Search results for: nappe flow
169 Efficient Computer-Aided Design-Based Multilevel Optimization of the LS89
Authors: A. Chatel, I. S. Torreguitart, T. Verstraete
Abstract:
The paper deals with a single point optimization of the LS89 turbine using an adjoint optimization and defining the design variables within a CAD system. The advantage of including the CAD model in the design system is that higher level constraints can be imposed on the shape, allowing the optimized model or component to be manufactured. However, CAD-based approaches restrict the design space compared to node-based approaches where every node is free to move. In order to preserve a rich design space, we develop a methodology to refine the CAD model during the optimization and to create the best parameterization to use at each time. This study presents a methodology to progressively refine the design space, which combines parametric effectiveness with a differential evolutionary algorithm in order to create an optimal parameterization. In this manuscript, we show that by doing the parameterization at the CAD level, we can impose higher level constraints on the shape, such as the axial chord length, the trailing edge radius and G2 geometric continuity between the suction side and pressure side at the leading edge. Additionally, the adjoint sensitivities are filtered out and only smooth shapes are produced during the optimization process. The use of algorithmic differentiation for the CAD kernel and grid generator allows computing the grid sensitivities to machine accuracy and avoid the limited arithmetic precision and the truncation error of finite differences. Then, the parametric effectiveness is computed to rate the ability of a set of CAD design parameters to produce the design shape change dictated by the adjoint sensitivities. During the optimization process, the design space is progressively enlarged using the knot insertion algorithm which allows introducing new control points whilst preserving the initial shape. The position of the inserted knots is generally assumed. However, this assumption can hinder the creation of better parameterizations that would allow producing more localized shape changes where the adjoint sensitivities dictate. To address this, we propose using a differential evolutionary algorithm to maximize the parametric effectiveness by optimizing the location of the inserted knots. This allows the optimizer to gradually explore larger design spaces and to use an optimal CAD-based parameterization during the course of the optimization. The method is tested on the LS89 turbine cascade and large aerodynamic improvements in the entropy generation are achieved whilst keeping the exit flow angle fixed. The trailing edge and axial chord length, which are kept fixed as manufacturing constraints. The optimization results show that the multilevel optimizations were more efficient than the single level optimization, even though they used the same number of design variables at the end of the multilevel optimizations. Furthermore, the multilevel optimization where the parameterization is created using the optimal knot positions results in a more efficient strategy to reach a better optimum than the multilevel optimization where the position of the knots is arbitrarily assumed.Keywords: adjoint, CAD, knots, multilevel, optimization, parametric effectiveness
Procedia PDF Downloads 116168 Plasma Chemical Gasification of Solid Fuel with Mineral Mass Processing
Authors: V. E. Messerle, O. A. Lavrichshev, A. B. Ustimenko
Abstract:
Currently and in the foreseeable future (up to 2100), the global economy is oriented to the use of organic fuel, mostly, solid fuels, the share of which constitutes 40% in the generation of electric power. Therefore, the development of technologies for their effective and environmentally friendly application represents a priority problem nowadays. This work presents the results of thermodynamic and experimental investigations of plasma technology for processing of low-grade coals. The use of this technology for producing target products (synthesis gas, hydrogen, technical carbon, and valuable components of mineral mass of coals) meets the modern environmental and economic requirements applied to basic industrial sectors. The plasma technology of coal processing for the production of synthesis gas from the coal organic mass (COM) and valuable components from coal mineral mass (CMM) is highly promising. Its essence is heating the coal dust by reducing electric arc plasma to the complete gasification temperature, when the COM converts into synthesis gas, free from particles of ash, nitrogen oxides and sulfur. At the same time, oxides of the CMM are reduced by the carbon residue, producing valuable components, such as technical silicon, ferrosilicon, aluminum and carbon silicon, as well as microelements of rare metals, such as uranium, molybdenum, vanadium, titanium. Thermodynamic analysis of the process was made using a versatile computation program TERRA. Calculations were carried out in the temperature range 300 - 4000 K and a pressure of 0.1 MPa. Bituminous coal with the ash content of 40% and the heating value 16,632 kJ/kg was taken for the investigation. The gaseous phase of coal processing products includes, basically, a synthesis gas with a concentration of up to 99 vol.% at 1500 K. CMM components completely converts from the condensed phase into the gaseous phase at a temperature above 2600 K. At temperatures above 3000 K, the gaseous phase includes, basically, Si, Al, Ca, Fe, Na, and compounds of SiO, SiH, AlH, and SiS. The latter compounds dissociate into relevant elements with increasing temperature. Complex coal conversion for the production of synthesis gas from COM and valuable components from CMM was investigated using a versatile experimental plant the main element of which was plug and flow plasma reactor. The material and thermal balances helped to find the integral indicators for the process. Plasma-steam gasification of the low-grade coal with CMM processing gave the synthesis gas yield 95.2%, the carbon gasification 92.3%, and coal desulfurization 95.2%. The reduced material of the CMM was found in the slag in the form of ferrosilicon as well as silicon and iron carbides. The maximum reduction of the CMM oxides was observed in the slag from the walls of the plasma reactor in the areas with maximum temperatures, reaching 47%. The thusly produced synthesis gas can be used for synthesis of methanol, or as a high-calorific reducing gas instead of blast-furnace coke as well as power gas for thermal power plants. Reduced material of CMM can be used in metallurgy.Keywords: gasification, mineral mass, organic mass, plasma, processing, solid fuel, synthesis gas, valuable components
Procedia PDF Downloads 611167 Computational Team Dynamics and Interaction Patterns in New Product Development Teams
Authors: Shankaran Sitarama
Abstract:
New Product Development (NPD) is invariably a team effort and involves effective teamwork. NPD team has members from different disciplines coming together and working through the different phases all the way from conceptual design phase till the production and product roll out. Creativity and Innovation are some of the key factors of successful NPD. Team members going through the different phases of NPD interact and work closely yet challenge each other during the design phases to brainstorm on ideas and later converge to work together. These two traits require the teams to have a divergent and a convergent thinking simultaneously. There needs to be a good balance. The team dynamics invariably result in conflicts among team members. While some amount of conflict (ideational conflict) is desirable in NPD teams to be creative as a group, relational conflicts (or discords among members) could be detrimental to teamwork. Team communication truly reflect these tensions and team dynamics. In this research, team communication (emails) between the members of the NPD teams is considered for analysis. The email communication is processed through a semantic analysis algorithm (LSA) to analyze the content of communication and a semantic similarity analysis to arrive at a social network graph that depicts the communication amongst team members based on the content of communication. The amount of communication (content and not frequency of communication) defines the interaction strength between the members. Social network adjacency matrix is thus obtained for the team. Standard social network analysis techniques based on the Adjacency Matrix (AM) and Dichotomized Adjacency Matrix (DAM) based on network density yield network graphs and network metrics like centrality. The social network graphs are then rendered for visual representation using a Metric Multi-Dimensional Scaling (MMDS) algorithm for node placements and arcs connecting the nodes (representing team members) are drawn. The distance of the nodes in the placement represents the tie-strength between the members. Stronger tie-strengths render nodes closer. Overall visual representation of the social network graph provides a clear picture of the team’s interactions. This research reveals four distinct patterns of team interaction that are clearly identifiable in the visual representation of the social network graph and have a clearly defined computational scheme. The four computational patterns of team interaction defined are Central Member Pattern (CMP), Subgroup and Aloof member Pattern (SAP), Isolate Member Pattern (IMP), and Pendant Member Pattern (PMP). Each of these patterns has a team dynamics implication in terms of the conflict level in the team. For instance, Isolate member pattern, clearly points to a near break-down in communication with the member and hence a possible high conflict level, whereas the subgroup or aloof member pattern points to a non-uniform information flow in the team and some moderate level of conflict. These pattern classifications of teams are then compared and correlated to the real level of conflict in the teams as indicated by the team members through an elaborate self-evaluation, team reflection, feedback form and results show a good correlation.Keywords: team dynamics, team communication, team interactions, social network analysis, sna, new product development, latent semantic analysis, LSA, NPD teams
Procedia PDF Downloads 73166 A 500 MWₑ Coal-Fired Power Plant Operated under Partial Oxy-Combustion: Methodology and Economic Evaluation
Authors: Fernando Vega, Esmeralda Portillo, Sara Camino, Benito Navarrete, Elena Montavez
Abstract:
The European Union aims at strongly reducing their CO₂ emissions from energy and industrial sector by 2030. The energy sector contributes with more than two-thirds of the CO₂ emission share derived from anthropogenic activities. Although efforts are mainly focused on the use of renewables by energy production sector, carbon capture and storage (CCS) remains as a frontline option to reduce CO₂ emissions from industrial process, particularly from fossil-fuel power plants and cement production. Among the most feasible and near-to-market CCS technologies, namely post-combustion and oxy-combustion, partial oxy-combustion is a novel concept that can potentially reduce the overall energy requirements of the CO₂ capture process. This technology consists in the use of higher oxygen content in the oxidizer that should increase the CO₂ concentration of the flue gas once the fuel is burnt. The CO₂ is then separated from the flue gas downstream by means of a conventional CO₂ chemical absorption process. The production of a higher CO₂ concentrated flue gas should enhance the CO₂ absorption into the solvent, leading to further reductions of the CO₂ separation performance in terms of solvent flow-rate, equipment size, and energy penalty related to the solvent regeneration. This work evaluates a portfolio of CCS technologies applied to fossil-fuel power plants. For this purpose, an economic evaluation methodology was developed in detail to determine the main economical parameters for CO₂ emission removal such as the levelized cost of electricity (LCOE) and the CO₂ captured and avoided costs. ASPEN Plus™ software was used to simulate the main units of power plant and solve the energy and mass balance. Capital and investment costs were determined from the purchased cost of equipment, also engineering costs and project and process contingencies. The annual capital cost and operating and maintenance costs were later obtained. A complete energy balance was performed to determine the net power produced in each case. The baseline case consists of a supercritical 500 MWe coal-fired power plant using anthracite as a fuel without any CO₂ capture system. Four cases were proposed: conventional post-combustion capture, oxy-combustion and partial oxy-combustion using two levels of oxygen-enriched air (40%v/v and 75%v/v). CO₂ chemical absorption process using monoethanolamine (MEA) was used as a CO₂ separation process whereas the O₂ requirement was achieved using a conventional air separation unit (ASU) based on Linde's cryogenic process. Results showed a reduction of 15% of the total investment cost of the CO₂ separation process when partial oxy-combustion was used. Oxygen-enriched air production also reduced almost half the investment costs required for ASU in comparison with oxy-combustion cases. Partial oxy-combustion has a significant impact on the performance of both CO₂ separation and O₂ production technologies, and it can lead to further energy reductions using new developments on both CO₂ and O₂ separation processes.Keywords: carbon capture, cost methodology, economic evaluation, partial oxy-combustion
Procedia PDF Downloads 152165 Fischer Tropsch Synthesis in Compressed Carbon Dioxide with Integrated Recycle
Authors: Kanchan Mondal, Adam Sims, Madhav Soti, Jitendra Gautam, David Carron
Abstract:
Fischer-Tropsch (FT) synthesis is a complex series of heterogeneous reactions between CO and H2 molecules (present in the syngas) on the surface of an active catalyst (Co, Fe, Ru, Ni, etc.) to produce gaseous, liquid, and waxy hydrocarbons. This product is composed of paraffins, olefins, and oxygenated compounds. The key challenge in applying the Fischer-Tropsch process to produce transportation fuels is to make the capital and production costs economically feasible relative to the comparative cost of existing petroleum resources. To meet this challenge, it is imperative to enhance the CO conversion while maximizing carbon selectivity towards the desired liquid hydrocarbon ranges (i.e. reduction in CH4 and CO2 selectivities) at high throughputs. At the same time, it is equally essential to increase the catalyst robustness and longevity without sacrificing catalyst activity. This paper focuses on process development to achieve the above. The paper describes the influence of operating parameters on Fischer Tropsch synthesis (FTS) from coal derived syngas in supercritical carbon dioxide (ScCO2). In addition, the unreacted gas and solvent recycle was incorporated and the effect of unreacted feed recycle was evaluated. It was expected that with the recycle, the feed rate can be increased. The increase in conversion and liquid selectivity accompanied by the production of narrower carbon number distribution in the product suggest that higher flow rates can and should be used when incorporating exit gas recycle. It was observed that this process was capable of enhancing the hydrocarbon selectivity (nearly 98 % CO conversion), reducing improving the carbon efficiency from 17 % to 51 % in a once through process and further converting 16 % CO2 to liquid with integrated recycle of the product gas stream and increasing the life of the catalyst. Catalyst robustness enhancement has been attributed to the absorption of heat of reaction by the compressed CO2 which reduced the formation of hotspots and the dissolution of waxes by the CO2 solvent which reduced the blinding of active sites. In addition, the recycling the product gas stream reduced the reactor footprint to one-fourth of the once through size and product fractionation utilizing the solvent effects of supercritical CO2 were realized. In addition to the negative CO2 selectivities, methane production was also inhibited and was limited to less than 1.5%. The effect of the process conditions on the life of the catalysts will also be presented. Fe based catalysts are known to have a high proclivity for producing CO2 during FTS. The data of the product spectrum and selectivity on Co and Fe-Co based catalysts as well as those obtained from commercial sources will also be presented. The measurable decision criteria were the increase in CO conversion at H2:CO ratio of 1:1 (as commonly found in coal gasification product stream) in supercritical phase as compared to gas phase reaction, decrease in CO2 and CH4 selectivity, overall liquid product distribution, and finally an increase in the life of the catalysts.Keywords: carbon efficiency, Fischer Tropsch synthesis, low GHG, pressure tunable fractionation
Procedia PDF Downloads 240164 ReactorDesign App: An Interactive Software for Self-Directed Explorative Learning
Authors: Chia Wei Lim, Ning Yan
Abstract:
The subject of reactor design, dealing with the transformation of chemical feedstocks into more valuable products, constitutes the central idea of chemical engineering. Despite its importance, the way it is taught to chemical engineering undergraduates has stayed virtually the same over the past several decades, even as the chemical industry increasingly leans towards the use of software for the design and daily monitoring of chemical plants. As such, there has been a widening learning gap as chemical engineering graduates transition from university to the industry since they are not exposed to effective platforms that relate the fundamental concepts taught during lectures to industrial applications. While the success of technology enhanced learning (TEL) has been demonstrated in various chemical engineering subjects, TELs in the teaching of reactor design appears to focus on the simulation of reactor processes, as opposed to arguably more important ideas such as the selection and optimization of reactor configuration for different types of reactions. This presents an opportunity for us to utilize the readily available easy-to-use MATLAB App platform to create an educational tool to aid the learning of fundamental concepts of reactor design and to link these concepts to the industrial context. Here, interactive software for the learning of reactor design has been developed to narrow the learning gap experienced by chemical engineering undergraduates. Dubbed the ReactorDesign App, it enables students to design reactors involving complex design equations for industrial applications without being overly focused on the tedious mathematical steps. With the aid of extensive visualization features, the concepts covered during lectures are explicitly utilized, allowing students to understand how these fundamental concepts are applied in the industrial context and equipping them for their careers. In addition, the software leverages the easily accessible MATLAB App platform to encourage self-directed learning. It is useful for reinforcing concepts taught, complementing homework assignments, and aiding exam revision. Accordingly, students are able to identify any lapses in understanding and clarify them accordingly. In terms of the topics covered, the app incorporates the design of different types of isothermal and non-isothermal reactors, in line with the lecture content and industrial relevance. The main features include the design of single reactors, such as batch reactors (BR), continuously stirred tank reactors (CSTR), plug flow reactors (PFR), and recycle reactors (RR), as well as multiple reactors consisting of any combination of ideal reactors. A version of the app, together with some guiding questions to aid explorative learning, was released to the undergraduates taking the reactor design module. A survey was conducted to assess its effectiveness, and an overwhelmingly positive response was received, with 89% of the respondents agreeing or strongly agreeing that the app has “helped [them] with understanding the unit” and 87% of the respondents agreeing or strongly agreeing that the app “offers learning flexibility”, compared to the conventional lecture-tutorial learning framework. In conclusion, the interactive ReactorDesign App has been developed to encourage self-directed explorative learning of the subject and demonstrate the industrial applications of the taught design concepts.Keywords: explorative learning, reactor design, self-directed learning, technology enhanced learning
Procedia PDF Downloads 98163 Investigating the Influence of Solidification Rate on the Microstructural, Mechanical and Physical Properties of Directionally Solidified Al-Mg Based Multicomponent Eutectic Alloys Containing High Mg Alloys
Authors: Fatih Kılıç, Burak Birol, Necmettin Maraşlı
Abstract:
The directional solidification process is generally used for homogeneous compound production, single crystal growth, and refining (zone refining), etc. processes. The most important two parameters that control eutectic structures are temperature gradient and grain growth rate which are called as solidification parameters The solidification behavior and microstructure characteristics is an interesting topic due to their effects on the properties and performance of the alloys containing eutectic compositions. The solidification behavior of multicomponent and multiphase systems is an important parameter for determining various properties of these materials. The researches have been conducted mostly on the solidification of pure materials or alloys containing two phases. However, there are very few studies on the literature about multiphase reactions and microstructure formation of multicomponent alloys during solidification. Because of this situation, it is important to study the microstructure formation and the thermodynamical, thermophysical and microstructural properties of these alloys. The production process is difficult due to easy oxidation of magnesium and therefore, there is not a comprehensive study concerning alloys containing high Mg (> 30 wt.% Mg). With the increasing amount of Mg inside Al alloys, the specific weight decreases, and the strength shows a slight increase, while due to formation of β-Al8Mg5 phase, ductility lowers. For this reason, production, examination and development of high Mg containing alloys will initiate the production of new advanced engineering materials. The original value of this research can be described as obtaining high Mg containing (> 30% Mg) Al based multicomponent alloys by melting under vacuum; controlled directional solidification with various growth rates at a constant temperature gradient; and establishing relationship between solidification rate and microstructural, mechanical, electrical and thermal properties. Therefore, within the scope of this research, some > 30% Mg containing ternary or quaternary Al alloy compositions were determined, and it was planned to investigate the effects of directional solidification rate on the mechanical, electrical and thermal properties of these alloys. Within the scope of the research, the influence of the growth rate on microstructure parameters, microhardness, tensile strength, electrical conductivity and thermal conductivity of directionally solidified high Mg containing Al-32,2Mg-0,37Si; Al-30Mg-12Zn; Al-32Mg-1,7Ni; Al-32,2Mg-0,37Fe; Al-32Mg-1,7Ni-0,4Si; Al-33,3Mg-0,35Si-0,11Fe (wt.%) alloys with wide range of growth rate (50-2500 µm/s) and fixed temperature gradient, will be investigated. The work can be planned as; (a) directional solidification of Al-Mg based Al-Mg-Si, Al-Mg-Zn, Al-Mg-Ni, Al-Mg-Fe, Al-Mg-Ni-Si, Al-Mg-Si-Fe within wide range of growth rates (50-2500 µm/s) at a constant temperature gradient by Bridgman type solidification system, (b) analysis of microstructure parameters of directionally solidified alloys by using an optical light microscopy and Scanning Electron Microscopy (SEM), (c) measurement of microhardness and tensile strength of directionally solidified alloys, (d) measurement of electrical conductivity by four point probe technique at room temperature (e) measurement of thermal conductivity by linear heat flow method at room temperature.Keywords: directional solidification, electrical conductivity, high Mg containing multicomponent Al alloys, microhardness, microstructure, tensile strength, thermal conductivity
Procedia PDF Downloads 263162 Quantification of the Non-Registered Electrical and Electronic Equipment for Domestic Consumption and Enhancing E-Waste Estimation: A Case Study on TVs in Vietnam
Authors: Ha Phuong Tran, Feng Wang, Jo Dewulf, Hai Trung Huynh, Thomas Schaubroeck
Abstract:
The fast increase and complex components have made waste of electrical and electronic equipment (or e-waste) one of the most problematic waste streams worldwide. Precise information on its size on national, regional and global level has therefore been highlighted as prerequisite to obtain a proper management system. However, this is a very challenging task, especially in developing countries where both formal e-waste management system and necessary statistical data for e-waste estimation, i.e. data on the production, sale and trade of electrical and electronic equipment (EEE), are often lacking. Moreover, there is an inflow of non-registered electronic and electric equipment, which ‘invisibly’ enters the EEE domestic market and then is used for domestic consumption. The non-registration/invisibility and (in most of the case) illicit nature of this flow make it difficult or even impossible to be captured in any statistical system. The e-waste generated from it is thus often uncounted in current e-waste estimation based on statistical market data. Therefore, this study focuses on enhancing e-waste estimation in developing countries and proposing a calculation pathway to quantify the magnitude of the non-registered EEE inflow. An advanced Input-Out Analysis model (i.e. the Sale–Stock–Lifespan model) has been integrated in the calculation procedure. In general, Sale-Stock-Lifespan model assists to improve the quality of input data for modeling (i.e. perform data consolidation to create more accurate lifespan profile, model dynamic lifespan to take into account its changes over time), via which the quality of e-waste estimation can be improved. To demonstrate the above objectives, a case study on televisions (TVs) in Vietnam has been employed. The results show that the amount of waste TVs in Vietnam has increased four times since 2000 till now. This upward trend is expected to continue in the future. In 2035, a total of 9.51 million TVs are predicted to be discarded. Moreover, estimation of non-registered TV inflow shows that it might on average contribute about 15% to the total TVs sold on the Vietnamese market during the whole period of 2002 to 2013. To tackle potential uncertainties associated with estimation models and input data, sensitivity analysis has been applied. The results show that both estimations of waste and non-registered inflow depend on two parameters i.e. number of TVs used in household and the lifespan. Particularly, with a 1% increase in the TV in-use rate, the average market share of non-register inflow in the period 2002-2013 increases 0.95%. However, it decreases from 27% to 15% when the constant unadjusted lifespan is replaced by the dynamic adjusted lifespan. The effect of these two parameters on the amount of waste TV generation for each year is more complex and non-linear over time. To conclude, despite of remaining uncertainty, this study is the first attempt to apply the Sale-Stock-Lifespan model to improve the e-waste estimation in developing countries and to quantify the non-registered EEE inflow to domestic consumption. It therefore can be further improved in future with more knowledge and data.Keywords: e-waste, non-registered electrical and electronic equipment, TVs, Vietnam
Procedia PDF Downloads 249161 Monitoring and Improving Performance of Soil Aquifer Treatment System and Infiltration Basins Performance: North Gaza Emergency Sewage Treatment Plant as Case Study
Authors: Sadi Ali, Yaser Kishawi
Abstract:
As part of Palestine, Gaza Strip (365 km2 and 1.8 million habitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely cover the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is to find non-conventional water resource from treated wastewater to irrigate 1500 hectares and serves over 100,000 inhabitants. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line & 9 infiltration basins - IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme – RRS – to capture the spreading plume). Currently, phase A is functioning since Apr 2009. Since Apr 2009, a monitoring plan is conducted to monitor the infiltration rate (I.R.) of the 9 basins. Nearly 23 million m3 of partially treated wastewater were infiltrated up to Jun 2014. It is important to maintain an acceptable rate to allow the basins to handle the coming quantities (currently 10,000 m3 are pumped an infiltrated daily). The methodology applied was to review and analysis the collected data including the I.R.s, the WW quality and the drying-wetting schedule of the basins. One of the main findings is the relation between the Total Suspended Solids (TSS) at BLWWTP and the I.R. at the basins. Since April 2009, the basins scored an average I.R. of about 2.5 m/day. Since then the records showed a decreasing pattern of the average rate until it reached the lower value of 0.42 m/day in Jun 2013. This was accompanied with an increase of TSS (mg/L) concentration at the source reaching above 200 mg/L. The reducing of TSS concentration directly improved the I.R. (by cleaning the WW source ponds at Biet Lahia WWTP site). This was reflected in an improvement in I.R. in last 6 months from 0.42 m/day to 0.66 m/day then to nearly 1.0 m/day as the average of the last 3 months of 2013. The wetting-drying scheme of the basins was observed (3 days wetting and 7 days drying) besides the rainfall rates. Despite the difficulty to apply this scheme accurately a control of flow to each basin was applied to improve the I.R. The drying-wetting system affected the I.R. of individual basins, thus affected the overall system rate which was recorded and assessed. Also the ploughing activities at the infiltration basins as well were recommended at certain times to retain a certain infiltration level. This breaks the confined clogging layer which prevents the infiltration. It is recommended to maintain proper quality of WW infiltrated to ensure an acceptable performance of IBs. The continual maintenance of settling ponds at BLWWTP, continual ploughing of basins and applying soil treatment techniques at the IBs will improve the I.R.s. When the new WWTP functions a high standard effluent quality (TSS 20mg, BOD 20 mg/l and TN 15 mg/l) will be infiltrated, thus will enhance I.R.s of IBs due to lower organic load.Keywords: SAT, wastewater quality, soil remediation, North Gaza
Procedia PDF Downloads 236160 Seasonal Variability of Picoeukaryotes Community Structure Under Coastal Environmental Disturbances
Authors: Benjamin Glasner, Carlos Henriquez, Fernando Alfaro, Nicole Trefault, Santiago Andrade, Rodrigo De La Iglesia
Abstract:
A central question in ecology refers to the relative importance that local-scale variables have over community composition, when compared with regional-scale variables. In coastal environments, strong seasonal abiotic influence dominates these systems, weakening the impact of other parameters like micronutrients. After the industrial revolution, micronutrients like trace metals have increased in ocean as pollutants, with strong effects upon biotic entities and biological processes in coastal regions. Coastal picoplankton communities had been characterized as a cyanobacterial dominated fraction, but in recent years the eukaryotic component of this size fraction has gained relevance due to their high influence in carbon cycle, although, diversity patterns and responses to disturbances are poorly understood. South Pacific upwelling coastal environments represent an excellent model to study seasonal changes due to a strong influence in the availability of macro- and micronutrients between seasons. In addition, some well constrained coastal bays of this region have been subjected to strong disturbances due to trace metal inputs. In this study, we aim to compare the influence of seasonality and trace metals concentrations, on the community structure of planktonic picoeukaryotes. To describe seasonal patterns in the study area, satellite data in a 6 years time series and in-situ measurements with a traditional oceanographic approach such as CTDO equipment were performed. In addition, trace metal concentrations were analyzed trough ICP-MS analysis, for the same region. For biological data collection, field campaigns were performed in 2011-2012 and the picoplankton community was described by flow cytometry and taxonomical characterization with next-generation sequencing of ribosomal genes. The relation between the abiotic and biotic components was finally determined by multivariate statistical analysis. Our data show strong seasonal fluctuations in abiotic parameters such as photosynthetic active radiation and superficial sea temperature, with a clear differentiation of seasons. However, trace metal analysis allows identifying strong differentiation within the study area, dividing it into two zones based on trace metals concentration. Biological data indicate that there are no major changes in diversity but a significant fluctuation in evenness and community structure. These changes are related mainly with regional parameters, like temperature, but by analyzing the metal influence in picoplankton community structure, we identify a differential response of some plankton taxa to metal pollution. We propose that some picoeukaryotic plankton groups respond differentially to metal inputs, by changing their nutritional status and/or requirements under disturbances as a derived outcome of toxic effects and tolerance.Keywords: Picoeukaryotes, plankton communities, trace metals, seasonal patterns
Procedia PDF Downloads 176159 Impact of Climate Change on Irrigation and Hydropower Potential: A Case of Upper Blue Nile Basin in Western Ethiopia
Authors: Elias Jemal Abdella
Abstract:
The Blue Nile River is an important shared resource of Ethiopia, Sudan and also, because it is the major contributor of water to the main Nile River, Egypt. Despite the potential benefits of regional cooperation and integrated joint basin management, all three countries continue to pursue unilateral plans for development. Besides, there is great uncertainty about the likely impacts of climate change in water availability for existing as well as proposed irrigation and hydropower projects in the Blue Nile Basin. The main objective of this study is to quantitatively assess the impact of climate change on the hydrological regime of the upper Blue Nile basin, western Ethiopia. Three models were combined, a dynamic Coordinated Regional Climate Downscaling Experiment (CORDEX) regional climate model (RCM) that is used to determine climate projections for the Upper Blue Nile basin for Representative Concentration Pathways (RCPs) 4.5 and 8.5 greenhouse gas emissions scenarios for the period 2021-2050. The outputs generated from multimodel ensemble of four (4) CORDEX-RCMs (i.e., rainfall and temperature) were used as input to a Soil and Water Assessment Tool (SWAT) hydrological model which was setup, calibrated and validated with observed climate and hydrological data. The outputs from the SWAT model (i.e., projections in river flow) were used as input to a Water Evaluation and Planning (WEAP) water resources model which was used to determine the water resources implications of the changes in climate. The WEAP model was set-up to simulate three development scenarios. Current Development scenario was the existing water resource development situation, Medium-term Development scenario was planned water resource development that is expected to be commissioned (i.e. before 2025) and Long-term full Development scenario were all planned water resource development likely to be commissioned (i.e. before 2050). The projected change of mean annual temperature for period (2021 – 2050) in most of the basin are warmer than the baseline (1982 -2005) average in the range of 1 to 1.4oC, implying that an increase in evapotranspiration loss. Subbasins which already distressed from drought may endure to face even greater challenges in the future. Projected mean annual precipitation varies from subbasin to subbasin; in the Eastern, North Eastern and South western highland of the basin a likely increase of mean annual precipitation up to 7% whereas in the western lowland part of the basin mean annual precipitation projected to decrease by 3%. The water use simulation indicates that currently irrigation demand in the basin is 1.29 Bm3y-1 for 122,765 ha of irrigation area. By 2025, with new schemes being developed, irrigation demand is estimated to increase to 2.5 Bm3y-1 for 277,779 ha. By 2050, irrigation demand in the basin is estimated to increase to 3.4 Bm3y-1 for 372,779 ha. The hydropower generation simulation indicates that 98 % of hydroelectricity potential could be produced if all planned dams are constructed.Keywords: Blue Nile River, climate change, hydropower, SWAT, WEAP
Procedia PDF Downloads 357158 Anti-proliferative Activity and HER2 Receptor Expression Analysis of MCF-7 (Breast Cancer Cell) Cells by Plant Extract Coleus Barbatus (Andrew)
Authors: Anupalli Roja Rani, Pavithra Dasari
Abstract:
Background: Among several, breast cancer has emerged as the most common female cancer in developing countries. It is the most common cause of cancer-related deaths worldwide among women. It is a molecularly and clinically heterogeneous disease. Moreover, it is a hormone–dependent tumor in which estrogens can regulate the growth of breast cells by binding with estrogen receptors (ERs). Moreover, the use of natural products in cancer therapeutics is due to their properties of biocompatibility and less toxicity. Plants are the vast reservoirs for various bioactive compounds. Coleus barbatus (Lamiaceae) contains anticancer properties against several cancer cell lines. Method: In the present study, an attempt is being made to enrich the knowledge of the anticancer activity of pure compounds extracted from Coleus barbatus (Andrew). On human breast cancer cell lines MCF-7. Here in, we are assessing the antiproliferative activity of Coleus barbatus (Andrew) plant extracts against MCF 7 and also evaluating their toxicity in normal human mammary cell lines such as Human Mammary Epithelial Cells (HMEC). The active fraction of plant extract was further purified with the help of Flash chromatography, Medium Pressure Liquid Chromatography (MPLC) and preparative High-Performance Liquid Chromatography (HPLC). The structure of pure compounds will be elucidated by using modern spectroscopic methods like Nuclear magnetic resonance (NMR), Electrospray Ionisation Mass Spectrometry (ESI-MS) methods. Later, the growth inhibition morphological assessment of cancer cells and cell cycle analysis of purified compounds were assessed using FACS. The growth and progression of signaling molecules HER2, GRP78 was studied by secretion assay using ELISA and expression analysis by flow cytometry. Result: Cytotoxic effect against MCF-7 with IC50 values were derived from dose response curves, using six concentrations of twofold serially diluted samples, by SOFTMax Pro software (Molecular device) and respectively Ellipticine and 0.5% DMSO were used as a positive and negative control. Conclusion: The present study shows the significance of various bioactive compounds extracted from Coleus barbatus (Andrew) root material. It acts as an anti-proliferative and shows cytotoxic effects on human breast cancer cell lines MCF7. The plant extracts play an important role pharmacologically. The whole plant has been used in traditional medicine for decades and the studies done have authenticated the practice. Earlier, as described, the plant has been used in the ayurveda and homeopathy medicine. However, more clinical and pathological studies must be conducted to investigate the unexploited potential of the plant. These studies will be very useful for drug designing in the future.Keywords: coleus barbatus, HPLC, MPLC, NMR, MCF7, flash chromatograph, ESI-MS, FACS, ELISA.
Procedia PDF Downloads 117157 A Systematic Review of Forest School for Early Childhood Education in China: Lessons Learned from European Studies from a Perspective of Ecological System
Authors: Xiaoying Zhang
Abstract:
Forest school – an outdoor educational experience that is undertaken in an outdoor environment with trees – becomes an emerging field of early childhood education recently. In China, the benefits of natural outdoor education to children and young people’s wellness have raised attention. Although different types of outdoor-based activities have been involved in some pre-school of China, few study and practice have been conducted in terms of the notion of forest school. To comprehend the impact of forest school for children and young people, this study aims to systematically review articles on the topic of forest school in preschool education from an ecological perspective, i.e. from individual level (e.g., behavior and mental health) to microsystem level (e.g., the relationship between teachers and children) to ecosystem level. Based on PRISMA framework flow, using the key words of “Forest School” and “Early Childhood Education” for searching in Web-of-science database, a total of 33 articles were identified. Sample participants of 13 studies were not preschool children, five studies were not on forest school theme, and two literature review articles were excluded for further analysis. Finally, 13 articles were eligible for thematic analysis. According to Bronfenbrenner's ecological systems theory, there are some fingdings, on the individual level, current forest school studies are concerned about the children behavioral experience in forest school, how these experience may relate to their achievement or to develop children’s wellbeing/wellness, and how this type of learning experience may enhance children’s self-awareness on risk and safety issues. On the microsystem/mesosystem level, this review indicated that pedagogical development for forest school, risk perception from teachers and parents, social development between peers, and adult’s role in the participation of forest school were concerned, explored and discussed most frequently. On the macrosystem, the conceptualization of forest school is the key theme. Different forms of presentation in various countries with diverse cultures could provide various models of forest school education. However, there was no study investigating forest school on an ecosystem level. As for the potential benefits of physical health and mental wellness that results from forest school, it informs us to reflect the system of preschool education from the ecological perspective for Chinese children. For instance, most Chinese kindergartens ignored the significance of natural outdoor activities for children. Preschool education in China is strongly oriented by primary school system, which means pre-school children are expected to be trained as primary school students to do different subjects, such as math. Hardly any kindergarteners provide the opportunities for children and young people to take risks in a natural environment like forest school does. However, merely copying forest school model for a Chinese preschool education system will be less effective. This review of different level concerns could inform us that the localization the idea of forest school to adapt to a Chinese political, educational and cultural background. More detailed results and profound discussions will be presented in the full paper.Keywords: early childhood education, ecological system, education development prospects in China, forest school
Procedia PDF Downloads 157156 Optimization of Multi-Disciplinary Expertise and Resource for End-Stage Renal Failure (ESRF) Patient Care
Authors: Mohamed Naser Zainol, P. P. Angeline Song
Abstract:
Over the years, the profile of end-stage renal patients placed under The National Kidney Foundation Singapore (NKFS) dialysis program has evolved, with a gradual incline in the number of patients with behavior-related issues. With these challenging profiles, social workers and counsellors are often expected to oversee behavior management, through referrals from its partnering colleagues. Due to the segregation of tasks usually found in many hospital-based multi-disciplinary settings, social workers’ and counsellors’ interventions are often seen as an endpoint, limiting other stakeholders’ involvement that could otherwise be potentially crucial in managing such patients. While patients’ contact in local hospitals often leads to eventual discharge, NKFS patients are mostly long term. It is interesting to note that these patients are regularly seen by a team of professionals that includes doctors, nurses, dietitians, exercise specialists in NKFS. The dynamism of relationships presents an opportunity for any of these professionals to take ownership of their potentials in leading interventions that can be helpful to patients. As such, it is important to have a framework that incorporates the strength of these professionals and also channels empowerment across the multi-disciplinary team in working towards wholistic patient care. This paper would like to suggest a new framework for NKFS’s multi-disciplinary team, where the group synergy and dynamics are used to encourage ownership and promote empowerment. The social worker and counsellor use group work skills and his/her knowledge of its members’ strengths, to generate constructive solutions that are centered towards patient’s growth. Using key ideas from Karl’s Tomm Interpersonal Communications, the Communication Management of Meaning and Motivational Interviewing, the social worker and counsellor through a series of guided meeting with other colleagues, facilitates the transmission of understanding, responsibility sharing and tapping on team resources for patient care. As a result, the patient can experience personal and concerted approach and begins to flow in a direction that is helpful for him. Using seven case studies of identified patients with behavioral issues, the social worker and counsellor apply this framework for a period of six months. Patient’s overall improvement through interventions as a result of this framework are recorded using the AB single case design, with baseline measured three months before referral. Interviews with patients and their families, as well as other colleagues that are not part of the multi-disciplinary team are solicited at mid and end points to gather their experiences about patient’s progress as a by-product of this framework. Expert interviews will be conducted on each member of the multi-disciplinary team to study their observations and experience in using this new framework. Hence, this exploratory framework hopes to identify the inherent usefulness in managing patients with behavior related issues. Moreover, it would provide indicators in improving aspects of the framework when applied to a larger population.Keywords: behavior management, end-stage renal failure, satellite dialysis, multi-disciplinary team
Procedia PDF Downloads 153155 Case Report of Left Atrial Myxoma Diagnosed by Bedside Echocardiography
Authors: Anthony S. Machi, Joseph Minardi
Abstract:
We present a case report of left atrial myxoma diagnosed by bedside transesophageal (TEE) ultrasound. Left atrial myxoma is the most common benign cardiac tumor and can obstruct blood flow and cause valvular insufficiency. Common symptoms consist of dyspnea, pulmonary edema and other features of left heart failure in addition to thrombus release in the form of tumor fragments. The availability of bedside ultrasound equipment is essential for the quick diagnosis and treatment of various emergency conditions including cardiac neoplasms. A 48-year-old Caucasian female with a four-year history of an untreated renal mass and anemia presented to the ED with two months of sharp, intermittent, bilateral flank pain radiating into the abdomen. She also reported intermittent vomiting and constipation along with generalized body aches, night sweats, and 100-pound weight loss over last year. She had a CT in 2013 showing a 3 cm left renal mass and a second CT in April 2016 showing a 3.8 cm left renal mass along with a past medical history of diverticulosis, chronic bronchitis, dyspnea on exertion, uncontrolled hypertension, and hyperlipidemia. Her maternal family history is positive for breast cancer, hypertension, and Type II Diabetes. Her paternal family history is positive for stroke. She was a current everyday smoker with an 11 pack/year history. Alcohol and drug use were denied. Physical exam was notable for a Grade II/IV systolic murmur at the right upper sternal border, dyspnea on exertion without angina, and a tender left lower quadrant. Her vitals and labs were notable for a blood pressure of 144/96, heart rate of 96 beats per minute, pulse oximetry of 96%, hemoglobin of 7.6 g/dL, hypokalemia, hypochloremia, and multiple other abnormalities. Physicians ordered a CT to evaluate her flank pain which revealed a 7.2 x 8.9 x 10.5 cm mixed cystic/solid mass in the lower pole of the left kidney and a filling defect in the left atrium. Bedside TEE was ordered to follow up on the filling defect. TEE reported an ejection fraction of 60-65% and visualized a mobile 6 x 3 cm mass in the left atrium attached to the interatrial septum extending into the mitral valve. Cardiothoracic Surgery and Urology were consulted and confirmed a diagnosis of left atrial myxoma and clear cell renal cell carcinoma. The patient returned a week later due to worsening nausea and vomiting and underwent emergent nephrectomy, lymph node dissection, and colostomy due to a necrotic colon. Her condition declined over the next four months due to lung and brain metastases, infections, and other complications until she passed away.Keywords: bedside ultrasound, echocardiography, emergency medicine, left atrial myxoma
Procedia PDF Downloads 334154 Supplementing Aerial-Roving Surveys with Autonomous Optical Cameras: A High Temporal Resolution Approach to Monitoring and Estimating Effort within a Recreational Salmon Fishery in British Columbia, Canada
Authors: Ben Morrow, Patrick O'Hara, Natalie Ban, Tunai Marques, Molly Fraser, Christopher Bone
Abstract:
Relative to commercial fisheries, recreational fisheries are often poorly understood and pose various challenges for monitoring frameworks. In British Columbia (BC), Canada, Pacific salmon are heavily targeted by recreational fishers while also being a key source of nutrient flow and crucial prey for a variety of marine and terrestrial fauna, including endangered Southern Resident killer whales (Orcinus orca). Although commercial fisheries were historically responsible for the majority of salmon retention, recreational fishing now comprises both greater effort and retention. The current monitoring scheme for recreational salmon fisheries involves aerial-roving creel surveys. However, this method has been identified as costly and having low predictive power as it is often limited to sampling fragments of fluid and temporally dynamic fisheries. This study used imagery from two shore-based autonomous cameras in a highly active recreational fishery around Sooke, BC, and evaluated their efficacy in supplementing existing aerial-roving surveys for monitoring a recreational salmon fishery. This study involved continuous monitoring and high temporal resolution (over one million images analyzed in a single fishing season), using a deep learning-based vessel detection algorithm and a custom image annotation tool to efficiently thin datasets. This allowed for the quantification of peak-season effort from a busy harbour, species-specific retention estimates, high levels of detected fishing events at a nearby popular fishing location, as well as the proportion of the fishery management area represented by cameras. Then, this study demonstrated how it could substantially enhance the temporal resolution of a fishery through diel activity pattern analyses, scaled monthly to visualize clusters of activity. This work also highlighted considerable off-season fishing detection, currently unaccounted for in the existing monitoring framework. These results demonstrate several distinct applications of autonomous cameras for providing enhanced detail currently unavailable in the current monitoring framework, each of which has important considerations for the managerial allocation of resources. Further, the approach and methodology can benefit other studies that apply shore-based camera monitoring, supplement aerial-roving creel surveys to improve fine-scale temporal understanding, inform the optimal timing of creel surveys, and improve the predictive power of recreational stock assessments to preserve important and endangered fish species.Keywords: cameras, monitoring, recreational fishing, stock assessment
Procedia PDF Downloads 126153 Monitoring and Improving Performance of Soil Aquifer Treatment System and Infiltration Basins of North Gaza Emergency Sewage Treatment Plant as Case Study
Authors: Sadi Ali, Yaser Kishawi
Abstract:
As part of Palestine, Gaza Strip (365 km2 and 1.8 million habitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely covers the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is to find non-conventional water resource from treated wastewater to irrigate 1500 hectares and serves over 100,000 inhabitants. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line & 9 infiltration basins - IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme – RRS – to capture the spreading plume). Currently, phase A is functioning since Apr 2009. Since Apr 2009, a monitoring plan is conducted to monitor the infiltration rate (I.R.) of the 9 basins. Nearly 23 million m3 of partially treated wastewater were infiltrated up to Jun 2014. It is important to maintain an acceptable rate to allow the basins to handle the coming quantities (currently 10,000 m3 are pumped an infiltrated daily). The methodology applied was to review and analysis the collected data including the I.R.s, the WW quality and the drying-wetting schedule of the basins. One of the main findings is the relation between the Total Suspended Solids (TSS) at BLWWTP and the I.R. at the basins. Since April 2009, the basins scored an average I.R. of about 2.5 m/day. Since then the records showed a decreasing pattern of the average rate until it reached the lower value of 0.42 m/day in Jun 2013. This was accompanied with an increase of TSS (mg/L) concentration at the source reaching above 200 mg/L. The reducing of TSS concentration directly improved the I.R. (by cleaning the WW source ponds at Biet Lahia WWTP site). This was reflected in an improvement in I.R. in last 6 months from 0.42 m/day to 0.66 m/day then to nearly 1.0 m/day as the average of the last 3 months of 2013. The wetting-drying scheme of the basins was observed (3 days wetting and 7 days drying) besides the rainfall rates. Despite the difficulty to apply this scheme accurately a control of flow to each basin was applied to improve the I.R. The drying-wetting system affected the I.R. of individual basins, thus affected the overall system rate which was recorded and assessed. Also the ploughing activities at the infiltration basins as well were recommended at certain times to retain a certain infiltration level. This breaks the confined clogging layer which prevents the infiltration. It is recommended to maintain proper quality of WW infiltrated to ensure an acceptable performance of IBs. The continual maintenance of settling ponds at BLWWTP, continual ploughing of basins and applying soil treatment techniques at the IBs will improve the I.R.s. When the new WWTP functions a high standard effluent quality (TSS 20mg, BOD 20 mg/l, and TN 15 mg/l) will be infiltrated, thus will enhance I.R.s of IBs due to lower organic load.Keywords: soil aquifer treatment, recovery and reuse scheme, infiltration basins, North Gaza
Procedia PDF Downloads 251152 The Effects of Bisphosphonates on Osteonecrosis of Jaw Bone: A Stem Cell Perspective
Authors: Huseyin Apdik, Aysegul Dogan, Selami Demirci, Ezgi Avsar Apdik, Fikrettin Sahin
Abstract:
Mesenchymal stem cells (MSCs) are crucial cell types for bone maintenance and growth along with resident bone progenitor cells providing bone tissue integrity during osteogenesis and skeletal growth. Any deficiency in this regulation would result in vital bone diseases. Of those, osteoporosis, characterized by a reduction in bone mass and mineral density, is a critical skeletal disease for especially elderly people. The commonly used drugs for the osteoporosis treatment are bisphosphonates (BPs). The most prominent role of BPs is to prevent bone resorption arisen from high osteoclast activity. However, administrations of bisphosphonates may also cause bisphosphonate-induced osteonecrosis of the jaw (BIONJ). Up to the present, the researchers have proposed several circumstances for BIONJ. However, effects of long-term and/or high dose usage of BPs on stem cell’s proliferation, survival, differentiation or maintenance capacity have not been evaluated yet. The present study will be held to; figure out BPs’ effects on MSCs in vitro in the aspect of cell proliferation and toxicity, migration, angiogenic activity, lineage specific gene and protein expression levels, mesenchymal stem cell properties and potential signaling pathways affected by BP treatment. Firstly, mesenchymal stem cell characteristics of Dental Pulp Stem Cells (DPSCs) and Periodontal Ligament Stem Cells (PDLSCs) were proved using flow cytometry analysis. Cell viability analysis was completed to determine the cytotoxic effects of BPs (Zoledronate (Zol), Alendronate (Ale) and Risedronate (Ris)) on DPSCs and PDLSCs by the 3-(4,5-di-methyl-thiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium (MTS) assay. Non-toxic concentrations of BPs were determined at 24 h under growth condition, and at 21 days under osteogenic differentiation condition for both cells. The scratch assay was performed to evaluate their migration capacity under the usage of determined of BPs concentrations at 24 h. The results revealed that while the scratch closure is 70% in the control group for DPSCs, it was 57%, 66% and 66% in Zol, Ale and Ris groups, respectively. For PDLSs, while wound closure is 71% in control group, it was 65%, 66% and 66% in Zol, Ale and Ris groups, respectively. As future experiments, tube formation assay and aortic ring assay will be done to determinate angiogenesis abilities of DPSCs and PDLSCs treated with BPs. Expression levels of osteogenic differentiation marker genes involved in bone development will be determined using real time-polymerase change reaction (RT-PCR) assay and expression profiles of important proteins involved in osteogenesis will be evaluated using western blotting assay for osteogenically differentiated MSCs treated with or without BPs. In addition to these, von Kossa staining will be performed to measure calcium mineralization status of MSCs.Keywords: bisphosphonates, bisphosphonate-induced osteonecrosis of the jaw, mesenchymal stem cells, osteogenesis
Procedia PDF Downloads 265151 Effects of Oxidized LDL in M2 Macrophages: Implications in Atherosclerosis
Authors: Fernanda Gonçalves, Karla Alcântara, Vanessa Moura, Patrícia Nolasco, Jorge Kalil, Maristela Hernandez
Abstract:
Introduction: Atherosclerosis is a chronic disease where two striking features are observed: retention of lipids and inflammation. Understanding the interaction between immune cells and lipoproteins involved in atherogenesis are urgent challenges, since cardiovascular diseases are the leading cause of death worldwide. Macrophages are critical to the development of atherosclerotic plaques and in the perpetuation of inflammation in these lesions. These cells are also directly involved in unstable plaque rupture. Recently different populations of macrophages are being identified in atherosclerotic lesions. Although the presence of M2 macrophages (macrophages activated by the alternative pathway, eg. The IL-4) has been identified, the function of these cells in atherosclerosis is not yet defined. M2 macrophages have a high endocytic capacity, they promote remodeling of tissues and to have anti-inflammatory activity. However, in atherosclerosis, especially unstable plaques, severe inflammatory reaction, accumulation of cellular debris and intense degradation of the tissue is observed. Thus, it is possible that the M2 macrophages have altered function (phenotype) in atherosclerosis. Objective: Our aim is to evaluate if the presence of oxidized LDL alters the phenotype and function of M2 macrophages in vitro. Methods: For this, we will evaluate whether the addition of lipoprotein in M2 macrophages differentiated in vitro with IL -4 induces 1) a reduction in the secretion of anti-inflammatory cytokines (CBA and ELISA), 2) secretion of inflammatory cytokines (CBA and ELISA), 3) expression of cell activation markers (Flow cytometry), 4) alteration in gene expression of molecules adhesion and extracellular matrix (Real-Time PCR) and 5) Matrix degradation (confocal microscopy). Results: In oxLDL stimulated M2 macrophages cultures we did not find any differences in the expression of the cell surface markers tested, including: HLA-DR, CD80, CD86, CD206, CD163 and CD36. Also, cultures stimulated with oxLDL had similar phagocytic capacity when compared to unstimulated cells. However, in the supernatant of these cultures an increase in the secretion of the pro-inflammatory cytokine IL-8 was detected. No significant changes where observed in IL-6, IL-10, IL-12 and IL-1b levels. The culture supernatant also induced massive extracellular matrix (produced by mouse embryo fibroblast) filaments degradation. When evaluating the expression of 84 extracellular matrix and adhesion molecules genes, we observed that the stimulation of oxLDL in M2 macrophages decreased 47% of the genes and increased the expression of only 3% of the genes. In particular we noted that oxLDL inhibit the expression of 60% of the genes constituents of extracellular matrix and collagen expressed by these cells, including fibronectin1 and collagen VI. We also observed a decrease in the expression of matrix protease inhibitors, such as TIMP 2. On the opposite, the matricellular protein thrombospondin had a 12 fold increase in gene expression. In the presence of native LDL 90% of the genes had no altered expression. Conclusion: M2 macrophages stimulated with oxLDL secrete the pro-inflammatory cytokine IL-8, have an altered extracellular matrix constituents gene expression, and promote the degradation of extracellular matrix. M2 macrophages may contribute to the perpetuation of inflammation in atherosclerosis and to plaque rupture.Keywords: atherosclerosis, LDL, macrophages, m2
Procedia PDF Downloads 338150 i-Plastic: Surface and Water Column Microplastics From the Coastal North Eastern Atlantic (Portugal)
Authors: Beatriz Rebocho, Elisabete Valente, Carla Palma, Andreia Guilherme, Filipa Bessa, Paula Sobral
Abstract:
The global accumulation of plastic in the oceans is a growing problem. Plastic is transported from its source to the oceans via rivers, which are considered the main route for plastic particles from land-based sources to the ocean. These plastics undergo physical and chemical degradation resulting in microplastics. The i-Plastic project aims to understand and predict the dispersion, accumulation and impacts of microplastics (5 mm to 1 µm) and nano plastics (below 1 µm) in marine environments from the tropical and temperate land-ocean interface to the open ocean under distinct flow and climate regimes. Seasonal monitoring of the fluxes of microplastics was carried out in (three) coastal areas in Brazil, Portugal and Spain. The present work shows the first results of in-situ seasonal monitoring and mapping of microplastics in ocean waters between Ovar and Vieira de Leiria (Portugal), in which 43 surface water samples and 43 water column samples were collected in contrasting seasons (spring and autumn). The spring and autumn surface water samples were collected with a 300 µm and 150 µm pore neuston net, respectively. In both campaigns, water column samples were collected using a conical mesh with a 150 µm pore. The experimental procedure comprises the following steps: i) sieving by a metal sieve; ii) digestion with potassium hydroxide to remove the organic matter original from the sample matrix. After a filtration step, the content is retained on a membrane and observed under a stereomicroscope, and physical and chemical characterization (type, color, size, and polymer composition) of the microparticles is performed. Results showed that 84% and 88% of the surface water and water column samples were contaminated with microplastics, respectively. Surface water samples collected during the spring campaign averaged 0.35 MP.m-3, while surface water samples collected during autumn recorded 0.39 MP.m-3. Water column samples from the spring campaign had an average of 1.46 MP.m-3, while those from the autumn recorded 2.54 MP.m-3. In the spring, all microplastics found were fibers, predominantly black and blue. In autumn, the dominant particles found in the surface waters were fibers, while in the water column, fragments were dominant. In spring, the average size of surface water particles was 888 μm, while in the water column was 1063 μm. In autumn, the average size of surface and water column microplastics was 1333 μm and 1393 μm, respectively. The main polymers identified by Attenuated Total Reflectance (ATR) and micro-ATR Fourier Transform Infrared (FTIR) spectroscopy from all samples were low-density polyethylene (LDPE), polypropylene (PP), polyethylene terephthalate (PET), and polyvinyl chloride (PVC). The significant difference between the microplastic concentration in the water column between the two campaigns could be due to the remixing of the water masses that occurred that week due to the occurrence of a storm. This work presents preliminary results since the i-Plastic project is still in progress. These results will contribute to the understanding of the spatial and temporal dispersion and accumulation of microplastics in this marine environment.Keywords: microplastics, Portugal, Atlantic Ocean, water column, surface water
Procedia PDF Downloads 89149 Implementation of Language Policy in a Swedish Multicultural Early Childhood School: A Development Project
Authors: Carina Hermansson
Abstract:
This presentation focuses a development project aiming at developing and documenting the steps taken at a multilingual, multicultural K-5 school, with the aim to improve the achievement levels of the pupils by focusing language and literacy development across the schedule in a digital classroom, and in all units of the school. This pre-formulated aim, thus, may be said to adhere to neoliberal educational and accountability policies in terms of its focus on digital learning, learning results, and national curriculum standards. In particular the project aimed at improving the collaboration between the teachers, the leisure time unit, the librarians, the mother tongue teachers and bilingual study counselors. This is a school environment characterized by cultural, ethnic, linguistic, and professional pluralization. The overarching aims of the research project were to scrutinize and analyze the factors enabling and obstructing the implementation of the Language Policy in a digital classroom. Theoretical framework: We apply multi-level perspectives in the analyses inspired by Uljens’ ideas about interactive and interpersonal first order (teacher/students) and second order(principal/teachers and other staff) educational leadership as described within the framework of discursive institutionalism, when we try to relate the Language Policy, educational policy, and curriculum with the administrative processes. Methodology/research design: The development project is based on recurring research circles where teachers, leisure time assistants, mother tongue teachers and study counselors speaking the mother tongue of the pupils together with two researchers discuss their digital literacy practices in the classroom. The researchers have in collaboration with the principal developed guidelines for the work, expressed in a Language Policy document. In our understanding the document is, however, only a part of the concept, the actions of the personnel and their reflections on the practice constitute the major part of the development project. One and a half years out of three years have now passed and the project has met with a row of difficulties which shed light on factors of importance for the progress of the development project. Field notes and recordings from the research circles, a survey with the personnel, and recorded group interviews provide data on the progress of the project. Expected conclusions: The problems experienced deal with leadership, curriculum, interplay between aims, technology, contents and methods, the parents as customers taking their children to other schools, conflicting values, and interactional difficulties, that is, phenomena on different levels, ranging from school to a societal level, as for example teachers being substituted as a result of the marketization of schools. Also underlying assumptions from actors at different levels create obstacles. We find this study and the problems we are facing utterly important to share and discuss in an era with a steady flow of refugees arriving in the Nordic countries.Keywords: early childhood education, language policy, multicultural school, school development project
Procedia PDF Downloads 147148 Comparison between Bernardi’s Equation and Heat Flux Sensor Measurement as Battery Heat Generation Estimation Method
Authors: Marlon Gallo, Eduardo Miguel, Laura Oca, Eneko Gonzalez, Unai Iraola
Abstract:
The heat generation of an energy storage system is an essential topic when designing a battery pack and its cooling system. Heat generation estimation is used together with thermal models to predict battery temperature in operation and adapt the design of the battery pack and the cooling system to these thermal needs guaranteeing its safety and correct operation. In the present work, a comparison between the use of a heat flux sensor (HFS) for indirect measurement of heat losses in a cell and the widely used and simplified version of Bernardi’s equation for estimation is presented. First, a Li-ion cell is thermally characterized with an HFS to measure the thermal parameters that are used in a first-order lumped thermal model. These parameters are the equivalent thermal capacity and the thermal equivalent resistance of a single Li-ion cell. Static (when no current is flowing through the cell) and dynamic (making current flow through the cell) tests are conducted in which HFS is used to measure heat between the cell and the ambient, so thermal capacity and resistances respectively can be calculated. An experimental platform records current, voltage, ambient temperature, surface temperature, and HFS output voltage. Second, an equivalent circuit model is built in a Matlab-Simulink environment. This allows the comparison between the generated heat predicted by Bernardi’s equation and the HFS measurements. Data post-processing is required to extrapolate the heat generation from the HFS measurements, as the sensor records the heat released to the ambient and not the one generated within the cell. Finally, the cell temperature evolution is estimated with the lumped thermal model (using both HFS and Bernardi’s equation total heat generation) and compared towards experimental temperature data (measured with a T-type thermocouple). At the end of this work, a critical review of the results obtained and the possible mismatch reasons are reported. The results show that indirectly measuring the heat generation with HFS gives a more precise estimation than Bernardi’s simplified equation. On the one hand, when using Bernardi’s simplified equation, estimated heat generation differs from cell temperature measurements during charges at high current rates. Additionally, for low capacity cells where a small change in capacity has a great influence on the terminal voltage, the estimated heat generation shows high dependency on the State of Charge (SoC) estimation, and therefore open circuit voltage calculation (as it is SoC dependent). On the other hand, with indirect measuring the heat generation with HFS, the resulting error is a maximum of 0.28ºC in the temperature prediction, in contrast with 1.38ºC with Bernardi’s simplified equation. This illustrates the limitations of Bernardi’s simplified equation for applications where precise heat monitoring is required. For higher current rates, Bernardi’s equation estimates more heat generation and consequently, a higher predicted temperature. Bernardi´s equation accounts for no losses after cutting the charging or discharging current. However, HFS measurement shows that after cutting the current the cell continues generating heat for some time, increasing the error of Bernardi´s equation.Keywords: lithium-ion battery, heat flux sensor, heat generation, thermal characterization
Procedia PDF Downloads 402147 The Potential Role of Some Nutrients and Drugs in Providing Protection from Neurotoxicity Induced by Aluminium in Rats
Authors: Azza A. Ali, Abeer I. Abd El-Fattah, Shaimaa S. Hussein, Hanan A. Abd El-Samea, Karema Abu-Elfotuh
Abstract:
Background: Aluminium (Al) represents an environmental risk factor. Exposure to high levels of Al causes neurotoxic effects and different diseases. Vinpocetine is widely used to improve cognitive functions, it possesses memory-protective and memory-enhancing properties and has the ability to increase cerebral blood flow and glucose uptake. Cocoa bean represents a rich source of iron as well as a potent antioxidant. It can protect from the impact of free radicals, reduces stress as well as depression and promotes better memory and concentration. Wheatgrass is primarily used as a concentrated source of nutrients. It contains vitamins, minerals, carbohydrates, amino acids and possesses antioxidant and anti-inflammatory activities. Coenzyme Q10 (CoQ10) is an intracellular antioxidant and mitochondrial membrane stabilizer. It is effective in improving cognitive disorders and has been used as anti-aging. Zinc is a structural element of many proteins and signaling messenger that is released by neural activity at many central excitatory synapses. Objective: To study the role of some nutrients and drugs as Vinpocetine, Cocoa, Wheatgrass, CoQ10 and Zinc against neurotoxicity induced by Al in rats as well as to compare between their potency in providing protection. Methods: Seven groups of rats were used and received daily for three weeks AlCl3 (70 mg/kg, IP) for Al-toxicity model groups except for the control group which received saline. All groups of Al-toxicity model except one group (non-treated) were co-administered orally together with AlCl3 the following treatments; Vinpocetine (20mg/kg), Cocoa powder (24mg/kg), Wheat grass (100mg/kg), CoQ10 (200mg/kg) or Zinc (32mg/kg). Biochemical changes in the rat brain as acetyl cholinesterase (ACHE), Aβ, brain derived neurotrophic factor (BDNF), inflammatory mediators (TNF-α, IL-1β), oxidative parameters (MDA, SOD, TAC) were estimated for all groups besides histopathological examinations in different brain regions. Results: Neurotoxicity and neurodegenerations in the rat brain after three weeks of Al exposure were indicated by the significant increase in Aβ, ACHE, MDA, TNF-α, IL-1β, DNA fragmentation together with the significant decrease in SOD, TAC, BDNF and confirmed by the histopathological changes in the brain. On the other hand, co-administration of each of Vinpocetine, Cocoa, Wheatgrass, CoQ10 or Zinc together with AlCl3 provided protection against hazards of neurotoxicity and neurodegenerations induced by Al, their protection were indicated by the decrease in Aβ, ACHE, MDA, TNF-α, IL-1β, DNA fragmentation together with the increase in SOD, TAC, BDNF and confirmed by the histopathological examinations of different brain regions. Vinpocetine and Cocoa showed the most pronounced protection while Zinc provided the least protective effects than the other used nutrients and drugs. Conclusion: Different degrees of protection from neurotoxicity and neuronal degenerations induced by Al could be achieved through the co-administration of some nutrients and drugs during its exposure. Vinpocetine and Cocoa provided the most protection than Wheat grass, CoQ10 or Zinc which showed the least protective effects.Keywords: aluminum, neurotoxicity, vinpocetine, cocoa, wheat grass, coenzyme Q10, Zinc, rats
Procedia PDF Downloads 252146 A Technology of Hot Stamping and Welding of Carbon Reinforced Plastic Sheets Using High Electric Resistance
Authors: Tomofumi Kubota, Mitsuhiro Okayasu
Abstract:
In recent years, environmental problems and energy problems typified by global warming are intensifying, and transportation devices are required to reduce the weight of structural materials from the viewpoint of strengthening fuel efficiency regulations and energy saving. Carbon fiber reinforced plastic (CFRP) used in this research is attracting attention as a structural material to replace metallic materials. Among them, thermoplastic CFRP is expected to expand its application range in terms of recyclability and cost. High formability and weldability of the unidirectional CFRP sheets conducted by a proposed hot stamping process were proposed, in which the carbon fiber reinforced plastic sheets are heated by a designed technique. In this case, the CFRP sheets are heated by the high electric voltage applied through carbon fibers. In addition, the electric voltage was controlled by the area ratio of exposed carbon fiber on the sample surfaces. The lower exposed carbon fiber on the sample surface makes high electric resistance leading to the high sample temperature. In this case, the CFRP sheets can be heated to more than 150 °C. With the sample heating, the stamping and welding technologies can be carried out. By changing the sample temperature, the suitable stamping condition can be detected. Moreover, the proper welding connection of the CFRP sheets was proposed. In this study, we propose a fusion bonding technique using thermoplasticity, high current flow, and heating caused by electrical resistance. This technology uses the principle of resistance spot welding. In particular, the relationship between the carbon fiber exposure rate and the electrical resistance value that affect the bonding strength is investigated. In this approach, the mechanical connection using rivet is also conducted to make a comparison of the severity of welding. The change of connecting strength is reflected by the fracture mechanism. The low and high connecting strength are obtained for the separation of two CFRP sheets and fractured inside the CFRP sheet, respectively. In addition to the two fracture modes, micro-cracks in CFRP are also detected. This approach also includes mechanical connections using rivets to compare the severity of the welds. The change in bond strength is reflected by the destruction mechanism. Low and high bond strengths were obtained to separate the two CFRP sheets, each broken inside the CFRP sheets. In addition to the two failure modes, micro cracks in CFRP are also detected. In this research, from the relationship between the surface carbon fiber ratio and the electrical resistance value, it was found that different carbon fiber ratios had similar electrical resistance values. Therefore, we investigated which of carbon fiber and resin is more influential to bonding strength. As a result, the lower the carbon fiber ratio, the higher the bonding strength. And this is 50% better than the conventional average strength. This can be evaluated by observing whether the fracture mode is interface fracture or internal fracture.Keywords: CFRP, hot stamping, weliding, deforamtion, mechanical property
Procedia PDF Downloads 128145 Engineering Economic Analysis of Implementing a Materials Recovery Facility in Jamaica: A Green Industry Approach towards a Sustainable Developing Economy
Authors: Damian Graham, Ashleigh H. Hall, Damani R. Sulph, Michael A. James, Shawn B. Vassell
Abstract:
This paper assesses the design and feasibility of a Materials Recovery Facility (MRF) in Jamaica as a possible green industry approach to the nation’s economic and solid waste management problems. Jamaica is a developing nation that is vulnerable to climate change that can affect its blue economy and tourism on which it is heavily reliant. Jamaica’s National Solid Waste Management Authority (NSWMA) collects only a fraction of all the solid waste produced annually which is then transported to dumpsites. The remainder is either burnt by the population or disposed of illegally. These practices negatively impact the environment, threaten the sustainability of economic growth from blue economy and tourism and its waste management system is predominantly a cost centre. The implementation of an MRF could boost the manufacturing sector, contribute to economic growth, and be a catalyst in creating a green industry with multiple downstream value chains with supply chain linkages. Globally, there is a trend to reuse and recycle that created an international market for recycled solid waste. MRFs enable the efficient sorting of solid waste into desired recoverable materials thus providing a gateway for entrance to the international trading of recycled waste. Research into the current state and effort to improve waste management in Jamaica in contrast with the similar and more advanced territories are outlined. The study explores the concept of green industrialization and its applicability to vulnerable small state economies like Jamaica. The study highlights the possible contributions and benefits derived from MRFs as a seeding factory that can anchor the reverse and forward logistics of other green industries as part of a logistic-cantered economy. Further, the study showcases an engineering economic analysis that assesses the viability of the implementation of an MRF in Jamaica. This research outlines the potential cost of constructing and operating an MRF and provides a realistic cash flow estimate to establish a baseline for profitability. The approach considers quantitative and qualitative data, assumptions, and modelling using industrial engineering tools and techniques that are outlined. Techniques of facility planning, system analysis and operations research with a focus on linear programming techniques are expressed. Approaches to overcome some implementation challenges including policy, technology and public education are detailed. The results of this study present a reasonable judgment of the prospects of incorporating an MRF to improve Jamaica’s solid waste management and contribute to socioeconomic and environmental benefits and an alternate pathway for economic sustainability.Keywords: engineering-economic analysis, facility design, green industry, MRF, manufacturing, plant layout, solid-waste management, sustainability, waste disposal
Procedia PDF Downloads 232144 Numerical Analysis of NOₓ Emission in Staged Combustion for the Optimization of Once-Through-Steam-Generators
Authors: Adrien Chatel, Ehsan Askari Mahvelati, Laurent Fitschy
Abstract:
Once-Through-Steam-Generators are commonly used in the oil-sand industry in the heavy fuel oil extraction process. They are composed of three main parts: the burner, the radiant and convective sections. Natural gas is burned through staged diffusive flames stabilized by the burner. The heat generated by the combustion is transferred to the water flowing through the piping system in the radiant and convective sections. The steam produced within the pipes is then directed to the ground to reduce the oil viscosity and allow its pumping. With the rapid development of the oil-sand industry, the number of OTSG in operation has increased as well as the associated emissions of environmental pollutants, especially the Nitrous Oxides (NOₓ). To limit the environmental degradation, various international environmental agencies have established regulations on the pollutant discharge and pushed to reduce the NOₓ release. To meet these constraints, OTSG constructors have to rely on more and more advanced tools to study and predict the NOₓ emission. With the increase of the computational resources, Computational Fluid Dynamics (CFD) has emerged as a flexible tool to analyze the combustion and pollutant formation process. Moreover, to optimize the burner operating condition regarding the NOx emission, field characterization and measurements are usually accomplished. However, these kinds of experimental campaigns are particularly time-consuming and sometimes even impossible for industrial plants with strict operation schedule constraints. Therefore, the application of CFD seems to be more adequate in order to provide guidelines on the NOₓ emission and reduction problem. In the present work, two different software are employed to simulate the combustion process in an OTSG, namely the commercial software ANSYS Fluent and the open source software OpenFOAM. RANS (Reynolds-Averaged Navier–Stokes) equations combined with the Eddy Dissipation Concept to model the combustion and closed by the k-epsilon model are solved. A mesh sensitivity analysis is performed to assess the independence of the solution on the mesh. In the first part, the results given by the two software are compared and confronted with experimental data as a mean to assess the numerical modelling. Flame temperatures and chemical composition are used as reference fields to perform this validation. Results show a fair agreement between experimental and numerical data. In the last part, OpenFOAM is employed to simulate several operating conditions, and an Emission Characteristic Map of the combustion system is generated. The sources of high NOₓ production inside the OTSG are pointed and correlated to the physics of the flow. CFD is, therefore, a useful tool for providing an insight into the NOₓ emission phenomena in OTSG. Sources of high NOₓ production can be identified, and operating conditions can be adjusted accordingly. With the help of RANS simulations, an Emission Characteristics Map can be produced and then be used as a guide for a field tune-up.Keywords: combustion, computational fluid dynamics, nitrous oxides emission, once-through-steam-generators
Procedia PDF Downloads 118143 The Use of Vasopressin in the Management of Severe Traumatic Brain Injury: A Narrative Review
Authors: Nicole Selvi Hill, Archchana Radhakrishnan
Abstract:
Introduction: Traumatic brain injury (TBI) is a leading cause of mortality among trauma patients. In the management of TBI, the main principle is avoiding cerebral ischemia, as this is a strong determiner of neurological outcomes. The use of vasoactive drugs, such as vasopressin, has an important role in maintaining cerebral perfusion pressure to prevent secondary brain injury. Current guidelines do not suggest a preferred vasoactive drug to administer in the management of TBI, and there is a paucity of information on the therapeutic potential of vasopressin following TBI. Vasopressin is also an endogenous anti-diuretic hormone (AVP), and pathways mediated by AVP play a large role in the underlying pathological processes of TBI. This creates an overlap of discussion regarding the therapeutic potential of vasopressin following TBI. Currently, its popularity lies in vasodilatory and cardiogenic shock in the intensive care setting, with increasing support for its use in haemorrhagic and septic shock. Methodology: This is a review article based on a literature review. An electronic search was conducted via PubMed, Cochrane, EMBASE, and Google Scholar. The aim was to identify clinical studies looking at the therapeutic administration of vasopressin in severe traumatic brain injury. The primary aim was to look at the neurological outcome of patients. The secondary aim was to look at surrogate markers of cerebral perfusion measurements, such as cerebral perfusion pressure, cerebral oxygenation, and cerebral blood flow. Results: Eight papers were included in the final number. Three were animal studies; five were human studies, comprised of three case reports, one retrospective review of data, and one randomised control trial. All animal studies demonstrated the benefits of vasopressors in TBI management. One animal study showed the superiority of vasopressin in reducing intracranial pressure and increasing cerebral oxygenation over a catecholaminergic vasopressor, phenylephrine. All three human case reports were supportive of vasopressin as a rescue therapy in catecholaminergic-resistant hypotension. The retrospective review found vasopressin did not increase cerebral oedema in TBI patients compared to catecholaminergic vasopressors; and demonstrated a significant reduction in the requirements of hyperosmolar therapy in patients that received vasopressin. The randomised control trial results showed no significant differences in primary and secondary outcomes between TBI patients receiving vasopressin versus those receiving catecholaminergic vasopressors. Apart from the randomised control trial, the studies included are of low-level evidence. Conclusion: Studies favour vasopressin within certain parameters of cerebral function compared to control groups. However, the neurological outcomes of patient groups are not known, and animal study results are difficult to extrapolate to humans. It cannot be said with certainty whether vasopressin’s benefits stand above usage of other vasoactive drugs due to the weaknesses of the evidence. Further randomised control trials, which are larger, standardised, and rigorous, are required to improve knowledge in this field.Keywords: catecholamines, cerebral perfusion pressure, traumatic brain injury, vasopressin, vasopressors
Procedia PDF Downloads 69142 Photophysics and Torsional Dynamics of Thioflavin T in Deep Eutectic Solvents
Authors: Rajesh Kumar Gautam, Debabrata Seth
Abstract:
Thioflavin-T (ThT) play a key role of an important biologically active fluorescent sensor for amyloid fibrils. ThT molecule has been developed a method to detect the analysis of different type of diseases such as neurodegenerative disorders, Alzheimer’s, Parkinson’s, and type II diabetes. ThT was used as a fluorescent marker to detect the formation of amyloid fibril. In the presence of amyloid fibril, ThT becomes highly fluorescent. ThT undergoes twisting motion around C-C bonds of the two adjacent benzothiazole and dimethylaniline aromatic rings, which is predominantly affected by the micro-viscosity of the local environment. The present study articulates photophysics and torsional dynamics of biologically active molecule ThT in the presence of deep-eutectic solvents (DESs). DESs are environment-friendly, low cost and biodegradable alternatives to the ionic liquids. DES resembles ionic liquids, but the constituents of a DES include a hydrogen bond donor and acceptor species, in addition to ions. Due to the presence of the H-bonding network within a DES, it exhibits structural heterogeneity. Herein, we have prepared two different DESs by mixing urea with choline chloride and N, N-diethyl ethanol ammonium chloride at ~ 340 K. It was reported that deep eutectic mixture of choline chloride with urea gave a liquid with a freezing point of 12°C. We have experimented by taking two different concentrations of ThT. It was observed that at higher concentration of ThT (50 µM) it forms aggregates in DES. The photophysics of ThT as a function of temperature have been explored by using steady-state, and picoseconds time-resolved fluorescence emission spectroscopic techniques. From the spectroscopic analysis, we have observed that with rising temperature the fluorescence quantum yields and lifetime values of ThT molecule gradually decreases; this is the cumulative effect of thermal quenching and increase in the rate of the torsional rate constant. The fluorescence quantum yield and fluorescence lifetime decay values were always higher for DES-II (urea & N, N-diethyl ethanol ammonium chloride) than those for DES-I (urea & choline chloride). This was mainly due to the presence of structural heterogeneity of the medium. This was further confirmed by comparison with the activation energy of viscous flow with the activation energy of non-radiative decay. ThT molecule in less viscous media undergoes a very fast twisting process and leads to deactivation from the photoexcited state. In this system, the torsional motion increases with increasing temperature. We have concluded that beside bulk viscosity of the media, structural heterogeneity of the medium play crucial role to guide the photophysics of ThT in DESs. The analysis of the experimental data was carried out in the temperature range 288 ≤ T = 333K. The present articulate is to obtain an insight into the DESs as media for studying various photophysical processes of amyloid fibrils sensing molecule of ThT.Keywords: deep eutectic solvent, photophysics, Thioflavin T, the torsional rate constant
Procedia PDF Downloads 166141 Applying Napoleoni's 'Shell-State' Concept to Jihadist Organisations's Rise in Mali, Nigeria and Syria/Iraq, 2011-2015
Authors: Francesco Saverio Angiò
Abstract:
The Islamic State of Iraq and the Levant / Syria (ISIL/S), Al-Qaeda in the Islamic Maghreb (AQIM) and People Committed to the Propagation of the Prophet's Teachings and Jihad, also known as ‘Boko Haram’ (BH), have fought successfully against Syria and Iraq, Mali, Nigeria’s government, respectively. According to Napoleoni, the ‘shell-state’ concept can explain the economic dimension and the financing model of the ISIL insurgency. However, she argues that AQIM and BH did not properly plan their financial model. Consequently, her idea would not be suitable to these groups. Nevertheless, AQIM and BH’s economic performances and their (short) territorialisation suggest that their financing models respond to a well-defined strategy, which they were able to adapt to new circumstances. Therefore, Napoleoni’s idea of ‘shell-state’ can be applied to the three jihadist armed groups. In the last five years, together with other similar entities, ISIL/S, AQIM and BH have been fighting against governments with insurgent tactics and terrorism acts, conquering and ruling a quasi-state; a physical space they presented as legitimate territorial entity, thanks to a puritan version of the Islamic law. In these territories, they have exploited the traditional local economic networks. In addition, they have contributed to the development of legal and illegal transnational business activities. They have also established a justice system and created an administrative structure to supply services. Napoleoni’s ‘shell-state’ can describe the evolution of ISIL/S, AQIM and BH, which has switched from an insurgency to a proto or a quasi-state entity, enjoying a significant share of power over territories and populations. Napoleoni first developed and applied the ‘Shell-state’ concept to describe the nature of groups such as the Palestine Liberation Organisation (PLO), before using it to explain the expansion of ISIL. However, her original conceptualisation emphasises on the economic dimension of the rise of the insurgency, focusing on the ‘business’ model and the insurgents’ financing management skills, which permits them to turn into an organisation. However, the idea of groups which use, coordinate and grab some territorial economic activities (at the same time, encouraging new criminal ones), can also be applied to administrative, social, infrastructural, legal and military levels of their insurgency, since they contribute to transform the insurgency to the same extent the economic dimension does. In addition, according to Napoleoni’s view, the ‘shell-state’ prism is valid to understand the ISIL/S phenomenon, because the group has carefully planned their financial steps. Napoleoni affirmed that ISIL/S carries out activities in order to promote their conversion from a group relying on external sponsors to an entity that can penetrate and condition local economies. On the contrary, ‘shell-state’ could not be applied to AQIM or BH, which are acting more like smugglers. Nevertheless, despite its failure to control territories, as ISIL has been able to do, AQIM and BH have responded strategically to their economic circumstances and have defined specific dynamics to ensure a flow of stable funds. Therefore, Napoleoni’s theory is applicable.Keywords: shell-state, jihadist insurgency, proto or quasi-state entity economic planning, strategic financing
Procedia PDF Downloads 354140 Antimicrobial Properties of SEBS Compounds with Zinc Oxide and Zinc Ions
Authors: Douglas N. Simões, Michele Pittol, Vanda F. Ribeiro, Daiane Tomacheski, Ruth M. C. Santana
Abstract:
The increasing demand of thermoplastic elastomers is related to the wide range of applications, such as automotive, footwear, wire and cable industries, adhesives and medical devices, cell phones, sporting goods, toys and others. These materials are susceptible to microbial attack. Moisture and organic matter present in some areas (such as shower area and sink), provide favorable conditions for microbial proliferation, which contributes to the spread of diseases and reduces the product life cycle. Compounds based on SEBS copolymers, poly(styrene-b-(ethylene-co-butylene)-b-styrene, are a class of thermoplastic elastomers (TPE), fully recyclable and largely used in domestic appliances like bath mats and tooth brushes (soft touch). Zinc oxide and zinc ions loaded in personal and home care products have become common in the last years due to its biocidal effect. In that sense, the aim of this study was to evaluate the effect of zinc as antimicrobial agent in compounds based on SEBS/polypropylene/oil/ calcite for use as refrigerator seals (gaskets), bath mats and sink squeegee. Two zinc oxides from different suppliers (ZnO-Pe and ZnO-WR) and one masterbatch of zinc ions (M-Zn-ion) were used in proportions of 0%, 1%, 3% and 5%. The compounds were prepared using a co-rotating double screw extruder (L/D ratio of 40/1 and 16 mm screw diameter). The extrusion parameters were kept constant for all materials. Tests specimens were prepared using the injection molding machine. A compound with no antimicrobial additive (standard) was also tested. Compounds were characterized by physical (density), mechanical (hardness and tensile properties) and rheological properties (melt flow rate - MFR). The Japan Industrial Standard (JIS) Z 2801:2010 was applied to evaluate antibacterial properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The Brazilian Association of Technical Standards (ABNT) NBR 15275:2014 were used to evaluate antifungal properties against Aspergillus niger (A. niger), Aureobasidium pullulans (A. pullulans), Candida albicans (C. albicans), and Penicillium chrysogenum (P. chrysogenum). The microbiological assay showed a reduction over 42% in E. coli and over 49% in S. aureus population. The tests with fungi showed inconclusive results because the sample without zinc also demonstrated an inhibition of fungal development when tested against A. pullulans, C. albicans and P. chrysogenum. In addition, the zinc loaded samples showed worse results than the standard sample when tested against A. niger. The zinc addition did not show significant variation in mechanical properties. However, the density values increased with the rise in ZnO additives concentration, and had a little decrease in M-Zn-ion samples. Also, there were differences in the MFR results in all compounds compared to the standard.Keywords: antimicrobial, home device, SEBS, zinc
Procedia PDF Downloads 329