with a greater bactericidal being demonstrated activity against the Staphylococcus aureus cells. These biocompatible, micro- and nanopatterned PLA surfaces could be useful for polymer– cell interaction experiments at dimensions at, or below, that of individual cells. Indeed, post-fabrication modification of the microstructured PLA surface, with materials such as collagen (which can further reduce the hydrophobicity of the surface), will extend the range of applications, possibly through the use of PLA’s inherent biodegradability. Further study is being undertaken to examine whether these structures promote cell growth on the polymer surface.Keywords: poly(lactic acid), nano-imprint lithography, anti-bacterial properties, PLA
Procedia PDF Downloads 3301120 Experimental Investigation of the Out-of-Plane Dynamic Behavior of Adhesively Bonded Composite Joints at High Strain Rates
Authors: Sonia Sassi, Mostapha Tarfaoui, Hamza Ben Yahia
Abstract:
In this investigation, an experimental technique in which the dynamic response, damage kinetic and heat dissipation are measured simultaneously during high strain rates on adhesively bonded joints materials. The material used in this study is widely used in the design of structures for military applications. It was composed of a 45° Bi-axial fiber-glass mat of 0.286 mm thickness in a Polyester resin matrix. In adhesive bonding, a NORPOL Polyvinylester of 1 mm thickness was used to assemble the composite substrate. The experimental setup consists of a compression Split Hopkinson Pressure Bar (SHPB), a high-speed infrared camera and a high-speed Fastcam rapid camera. For the dynamic compression tests, 13 mm x 13 mm x 9 mm samples for out-of-plane tests were considered from 372 to 1030 s-1. Specimen surface is controlled and monitored in situ and in real time using the high-speed camera which acquires the damage progressive in specimens and with the infrared camera which provides thermal images in time sequence. Preliminary compressive stress-strain vs. strain rates data obtained show that the dynamic material strength increases with increasing strain rates. Damage investigations have revealed that the failure mainly occurred in the adhesive/adherent interface because of the brittle nature of the polymeric adhesive. Results have shown the dependency of the dynamic parameters on strain rates. Significant temperature rise was observed in dynamic compression tests. Experimental results show that the temperature change depending on the strain rate and the damage mode and their maximum exceed 100 °C. The dependence of these results on strain rate indicates that there exists a strong correlation between damage rate sensitivity and heat dissipation, which might be useful when developing damage models under dynamic loading tacking into account the effect of the energy balance of adhesively bonded joints.Keywords: adhesive bonded joints, Hopkinson bars, out-of-plane tests, dynamic compression properties, damage mechanisms, heat dissipation
Procedia PDF Downloads 2121119 Effect of Papaverine on Developmental Neurotoxicity: Neurosphere as in vitro Model
Authors: Mohammed Y. Elsherbeny, Mohamed Salama, Ahmed Lotfy, Hossam Fareed, Nora Mohammed
Abstract:
Background: Developmental neurotoxicity (DNT) entails the toxic effects imparted by various chemicals on brain during the early childhood when human brains are vulnerable during this period. DNT study in vivo cannot determine the effect of the neurotoxins, as it is not applicable, so using the neurosphere cells of lab animals as an alternative is applicable and time saving. Methods: Cell culture: Rat neural progenitor cells were isolated from rat embryos’ brain. The cortices were aseptically dissected out and the tissues were triturated. The dispersed tissues were allowed to settle. The supernatant was then transferred to a fresh tube and centrifuged. The pellet was placed in Hank’s balanced salt solution and cultured as free-floating neurospheres in proliferation medium. Differentiation was initiated by growth factor withdrawal in differentiation medium and plating onto a poly-d-lysine/ laminin matrix. Chemical Exposure: Neurospheres were treated for 2 weeks with papaverine in proliferation medium. Proliferation analyses: Spheres were cultured. After 0, 4, 5, 11 and 14 days, sphere size was determined by software analyses (CellProfiler, version 2.1; Broad Institute). Diameter of each neurosphere was measured and exported to excel file further to statistical analysis. Viability test: Trypsin-EDTA solution was added to neurospheres to dissociate neurospheres into single cells suspension, then viability evaluated by the Trypan Blue exclusion test. Result: As regards proliferation analysis and percentage of viable cells of papaverin treated groups: There was no significant change in cells proliferation compared to control at 0, 4, 5, 11 and 14 days with concentrations 1, 5 and 10 µM of papaverine, but there is a significant change in cell viability compared to control after 1 week and 2 weeks with the same concentrations of papaverine. Conclusion: Papaverine has toxic effect on viability of neural cell, not on their proliferation, so it may produce focal neural lesions not growth morphological changes.Keywords: developmental neurotoxicity, neurotoxin, papaverine, neuroshperes
Procedia PDF Downloads 3841118 Use of Giant Magneto Resistance Sensors to Detect Micron to Submicron Biologic Objects
Authors: Manon Giraud, Francois-Damien Delapierre, Guenaelle Jasmin-Lebras, Cecile Feraudet-Tarisse, Stephanie Simon, Claude Fermon
Abstract:
Early diagnosis or detection of harmful substances at low level is a growing field of high interest. The ideal test should be cheap, easy to use, quick, reliable, specific, and with very low detection limit. Combining the high specificity of antibodies-functionalized magnetic beads used to immune-capture biologic objects and the high sensitivity of a GMR-based sensors, it is possible to even detect these biologic objects one by one, such as a cancerous cell, a bacteria or a disease biomarker. The simplicity of the detection process makes its use possible even for untrained staff. Giant Magneto Resistance (GMR) is a recently discovered effect consisting in the electrical resistance modification of some conductive layers when exposed to a magnetic field. This effect allows the detection of very low variations of magnetic field (typically a few tens of nanoTesla). Magnetic nanobeads coated with antibodies targeting the analytes are mixed with a biological sample (blood, saliva) and incubated for 45 min. Then the mixture is injected in a very simple microfluidic chip and circulates above a GMR sensor that detects changes in the surrounding magnetic field. Magnetic particles do not create a field sufficient to be detected. Therefore, only the biological objects surrounded by several antibodies-functionalized magnetic beads (that have been captured by the complementary antigens) are detected when they move above the sensor. Proof of concept has been carried out on NS1 mouse cancerous cells diluted in PBS which have been bonded to magnetic 200nm particles. Signals were detected in cells-containing samples while none were recorded for negative controls. Binary response was hence assessed for this first biological model. The precise quantification of the analytes and its detection in highly diluted solution is the step now in progress.Keywords: early diagnosis, giant magnetoresistance, lab-on-a-chip, submicron particle
Procedia PDF Downloads 2481117 Views and Experiences of Medical Students of Kerman University of Medical Sciences on Facilitators and Inhibitators of Quality of Education in the Clinical Education System in 2021
Authors: Hossein Ghaedamini, Salman Farahbakhsh, Alireza Amirbeigi, Zahra Saghafi, Salman Daneshi, Alireza Ghaedamini
Abstract:
Background: Assessing the challenges of clinical education of medical students is one of the most important and sensitive parts of medical education. The aim of this study was to investigate the views and experiences of Kerman medical students on the factors that facilitate and inhibit the quality of clinical education. Materials and Methods: This research was qualitative and used a phenomenological approach. The study population included medical interns of Kerman University of Medical Sciences in 1400. The method of data collection was in-depth interviews with participants. Data were encoded and analyzed by Claizey stepwise model. Results: First, about 540 primary codes were extracted in the form of two main themes (facilitators and inhibitors) and 10 sub-themes including providing motivational models and creating interest in interns, high scientific level of professors and the appropriate quality of their teaching, the use of technology in the clinical education process, delegating authority and freedom of action and more responsibilities to interns, inappropriate treatment of some officials, professors, assistants and department staff with their interns, inadequate educational programming, lack of necessary cooperation and providing inappropriate treatment by clinical training experts for interns, inadequate evaluation method in clinical training for interns, poor quality mornings, the unefficiency of grand rounds, the inappropriate way of evaluating clinical training for interns, the lack of suitable facilities and conditions with the position of a medical intern, and the hardwork of some departments were categorized. Conclusion: Clinical education is always mixed with special principles and subtleties, and special attention to facilitators and inhibitors in this process has an important role in improving its quality.Keywords: clinical education, medical students, qualitative study, education
Procedia PDF Downloads 98