Search results for: informatics and computer science
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4691

Search results for: informatics and computer science

71 Social Media Governance in UK Higher Education Institutions

Authors: Rebecca Lees, Deborah Anderson

Abstract:

Whilst the majority of research into social media in education focuses on the applications for teaching and learning environments, this study looks at how such activities can be managed by investigating the current state of social media regulation within UK higher education. Social media has pervaded almost all aspects of higher education; from marketing, recruitment and alumni relations to both distance and classroom-based learning and teaching activities. In terms of who uses it and how it is used, social media is growing at an unprecedented rate, particularly amongst the target market for higher education. Whilst the platform presents opportunities not found in more traditional methods of communication and interaction, such as speed and reach, it also carries substantial risks that come with inappropriate use, lack of control and issues of privacy. Typically, organisations rely on the concept of a social contract to guide employee behaviour to conform to the expectations of that organisation. Yet, where academia and social media intersect applying the notion of a social contract to enforce governance may be problematic; firstly considering the emphasis on treating students as customers with a growing focus on the use and collection of satisfaction metrics; and secondly regarding the notion of academic’s freedom of speech, opinion and discussion, which is a long-held tradition of learning instruction. Therefore the need for sound governance procedures to support expectations over online behaviour is vital, especially when the speed and breadth of adoption of social media activities has in the past outrun organisations’ abilities to manage it. An analysis of the current level of governance was conducted by gathering relevant policies, guidelines and best practice documentation available online via internet search and institutional requests. The documents were then subjected to a content analysis in the second phase of this study to determine the approach taken by institutions to apply such governance. Documentation was separated according to audience, i.e.: applicable to staff, students or all users. Given many of these included guests and visitors to the institution within their scope being easily accessible was considered important. Yet, within the UK only about half of all education institutions had explicit social media governance documentation available online without requiring member access or considerable searching. Where they existed, the majority focused solely on employee activities and tended to be policy based rather than rooted in guidelines or best practices, or held a fallback position of governing online behaviour via implicit instructions within IT and computer regulations. Explicit instructions over expected online behaviours is therefore lacking within UK HE. Given the number of educational practices that now include significant online components, it is imperative that education organisations keep up to date with the progress of social media use. Initial results from the second phase of this study which analyses the content of the governance documentation suggests they require reading levels at or above the target audience, with some considerable variability in length and layout. Further analysis will add to this growing field of investigating social media governance within higher education.

Keywords: governance, higher education, policy, social media

Procedia PDF Downloads 166
70 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage

Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng

Abstract:

Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.

Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning

Procedia PDF Downloads 45
69 Utilization of Developed Single Sequence Repeats Markers for Dalmatian Pyrethrum (Tanacetum cinerariifolium) in Preliminary Genetic Diversity Study on Natural Populations

Authors: F. Varga, Z. Liber, J. Jakše, A. Turudić, Z. Šatović, I. Radosavljević, N. Jeran, M. Grdiša

Abstract:

Dalmatian pyrethrum (Tanacetum cinerariifolium (Trevir.) Sch. Bip.; Asteraceae), a source of the commercially dominant plant insecticide pyrethrin, is a species endemic to the eastern Adriatic. Genetic diversity of T. cinerariifolium was previously studied using amplified fragment length polymorphism (AFLP) markers. However, microsatellite markers (single sequence repeats - SSRs) are more informative because they are codominant, highly polymorphic, locus-specific, and more reproducible, and thus are most often used to assess the genetic diversity of plant species. Dalmatian pyrethrum is an outcrossing diploid (2n = 18) whose large genome size and high repeatability have prevented the success of the traditional approach to SSR markers development. The advent of next-generation sequencing combined with the specifically developed method recently enabled the development of, to the author's best knowledge, the first set of SSRs for genomic characterization of Dalmatian pyrethrum, which is essential from the perspective of plant genetic resources conservation. To evaluate the effectiveness of the developed SSR markers in genetic differentiation of Dalmatian pyrethrum populations, a preliminary genetic diversity study was conducted on 30 individuals from three geographically distinct natural populations in Croatia (northern Adriatic island of Mali Lošinj, southern Adriatic island of Čiovo, and Mount Biokovo) based on 12 SSR loci. Analysis of molecular variance (AMOVA) by randomization test with 10,000 permutations was performed in Arlequin 3.5. The average number of alleles per locus, observed and expected heterozygosity, probability of deviations from Hardy-Weinberg equilibrium, and inbreeding coefficient was calculated using GENEPOP 4.4. Genetic distance based on the proportion of common alleles (DPSA) was calculated using MICROSAT. Cluster analysis using the neighbor-joining method with 1,000 bootstraps was performed with PHYLIP to generate a dendrogram. The results of the AMOVA analysis showed that the total SSR diversity was 23% within and 77% between the three populations. A slight deviation from Hardy-Weinberg equilibrium was observed in the Mali Lošinj population. Allele richness ranged from 2.92 to 3.92, with the highest number of private alleles observed in the Mali Lošinj population (17). The average observed DPSA between 30 individuals was 0.557. The highest DPSA (0.875) was observed between several pairs of Dalmatian pyrethrum individuals from the Mali Lošinj and Mt. Biokovo populations, and the lowest between two individuals from the Čiovo population. Neighbor-joining trees, based on DPSA, grouped individuals into clusters according to their population affiliation. The separation of Mt. Biokovo clade was supported (bootstrap value 58%), which is consistent with the previous study on AFLP markers, where isolated populations from Mt. Biokovo differed from the rest of the populations. The developed SSR markers are an effective tool for assessing the genetic diversity and structure of natural Dalmatian pyrethrum populations. These preliminary results are encouraging for a future comprehensive study with a larger sample size across the species' range. Combined with the biochemical data, these highly informative markers could help identify potential genotypes of interest for future development of breeding lines and cultivars that are both resistant to environmental stress and high in pyrethrins. Acknowledgment: This work has been supported by the Croatian Science Foundation under the project ‘Genetic background of Dalmatian pyrethrum (Tanacetum cinerariifolium /Trevir./ Sch. Bip.) insecticidal potential’- (PyrDiv) (IP-06-2016-9034) and by project KK.01.1.1.01.0005, Biodiversity and Molecular Plant Breeding, at the Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Zagreb, Croatia.

Keywords: Asteraceae, genetic diversity, genomic SSRs, NGS, pyrethrum, Tanacetum cinerariifolium

Procedia PDF Downloads 91
68 Hear Me: The Learning Experience on “Zoom” of Students With Deafness or Hard of Hearing Impairments

Authors: H. Weigelt-Marom

Abstract:

Over the years and up to the arousal of the COVID-19 pandemic, deaf or hard of hearing students studying in higher education institutions, participated lectures on campus using hearing aids and strategies adapted for frontal learning in a classroom. Usually, these aids were well known to them from their earlier study experience in school. However, the transition to online lessons, due to the latest pandemic, led deaf or hard of hearing students to study outside of their physical, well known learning environment. The change of learning environment and structure rose new challenges for these students. The present study examined the learning experience, limitations, challenges and benefits regarding learning online with lecture and classmates via the “Zoom” video conference program, among deaf or hard of hearing students in academia setting. In addition, emotional and social aspects related to learning in general versus the “Zoom” were examined. The study included 18 students diagnosed as deaf or hard of hearing, studying in various higher education institutions in Israel. All students had experienced lessons on the “Zoom”. Following allocation of the group study by the deaf and hard of hearing non-profit organization “Ma’agalei Shema”, and receiving the participants inform of consent, students were requested to answer a google form questioner and participate in an interview. The questioner included background information (e.g., age, year of studying, faculty etc.), level of computer literacy, and level of hearing and forms of communication (e.g., lip reading, sign language etc.). The interviews included a one on one, semi-structured, in-depth interview, conducted by the main researcher of the study (interview duration: up to 60 minutes). The interviews were held on “ZOOM” using specific adaptations for each interviewee: clear face screen of the interviewer for lip and face reading, and/ or professional sign language or live text transcript of the conversation. Additionally, interviewees used their audio devices if needed. Questions regarded: learning experience, difficulties and advantages studying using “Zoom”, learning in a classroom versus on “Zoom”, and questions concerning emotional and social aspects related to learning. Thematic analysis of the interviews revealed severe difficulties regarding the ability of deaf or hard of hearing students to comprehend during ”Zoom“ lessons without adoptive aids. For example, interviewees indicated difficulties understanding “Zoom” lessons due to their inability to use hearing devices commonly used by them in the classroom (e.g., FM systems). 80% indicated that they could not comprehend “Zoom” lessons since they could not see the lectures face, either because lectures did not agree to open their cameras or, either because they did not keep a straight forward clear face appearance while teaching. However, not all descriptions regarded learning via the “zoom” were negative. For example, 20% reported the recording of “Zoom” lessons as a main advantage. Enabling then to repeatedly watch the lessons at their own pace, mostly assisted by friends and family to translate the audio output into an accessible input. These finding and others regarding the learning experience of the group study on the “Zoom”, as well as their recommendation to enable deaf or hard of hearing students to study inclusively online, will be presented at the conference.

Keywords: deaf or hard of hearing, learning experience, Zoom, qualitative research

Procedia PDF Downloads 93
67 Pushover Analysis of a Typical Bridge Built in Central Zone of Mexico

Authors: Arturo Galvan, Jatziri Y. Moreno-Martinez, Daniel Arroyo-Montoya, Jose M. Gutierrez-Villalobos

Abstract:

Bridges are one of the most seismically vulnerable structures on highway transportation systems. The general process for assessing the seismic vulnerability of a bridge involves the evaluation of its overall capacity and demand. One of the most common procedures to obtain this capacity is by means of pushover analysis of the structure. Typically, the bridge capacity is assessed using non-linear static methods or non-linear dynamic analyses. The non-linear dynamic approaches use step by step numerical solutions for assessing the capacity with the consuming computer time inconvenience. In this study, a nonlinear static analysis (‘pushover analysis’) was performed to predict the collapse mechanism of a typical bridge built in the central zone of Mexico (Celaya, Guanajuato). The bridge superstructure consists of three simple supported spans with a total length of 76 m: 22 m of the length of extreme spans and 32 m of length of the central span. The deck width is of 14 m and the concrete slab depth is of 18 cm. The bridge is built by means of frames of five piers with hollow box-shaped sections. The dimensions of these piers are 7.05 m height and 1.20 m diameter. The numerical model was created using a commercial software considering linear and non-linear elements. In all cases, the piers were represented by frame type elements with geometrical properties obtained from the structural project and construction drawings of the bridge. The deck was modeled with a mesh of rectangular thin shell (plate bending and stretching) finite elements. The moment-curvature analysis was performed for the sections of the piers of the bridge considering in each pier the effect of confined concrete and its reinforcing steel. In this way, plastic hinges were defined on the base of the piers to carry out the pushover analysis. In addition, time history analyses were performed using 19 accelerograms of real earthquakes that have been registered in Guanajuato. In this way, the displacements produced by the bridge were determined. Finally, pushover analysis was applied through the control of displacements in the piers to obtain the overall capacity of the bridge before the failure occurs. It was concluded that the lateral deformation of the piers due to a critical earthquake occurred in this zone is almost imperceptible due to the geometry and reinforcement demanded by the current design standards and compared to its displacement capacity, they were excessive. According to the analysis, it was found that the frames built with five piers increase the rigidity in the transverse direction of the bridge. Hence it is proposed to reduce these frames of five piers to three piers, maintaining the same geometrical characteristics and the same reinforcement in each pier. Also, the mechanical properties of materials (concrete and reinforcing steel) were maintained. Once a pushover analysis was performed considering this configuration, it was concluded that the bridge would continue having a “correct” seismic behavior, at least for the 19 accelerograms considered in this study. In this way, costs in material, construction, time and labor would be reduced in this study case.

Keywords: collapse mechanism, moment-curvature analysis, overall capacity, push-over analysis

Procedia PDF Downloads 128
66 Developing a Deep Understanding of the Immune Response in Hepatitis B Virus Infected Patients Using a Knowledge Driven Approach

Authors: Hanan Begali, Shahi Dost, Annett Ziegler, Markus Cornberg, Maria-Esther Vidal, Anke R. M. Kraft

Abstract:

Chronic hepatitis B virus (HBV) infection can be treated with nucleot(s)ide analog (NA), for example, which inhibits HBV replication. However, they have hardly any influence on the functional cure of HBV, which is defined by hepatitis B surface antigen (HBsAg) loss. NA needs to be taken life-long, which is not available for all patients worldwide. Additionally, NA-treated patients are still at risk of developing cirrhosis, liver failure, or hepatocellular carcinoma (HCC). Although each patient has the same components of the immune system, immune responses vary between patients. Therefore, a deeper understanding of the immune response against HBV in different patients is necessary to understand the parameters leading to HBV cure and to use this knowledge to optimize HBV therapies. This requires seamless integration of an enormous amount of diverse and fine-grained data from viral markers, e.g., hepatitis B core-related antigen (HBcrAg) and hepatitis B surface antigen (HBsAg). The data integration system relies on the assumption that profiling human immune systems requires the analysis of various variables (e.g., demographic data, treatments, pre-existing conditions, immune cell response, or HLA-typing) rather than only one. However, the values of these variables are collected independently. They are presented in a myriad of formats, e.g., excel files, textual descriptions, lab book notes, and images of flow cytometry dot plots. Additionally, patients can be identified differently in these analyses. This heterogeneity complicates the integration of variables, as data management techniques are needed to create a unified view in which individual formats and identifiers are transparent when profiling the human immune systems. The proposed study (HBsRE) aims at integrating heterogeneous data sets of 87 chronically HBV-infected patients, e.g., clinical data, immune cell response, and HLA-typing, with knowledge encoded in biomedical ontologies and open-source databases into a knowledge-driven framework. This new technique enables us to harmonize and standardize heterogeneous datasets in the defined modeling of the data integration system, which will be evaluated in the knowledge graph (KG). KGs are data structures that represent the knowledge and data as factual statements using a graph data model. Finally, the analytic data model will be applied on top of KG in order to develop a deeper understanding of the immune profiles among various patients and to evaluate factors playing a role in a holistic profile of patients with HBsAg level loss. Additionally, our objective is to utilize this unified approach to stratify patients for new effective treatments. This study is developed in the context of the project “Transforming big data into knowledge: for deep immune profiling in vaccination, infectious diseases, and transplantation (ImProVIT)”, which is a multidisciplinary team composed of computer scientists, infection biologists, and immunologists.

Keywords: chronic hepatitis B infection, immune response, knowledge graphs, ontology

Procedia PDF Downloads 88
65 A Mathematical Model for Studying Landing Dynamics of a Typical Lunar Soft Lander

Authors: Johns Paul, Santhosh J. Nalluveettil, P. Purushothaman, M. Premdas

Abstract:

Lunar landing is one of the most critical phases of lunar mission. The lander is provided with a soft landing system to prevent structural damage of lunar module by absorbing the landing shock and also assure stability during landing. Presently available software are not capable to simulate the rigid body dynamics coupled with contact simulation and elastic/plastic deformation analysis. Hence a separate mathematical model has been generated for studying the dynamics of a typical lunar soft lander. Parameters used in the analysis includes lunar surface slope, coefficient of friction, initial touchdown velocity (vertical and horizontal), mass and moment of inertia of lander, crushing force due to energy absorbing material in the legs, number of legs and geometry of lander. The mathematical model is capable to simulate plastic and elastic deformation of honey comb, frictional force between landing leg and lunar soil, surface contact simulation, lunar gravitational force, rigid body dynamics and linkage dynamics of inverted tripod landing gear. The non linear differential equations generated for studying the dynamics of lunar lander is solved by numerical method. Matlab programme has been used as a computer tool for solving the numerical equations. The position of each kinematic joint is defined by mathematical equations for the generation of equation of motion. All hinged locations are defined by position vectors with respect to body fixed coordinate. The vehicle rigid body rotations and motions about body coordinate are only due to the external forces and moments arise from footpad reaction force due to impact, footpad frictional force and weight of vehicle. All these force are mathematically simulated for the generation of equation of motion. The validation of mathematical model is done by two different phases. First phase is the validation of plastic deformation of crushable elements by employing conservation of energy principle. The second phase is the validation of rigid body dynamics of model by simulating a lander model in ADAMS software after replacing the crushable elements to elastic spring element. Simulation of plastic deformation along with rigid body dynamics and contact force cannot be modeled in ADAMS. Hence plastic element of primary strut is replaced with a spring element and analysis is carried out in ADAMS software. The same analysis is also carried out using the mathematical model where the simulation of honeycomb crushing is replaced by elastic spring deformation and compared the results with ADAMS analysis. The rotational motion of linkages and 6 degree of freedom motion of lunar Lander about its CG can be validated by ADAMS software by replacing crushing element to spring element. The model is also validated by the drop test results of 4 leg lunar lander. This paper presents the details of mathematical model generated and its validation.

Keywords: honeycomb, landing leg tripod, lunar lander, primary link, secondary link

Procedia PDF Downloads 323
64 Behavioral Patterns of Adopting Digitalized Services (E-Sport versus Sports Spectating) Using Agent-Based Modeling

Authors: Justyna P. Majewska, Szymon M. Truskolaski

Abstract:

The growing importance of digitalized services in the so-called new economy, including the e-sports industry, can be observed recently. Various demographic or technological changes lead consumers to modify their needs, not regarding the services themselves but the method of their application (attracting customers, forms of payment, new content, etc.). In the case of leisure-related to competitive spectating activities, there is a growing need to participate in events whose content is not sports competitions but computer games challenge – e-sport. The literature in this area so far focuses on determining the number of e-sport fans with elements of a simple statistical description (mainly concerning demographic characteristics such as age, gender, place of residence). Meanwhile, the development of the industry is influenced by a combination of many different, intertwined demographic, personality and psychosocial characteristics of customers, as well as the characteristics of their environment. Therefore, there is a need for a deeper recognition of the determinants of the behavioral patterns upon selecting digitalized services by customers, which, in the absence of available large data sets, can be achieved by using econometric simulations – multi-agent modeling. The cognitive aim of the study is to reveal internal and external determinants of behavioral patterns of customers taking into account various variants of economic development (the pace of digitization and technological development, socio-demographic changes, etc.). In the paper, an agent-based model with heterogeneous agents (characteristics of customers themselves and their environment) was developed, which allowed identifying a three-stage development scenario: i) initial interest, ii) standardization, and iii) full professionalization. The probabilities regarding the transition process were estimated using the Method of Simulated Moments. The estimation of the agent-based model parameters and sensitivity analysis reveals crucial factors that have driven a rising trend in e-sport spectating and, in a wider perspective, the development of digitalized services. Among the psychosocial characteristics of customers, they are the level of familiarization with the rules of games as well as sports disciplines, active and passive participation history and individual perception of challenging activities. Environmental factors include general reception of games, number and level of recognition of community builders and the level of technological development of streaming as well as community building platforms. However, the crucial factor underlying the good predictive power of the model is the level of professionalization. While in the initial interest phase, the entry barriers for new customers are high. They decrease during the phase of standardization and increase again in the phase of full professionalization when new customers perceive participation history inaccessible. In this case, they are prone to switch to new methods of service application – in the case of e-sport vs. sports to new content and more modern methods of its delivery. In a wider context, the findings in the paper support the idea of a life cycle of services regarding methods of their application from “traditional” to digitalized.

Keywords: agent-based modeling, digitalized services, e-sport, spectators motives

Procedia PDF Downloads 148
63 Prevalence and Factors Associated With Concurrent Use of Herbal Medicine and Anti-retroviral Therapy Among HIV/Aids Patients Attending Selected HIV Clinics in Wakiso District

Authors: Nanteza Rachel

Abstract:

Background: Worldwide, there were 36.7 million people living with Human Immunodeficiency Virus (HIV) in 2015, up from 35 million at the end of 2013. Wakiso district is one of the hotspots for the Human Immunodeficiency Virus (HIV)/ Acquired Immune Deficiency Syndrome (AIDS) infection in Uganda, with the prevalence of 8.1 %. Herbal medicine has gained popularity among Human Immunodeficiency Virus (HIV)/ Acquired Immune Deficiency Syndrome (AIDS) patients as adjuvant therapy to reduce the adverse effects of ART. Regardless of the subsidized and physical availability of the Anti-Retroviral Therapy (ART), majority of Africans living with Human Immunodeficiency Virus (HIV)/ Acquired Immune Deficiency Syndrome (AIDS) resort to adding to their ART traditional medicine. Result found out from a pilot observation made by the PI that indicate 13 out of 30 People Living with AIDS(PLWA) who are attending Human Immunodeficiency Virus (HIV) clinics in Wakiso district reported to be using herbal preparations despite the fact that they were taking Anti Retro Viral (ARVs) this prompted this study to be done. Purpose of the study: To determine the prevalence and factors associated with concurrent use of herbal medicine and anti-retroviral therapy among HIV/AIDS patients attending selected HIV clinics in Wakiso district. Methodology: This was a cross sectional study with both quantitative data collection (use of a questionnaire) and qualitative data collection (key informants’ interviews). A mixed method of sampling was used, that is, purposive and random sampling. Purposive sampling was based on the location in the district and used to select 7 health facilities basing on the 7 health sub districts from Wakiso. Simple random sampling was used to select one HIV clinic from each of the 7 health sub districts. Furthermore, the study units were enrolled in to the study as they entered into the HIV clinics, and 105 respondents were interviewed. Both manual and computer packages (SPSS) were used to analyze the data Results: The prevalence of concurrent use of herbal medicine and ART was 38 (36.2%). Commonly HIV symptom treated with herbs was fever 27(71.1%), diarrhea 3(7.9%) and cough 2(5.3%). Commonly used herbs for fever (Omululuza (Vernonica amydalina), Ekigagi (Aloe sp), Nalongo (Justicia betonica Linn) while for diarrhea was Ntwatwa. The side effects also included; too much pain, itchy pain of HIV, aneamia,felt sick, loss/gain appetite, joint pain and bad dreams. Herbs used to sooth the side effects were; for aneamia was avocado leaves Parea Americana mill The significant factors associated with concurrent use of herbal medicine were being familiar with herbs and conventional medicine for management HIV symptoms being expensive. The other significant factor was exhibiting hostility to patients by health personnel providing HIV care. Conclusion: Herbal medicine is widely used by clients in HIV/AIDS care. Patients being familiar with herbs and conventional medicine being expensive were associated with concurrent use of herbal medicine and ART. The exhibition of hostility to the HIV/AIDS patients by the health care providers was also associated with concurrent use of herbal medicine and ART among HIV/AIDS patients.

Keywords: HIV patients, herbal medicine, antiretroviral therapy, factors associated

Procedia PDF Downloads 68
62 Assessing Sustainability of Bike Sharing Projects Using Envision™ Rating System

Authors: Tamar Trop

Abstract:

Bike sharing systems can be important elements of smart cities as they have the potential for impact on multiple levels. These systems can add a significant alternative to other modes of mass transit in cities that are continuously looking for measures to become more livable and maintain their attractiveness for citizens, businesses and tourism. Bike-sharing began in Europe in 1965, and a viable format emerged in the mid-2000s thanks to the introduction of information technology. The rate of growth in bike-sharing schemes and fleets has been very rapid since 2008 and has probably outstripped growth in every other form of urban transport. Today, public bike-sharing systems are available on five continents, including over 700 cities, operating more than 800,000 bicycles at approximately 40,000 docking stations. Since modern bike sharing systems have become prevalent only in the last decade, the existing literature analyzing these systems and their sustainability is relatively new. The purpose of the presented study is to assess the sustainability of these newly emerging transportation systems, by using the Envision™ rating system as a methodological framework and the Israeli 'Tel -O-Fun' – bike sharing project as a case study. The assessment was conducted by project team members. Envision™ is a new guidance and rating system used to assess and improve the sustainability of all types and sizes of infrastructure projects. This tool provides a holistic framework for evaluating and rating the community, environmental, and economic benefits of infrastructure projects over the course of their life cycle. This evaluation method has 60 sustainability criteria divided into five categories: Quality of life, leadership, resource allocation, natural world, and climate and risk. 'Tel -O-Fun' project was launched in Tel Aviv-Yafo on 2011 and today provides about 1,800 bikes for rent, at 180 rental stations across the city. The system is based on a complex computer terminal that is located in the docking stations. The highest-rated sustainable features that the project scored include: (a) Improving quality of life by: offering a low cost and efficient form of public transit, improving community mobility and access, enabling the flexibility of travel within a multimodal transportation system, saving commuters time and money, enhancing public health and reducing air and noise pollution; (b) improving resource allocation by: offering inexpensive and flexible last-mile connectivity, reducing space, materials and energy consumption, reducing wear and tear on public roads, and maximizing the utility of existing infrastructure, and (c) reducing of greenhouse gas emissions from transportation. Overall, 'Tel -O-Fun' project was highly scored as an environmentally sustainable and socially equitable infrastructure. The use of this practical framework for evaluation also yielded various interesting insights on the shortcoming of the system and the characteristics of good solutions. This can contribute to the improvement of the project and may assist planners and operators of bike sharing systems to develop a sustainable, efficient and reliable transportation infrastructure within smart cities.

Keywords: bike sharing, Envision™, sustainability rating system, sustainable infrastructure

Procedia PDF Downloads 317
61 Modern Technology-Based Methods in Neurorehabilitation for Social Competence Deficit in Children with Acquired Brain Injury

Authors: M. Saard, A. Kolk, K. Sepp, L. Pertens, L. Reinart, C. Kööp

Abstract:

Introduction: Social competence is often impaired in children with acquired brain injury (ABI), but evidence-based rehabilitation for social skills has remained undeveloped. Modern technology-based methods create effective and safe learning environments for pediatric social skills remediation. The aim of the study was to implement our structured model of neuro rehab for socio-cognitive deficit using multitouch-multiuser tabletop (MMT) computer-based platforms and virtual reality (VR) technology. Methods: 40 children aged 8-13 years (yrs) have participated in the pilot study: 30 with ABI -epilepsy, traumatic brain injury and/or tic disorder- and 10 healthy age-matched controls. From the patients, 12 have completed the training (M = 11.10 yrs, SD = 1.543) and 20 are still in training or in the waiting-list group (M = 10.69 yrs, SD = 1.704). All children performed the first individual and paired assessments. For patients, second evaluations were performed after the intervention period. Two interactive applications were implemented into rehabilitation design: Snowflake software on MMT tabletop and NoProblem on DiamondTouch Table (DTT), which allowed paired training (2 children at once). Also, in individual training sessions, HTC Vive VR device was used with VR metaphors of difficult social situations to treat social anxiety and train social skills. Results: At baseline (B) evaluations, patients had higher deficits in executive functions on the BRIEF parents’ questionnaire (M = 117, SD = 23.594) compared to healthy controls (M = 22, SD = 18.385). The most impaired components of social competence were emotion recognition, Theory of Mind skills (ToM), cooperation, verbal/non-verbal communication, and pragmatics (Friendship Observation Scale scores only 25-50% out of 100% for patients). In Sentence Completion Task and Spence Anxiety Scale, the patients reported a lack of friends, behavioral problems, bullying in school, and social anxiety. Outcome evaluations: Snowflake on MMT improved executive and cooperation skills and DTT developed communication skills, metacognitive skills, and coping. VR, video modelling and role-plays improved social attention, emotional attitude, gestural behaviors, and decreased social anxiety. NEPSY-II showed improvement in Affect Recognition [B = 7, SD = 5.01 vs outcome (O) = 10, SD = 5.85], Verbal ToM (B = 8, SD = 3.06 vs O = 10, SD = 4.08), Contextual ToM (B = 8, SD = 3.15 vs O = 11, SD = 2.87). ToM Stories test showed an improved understanding of Intentional Lying (B = 7, SD = 2.20 vs O = 10, SD = 0.50), and Sarcasm (B=6, SD = 2.20 vs O = 7, SD = 2.50). Conclusion: Neurorehabilitation based on the Structured Model of Neurorehab for Socio-Cognitive Deficit in children with ABI were effective in social skills remediation. The model helps to understand theoretical connections between components of social competence and modern interactive computerized platforms. We encourage therapists to implement these next-generation devices into the rehabilitation process as MMT and VR interfaces are motivating for children, thus ensuring good compliance. Improving children’s social skills is important for their and their families’ quality of life and social capital.

Keywords: acquired brain injury, children, social skills deficit, technology-based neurorehabilitation

Procedia PDF Downloads 100
60 Development of an Omaha System-Based Remote Intervention Program for Work-Related Musculoskeletal Disorders (WMSDs) Among Front-Line Nurses

Authors: Tianqiao Zhang, Ye Tian, Yanliang Yin, Yichao Tian, Suzhai Tian, Weige Sun, Shuhui Gong, Limei Tang, Ruoliang Tang

Abstract:

Introduction: Healthcare workers, especially the nurses all over the world, are highly vulnerable to work-related musculoskeletal disorders (WMSDs), experiencing high rates of neck, shoulder, and low back injuries, due to the unfavorable working conditions. To reduce WMSDs among nursing personnel, many workplace interventions have been developed and implemented. Unfortunately, the ongoing Covid-19 (SARS-CoV-2) pandemic has posed great challenges to the ergonomic practices and interventions in healthcare facilities, particularly the hospitals, since current Covid-19 mitigation measures, such as social distancing and working remotely, has substantially minimized in-person gatherings and trainings. On the other hand, hospitals throughout the world have been short-staffed, resulting in disturbance of shift scheduling and more importantly, the increased job demand among the available caregivers, particularly the doctors and nurses. With the latest development in communication technology, remote intervention measures have been developed as an alternative, without the necessity of in-person meetings. The Omaha System (OS) is a standardized classification system for nursing practices, including a problem classification system, an intervention system, and an outcome evaluation system. This paper describes the development of an OS-based ergonomic intervention program. Methods: First, a comprehensive literature search was performed among worldwide electronic databases, including PubMed, Web of Science, Cochrane Library, China National Knowledge Infrastructure (CNKI), between journal inception to May 2020, resulting in a total of 1,418 scientific articles. After two independent screening processes, the final knowledge pool included eleven randomized controlled trial studies to develop the draft of the intervention program with Omaha intervention subsystem as the framework. After the determination of sample size needed for statistical power and the potential loss to follow-up, a total of 94 nurses from eight clinical departments agreed to provide written, informed consent to participate in the study, which were subsequently assigned into two random groups (i.e., intervention vs. control). A subgroup of twelve nurses were randomly selected to participate in a semi-structured interview, during which their general understanding and awareness of musculoskeletal disorders and potential interventions was assessed. Then, the first draft was modified to reflect the findings from these interviews. Meanwhile, the tentative program schedule was also assessed. Next, two rounds of consultation were conducted among experts in nursing management, occupational health, psychology, and rehabilitation, to further adjust and finalize the intervention program. The control group had access to all the information and exercise modules at baseline, while an interdisciplinary research team was formed and supervised the implementation of the on-line intervention program through multiple social media groups. Outcome measures of this comparative study included biomechanical load assessed by the Quick Exposure Check and stresses due to awkward body postures. Results and Discussion: Modification to the draft included (1) supplementing traditional Chinese medicine practices, (2) adding the use of assistive patient handling equipment, and (3) revising the on-line training method. Information module should be once a week, lasting about 20 to 30 minutes, for a total of 6 weeks, while the exercise module should be 5 times a week, each lasting about 15 to 20 minutes, for a total of 6 weeks.

Keywords: ergonomic interventions, musculoskeletal disorders (MSDs), omaha system, nurses, Covid-19

Procedia PDF Downloads 141
59 Investigation of Software Integration for Simulations of Buoyancy-Driven Heat Transfer in a Vehicle Underhood during Thermal Soak

Authors: R. Yuan, S. Sivasankaran, N. Dutta, K. Ebrahimi

Abstract:

This paper investigates the software capability and computer-aided engineering (CAE) method of modelling transient heat transfer process occurred in the vehicle underhood region during vehicle thermal soak phase. The heat retention from the soak period will be beneficial to the cold start with reduced friction loss for the second 14°C worldwide harmonized light-duty vehicle test procedure (WLTP) cycle, therefore provides benefits on both CO₂ emission reduction and fuel economy. When vehicle undergoes soak stage, the airflow and the associated convective heat transfer around and inside the engine bay is driven by the buoyancy effect. This effect along with thermal radiation and conduction are the key factors to the thermal simulation of the engine bay to obtain the accurate fluids and metal temperature cool-down trajectories and to predict the temperatures at the end of the soak period. Method development has been investigated in this study on a light-duty passenger vehicle using coupled aerodynamic-heat transfer thermal transient modelling method for the full vehicle under 9 hours of thermal soak. The 3D underhood flow dynamics were solved inherently transient by the Lattice-Boltzmann Method (LBM) method using the PowerFlow software. This was further coupled with heat transfer modelling using the PowerTHERM software provided by Exa Corporation. The particle-based LBM method was capable of accurately handling extremely complicated transient flow behavior on complex surface geometries. The detailed thermal modelling, including heat conduction, radiation, and buoyancy-driven heat convection, were integrated solved by PowerTHERM. The 9 hours cool-down period was simulated and compared with the vehicle testing data of the key fluid (coolant, oil) and metal temperatures. The developed CAE method was able to predict the cool-down behaviour of the key fluids and components in agreement with the experimental data and also visualised the air leakage paths and thermal retention around the engine bay. The cool-down trajectories of the key components obtained for the 9 hours thermal soak period provide vital information and a basis for the further development of reduced-order modelling studies in future work. This allows a fast-running model to be developed and be further imbedded with the holistic study of vehicle energy modelling and thermal management. It is also found that the buoyancy effect plays an important part at the first stage of the 9 hours soak and the flow development during this stage is vital to accurately predict the heat transfer coefficients for the heat retention modelling. The developed method has demonstrated the software integration for simulating buoyancy-driven heat transfer in a vehicle underhood region during thermal soak with satisfying accuracy and efficient computing time. The CAE method developed will allow integration of the design of engine encapsulations for improving fuel consumption and reducing CO₂ emissions in a timely and robust manner, aiding the development of low-carbon transport technologies.

Keywords: ATCT/WLTC driving cycle, buoyancy-driven heat transfer, CAE method, heat retention, underhood modeling, vehicle thermal soak

Procedia PDF Downloads 126
58 Improved Elastoplastic Bounding Surface Model for the Mathematical Modeling of Geomaterials

Authors: Andres Nieto-Leal, Victor N. Kaliakin, Tania P. Molina

Abstract:

The nature of most engineering materials is quite complex. It is, therefore, difficult to devise a general mathematical model that will cover all possible ranges and types of excitation and behavior of a given material. As a result, the development of mathematical models is based upon simplifying assumptions regarding material behavior. Such simplifications result in some material idealization; for example, one of the simplest material idealization is to assume that the material behavior obeys the elasticity. However, soils are nonhomogeneous, anisotropic, path-dependent materials that exhibit nonlinear stress-strain relationships, changes in volume under shear, dilatancy, as well as time-, rate- and temperature-dependent behavior. Over the years, many constitutive models, possessing different levels of sophistication, have been developed to simulate the behavior geomaterials, particularly cohesive soils. Early in the development of constitutive models, it became evident that elastic or standard elastoplastic formulations, employing purely isotropic hardening and predicated in the existence of a yield surface surrounding a purely elastic domain, were incapable of realistically simulating the behavior of geomaterials. Accordingly, more sophisticated constitutive models have been developed; for example, the bounding surface elastoplasticity. The essence of the bounding surface concept is the hypothesis that plastic deformations can occur for stress states either within or on the bounding surface. Thus, unlike classical yield surface elastoplasticity, the plastic states are not restricted only to those lying on a surface. Elastoplastic bounding surface models have been improved; however, there is still need to improve their capabilities in simulating the response of anisotropically consolidated cohesive soils, especially the response in extension tests. Thus, in this work an improved constitutive model that can more accurately predict diverse stress-strain phenomena exhibited by cohesive soils was developed. Particularly, an improved rotational hardening rule that better simulate the response of cohesive soils in extension. The generalized definition of the bounding surface model provides a convenient and elegant framework for unifying various previous versions of the model for anisotropically consolidated cohesive soils. The Generalized Bounding Surface Model for cohesive soils is a fully three-dimensional, time-dependent model that accounts for both inherent and stress induced anisotropy employing a non-associative flow rule. The model numerical implementation in a computer code followed an adaptive multistep integration scheme in conjunction with local iteration and radial return. The one-step trapezoidal rule was used to get the stiffness matrix that defines the relationship between the stress increment and the strain increment. After testing the model in simulating the response of cohesive soils through extensive comparisons of model simulations to experimental data, it has been shown to give quite good simulations. The new model successfully simulates the response of different cohesive soils; for example, Cardiff Kaolin, Spestone Kaolin, and Lower Cromer Till. The simulated undrained stress paths, stress-strain response, and excess pore pressures are in very good agreement with the experimental values, especially in extension.

Keywords: bounding surface elastoplasticity, cohesive soils, constitutive model, modeling of geomaterials

Procedia PDF Downloads 294
57 E-Waste Generation in Bangladesh: Present and Future Estimation by Material Flow Analysis Method

Authors: Rowshan Mamtaz, Shuvo Ahmed, Imran Noor, Sumaiya Rahman, Prithvi Shams, Fahmida Gulshan

Abstract:

Last few decades have witnessed a phenomenal rise in the use of electrical and electronic equipment globally in our everyday life. As these items reach the end of their lifecycle, they turn into e-wastes and contribute to the waste stream. Bangladesh, in conformity with the global trend and due to its ongoing rapid growth, is also using electronics-based appliances and equipment at an increasing rate. This has caused a corresponding increase in the generation of e-wastes. Bangladesh is a developing country; its overall waste management system, is not yet efficient, nor is it environmentally sustainable. Most of its solid wastes are disposed of in a crude way at dumping sites. Addition of e-wastes, which often contain toxic heavy metals, into its waste stream has made the situation more difficult and challenging. Assessment of generation of e-wastes is an important step towards addressing the challenges posed by e-wastes, setting targets, and identifying the best practices for their management. Understanding and proper management of e-wastes is a stated item of the Sustainable Development Goals (SDG) campaign, and Bangladesh is committed to fulfilling it. A better understanding and availability of reliable baseline data on e-wastes will help in preventing illegal dumping, promote recycling, and create jobs in the recycling sectors and thus facilitate sustainable e-waste management. With this objective in mind, the present study has attempted to estimate the amount of e-wastes and its future generation trend in Bangladesh. To achieve this, sales data on eight selected electrical and electronic products (TV, Refrigerator, Fan, Mobile phone, Computer, IT equipment, CFL (Compact Fluorescent Lamp) bulbs, and Air Conditioner) have been collected from different sources. Primary and secondary data on the collection, recycling, and disposal of the e-wastes have also been gathered by questionnaire survey, field visits, interviews, and formal and informal meetings with the stakeholders. Material Flow Analysis (MFA) method has been applied, and mathematical models have been developed in the present study to estimate e-waste amounts and their future trends up to the year 2035 for the eight selected electrical and electronic equipment. End of life (EOL) method is adopted in the estimation. Model inputs are products’ annual sale/import data, past and future sales data, and average life span. From the model outputs, it is estimated that the generation of e-wastes in Bangladesh in 2018 is 0.40 million tons and by 2035 the amount will be 4.62 million tons with an average annual growth rate of 20%. Among the eight selected products, the number of e-wastes generated from seven products are increasing whereas only one product, CFL bulb, showed a decreasing trend of waste generation. The average growth rate of e-waste from TV sets is the highest (28%) while those from Fans and IT equipment are the lowest (11%). Field surveys conducted in the e-waste recycling sector also revealed that every year around 0.0133 million tons of e-wastes enter into the recycling business in Bangladesh which may increase in the near future.

Keywords: Bangladesh, end of life, e-waste, material flow analysis

Procedia PDF Downloads 154
56 The Biosphere as a Supercomputer Directing and Controlling Evolutionary Processes

Authors: Igor A. Krichtafovitch

Abstract:

The evolutionary processes are not linear. Long periods of quiet and slow development turn to rather rapid emergences of new species and even phyla. During Cambrian explosion, 22 new phyla were added to the previously existed 3 phyla. Contrary to the common credence the natural selection or a survival of the fittest cannot be accounted for the dominant evolution vector which is steady and accelerated advent of more complex and more intelligent living organisms. Neither Darwinism nor alternative concepts including panspermia and intelligent design propose a satisfactory solution for these phenomena. The proposed hypothesis offers a logical and plausible explanation of the evolutionary processes in general. It is based on two postulates: a) the Biosphere is a single living organism, all parts of which are interconnected, and b) the Biosphere acts as a giant biological supercomputer, storing and processing the information in digital and analog forms. Such supercomputer surpasses all human-made computers by many orders of magnitude. Living organisms are the product of intelligent creative action of the biosphere supercomputer. The biological evolution is driven by growing amount of information stored in the living organisms and increasing complexity of the biosphere as a single organism. Main evolutionary vector is not a survival of the fittest but an accelerated growth of the computational complexity of the living organisms. The following postulates may summarize the proposed hypothesis: biological evolution as a natural life origin and development is a reality. Evolution is a coordinated and controlled process. One of evolution’s main development vectors is a growing computational complexity of the living organisms and the biosphere’s intelligence. The intelligent matter which conducts and controls global evolution is a gigantic bio-computer combining all living organisms on Earth. The information is acting like a software stored in and controlled by the biosphere. Random mutations trigger this software, as is stipulated by Darwinian Evolution Theories, and it is further stimulated by the growing demand for the Biosphere’s global memory storage and computational complexity. Greater memory volume requires a greater number and more intellectually advanced organisms for storing and handling it. More intricate organisms require the greater computational complexity of biosphere in order to keep control over the living world. This is an endless recursive endeavor with accelerated evolutionary dynamic. New species emerge when two conditions are met: a) crucial environmental changes occur and/or global memory storage volume comes to its limit and b) biosphere computational complexity reaches critical mass capable of producing more advanced creatures. The hypothesis presented here is a naturalistic concept of life creation and evolution. The hypothesis logically resolves many puzzling problems with the current state evolution theory such as speciation, as a result of GM purposeful design, evolution development vector, as a need for growing global intelligence, punctuated equilibrium, happening when two above conditions a) and b) are met, the Cambrian explosion, mass extinctions, happening when more intelligent species should replace outdated creatures.

Keywords: supercomputer, biological evolution, Darwinism, speciation

Procedia PDF Downloads 133
55 Comparative Study of Outcome of Patients with Wilms Tumor Treated with Upfront Chemotherapy and Upfront Surgery in Alexandria University Hospitals

Authors: Golson Mohamed, Yasmine Gamasy, Khaled EL-Khatib, Anas Al-Natour, Shady Fadel, Haytham Rashwan, Haytham Badawy, Nadia Farghaly

Abstract:

Introduction: Wilm's tumor is the most common malignant renal tumor in children. Much progress has been made in the management of patients with this malignancy over the last 3 decades. Today treatments are based on several trials and studies conducted by the International Society of Pediatric Oncology (SIOP) in Europe and National Wilm's Tumor Study Group (NWTS) in the USA. It is necessary for us to understand why do we follow either of the protocols, NWTS which follows the upfront surgery principle or the SIOP which follows the upfront chemotherapy principle in all stages of the disease. Objective: The aim of is to assess outcome in patients treated with preoperative chemotherapy and patients treated with upfront surgery to compare their effect on overall survival. Study design: to decide which protocol to follow, study was carried out on records for patients aged 1 day to 18 years old suffering from Wilm's tumor who were admitted to Alexandria University Hospital, pediatric oncology, pediatric urology and pediatric surgery departments, with a retrospective survey records from 2010 to 2015, Design and editing of the transfer sheet with a (PRISMA flow study) Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Data were fed to the computer and analyzed using IBM SPSS software package version 20.0. (11) Qualitative data were described using number and percent. Quantitative data were described using Range (minimum and maximum), mean, standard deviation and median. Comparison between different groups regarding categorical variables was tested using Chi-square test. When more than 20% of the cells have expected count less than 5, correction for chi-square was conducted using Fisher’s Exact test or Monte Carlo correction. The distributions of quantitative variables were tested for normality using Kolmogorov-Smirnov test, Shapiro-Wilk test, and D'Agstino test, if it reveals normal data distribution, parametric tests were applied. If the data were abnormally distributed, non-parametric tests were used. For normally distributed data, a comparison between two independent populations was done using independent t-test. For abnormally distributed data, comparison between two independent populations was done using Mann-Whitney test. Significance of the obtained results was judged at the 5% level. Results: A significantly statistical difference was observed for survival between the two studied groups favoring the upfront chemotherapy(86.4%)as compared to the upfront surgery group (59.3%) where P=0.009. As regard complication, 20 cases (74.1%) out of 27 were complicated in the group of patients treated with upfront surgery. Meanwhile, 30 cases (68.2%) out of 44 had complications in patients treated with upfront chemotherapy. Also, the incidence of intraoperative complication (rupture) was less in upfront chemotherapy group as compared to upfront surgery group. Conclusion: Upfront chemotherapy has superiority over upfront surgery.As the patient who started with upfront chemotherapy shown, higher survival rate, less percent in complication, less percent needed for radiotherapy, and less rate in recurrence.

Keywords: Wilm's tumor, renal tumor, chemotherapy, surgery

Procedia PDF Downloads 297
54 Worldwide GIS Based Earthquake Information System/Alarming System for Microzonation/Liquefaction and It’s Application for Infrastructure Development

Authors: Rajinder Kumar Gupta, Rajni Kant Agrawal, Jaganniwas

Abstract:

One of the most frightening phenomena of nature is the occurrence of earthquake as it has terrible and disastrous effects. Many earthquakes occur every day worldwide. There is need to have knowledge regarding the trends in earthquake occurrence worldwide. The recoding and interpretation of data obtained from the establishment of the worldwide system of seismological stations made this possible. From the analysis of recorded earthquake data, the earthquake parameters and source parameters can be computed and the earthquake catalogues can be prepared. These catalogues provide information on origin, time, epicenter locations (in term of latitude and longitudes) focal depths, magnitude and other related details of the recorded earthquakes. Theses catalogues are used for seismic hazard estimation. Manual interpretation and analysis of these data is tedious and time consuming. A geographical information system is a computer based system designed to store, analyzes and display geographic information. The implementation of integrated GIS technology provides an approach which permits rapid evaluation of complex inventor database under a variety of earthquake scenario and allows the user to interactively view results almost immediately. GIS technology provides a powerful tool for displaying outputs and permit to users to see graphical distribution of impacts of different earthquake scenarios and assumptions. An endeavor has been made in present study to compile the earthquake data for the whole world in visual Basic on ARC GIS Plate form so that it can be used easily for further analysis to be carried out by earthquake engineers. The basic data on time of occurrence, location and size of earthquake has been compiled for further querying based on various parameters. A preliminary analysis tool is also provided in the user interface to interpret the earthquake recurrence in region. The user interface also includes the seismic hazard information already worked out under GHSAP program. The seismic hazard in terms of probability of exceedance in definite return periods is provided for the world. The seismic zones of the Indian region are included in the user interface from IS 1893-2002 code on earthquake resistant design of buildings. The City wise satellite images has been inserted in Map and based on actual data the following information could be extracted in real time: • Analysis of soil parameters and its effect • Microzonation information • Seismic hazard and strong ground motion • Soil liquefaction and its effect in surrounding area • Impacts of liquefaction on buildings and infrastructure • Occurrence of earthquake in future and effect on existing soil • Propagation of earth vibration due of occurrence of Earthquake GIS based earthquake information system has been prepared for whole world in Visual Basic on ARC GIS Plate form and further extended micro level based on actual soil parameters. Individual tools has been developed for liquefaction, earthquake frequency etc. All information could be used for development of infrastructure i.e. multi story structure, Irrigation Dam & Its components, Hydro-power etc in real time for present and future.

Keywords: GIS based earthquake information system, microzonation, analysis and real time information about liquefaction, infrastructure development

Procedia PDF Downloads 294
53 Performance of CALPUFF Dispersion Model for Investigation the Dispersion of the Pollutants Emitted from an Industrial Complex, Daura Refinery, to an Urban Area in Baghdad

Authors: Ramiz M. Shubbar, Dong In Lee, Hatem A. Gzar, Arthur S. Rood

Abstract:

Air pollution is one of the biggest environmental problems in Baghdad, Iraq. The Daura refinery located nearest the center of Baghdad, represents the largest industrial area, which transmits enormous amounts of pollutants, therefore study the gaseous pollutants and particulate matter are very important to the environment and the health of the workers in refinery and the people whom leaving in areas around the refinery. Actually, some studies investigated the studied area before, but it depended on the basic Gaussian equation in a simple computer programs, however, that kind of work at that time is very useful and important, but during the last two decades new largest production units were added to the Daura refinery such as, PU_3 (Power unit_3 (Boiler 11&12)), CDU_1 (Crude Distillation unit_70000 barrel_1), and CDU_2 (Crude Distillation unit_70000 barrel_2). Therefore, it is necessary to use new advanced model to study air pollution at the region for the new current years, and calculation the monthly emission rate of pollutants through actual amounts of fuel which consumed in production unit, this may be lead to accurate concentration values of pollutants and the behavior of dispersion or transport in study area. In this study to the best of author’s knowledge CALPUFF model was used and examined for first time in Iraq. CALPUFF is an advanced non-steady-state meteorological and air quality modeling system, was applied to investigate the pollutants concentration of SO2, NO2, CO, and PM1-10μm, at areas adjacent to Daura refinery which located in the center of Baghdad in Iraq. The CALPUFF modeling system includes three main components: CALMET is a diagnostic 3-dimensional meteorological model, CALPUFF (an air quality dispersion model), CALPOST is a post processing package, and an extensive set of preprocessing programs produced to interface the model to standard routinely available meteorological and geophysical datasets. The targets of this work are modeling and simulation the four pollutants (SO2, NO2, CO, and PM1-10μm) which emitted from Daura refinery within one year. Emission rates of these pollutants were calculated for twelve units includes thirty plants, and 35 stacks by using monthly average of the fuel amount consumption at this production units. Assess the performance of CALPUFF model in this study and detect if it is appropriate and get out predictions of good accuracy compared with available pollutants observation. CALPUFF model was investigated at three stability classes (stable, neutral, and unstable) to indicate the dispersion of the pollutants within deferent meteorological conditions. The simulation of the CALPUFF model showed the deferent kind of dispersion of these pollutants in this region depends on the stability conditions and the environment of the study area, monthly, and annual averages of pollutants were applied to view the dispersion of pollutants in the contour maps. High values of pollutants were noticed in this area, therefore this study recommends to more investigate and analyze of the pollutants, reducing the emission rate of pollutants by using modern techniques and natural gas, increasing the stack height of units, and increasing the exit gas velocity from stacks.

Keywords: CALPUFF, daura refinery, Iraq, pollutants

Procedia PDF Downloads 175
52 Ectopic Osteoinduction of Porous Composite Scaffolds Reinforced with Graphene Oxide and Hydroxyapatite Gradient Density

Authors: G. M. Vlasceanu, H. Iovu, E. Vasile, M. Ionita

Abstract:

Herein, the synthesis and characterization of chitosan-gelatin highly porous scaffold reinforced with graphene oxide, and hydroxyapatite (HAp), crosslinked with genipin was targeted. In tissue engineering, chitosan and gelatin are two of the most robust biopolymers with wide applicability due to intrinsic biocompatibility, biodegradability, low antigenicity properties, affordability, and ease of processing. HAp, per its exceptional activity in tuning cell-matrix interactions, is acknowledged for its capability of sustaining cellular proliferation by promoting bone-like native micro-media for cell adjustment. Genipin is regarded as a top class cross-linker, while graphene oxide (GO) is viewed as one of the most performant and versatile fillers. The composites with natural bone HAp/biopolymer ratio were obtained by cascading sonochemical treatments, followed by uncomplicated casting methods and by freeze-drying. Their structure was characterized by Fourier Transform Infrared Spectroscopy and X-ray Diffraction, while overall morphology was investigated by Scanning Electron Microscopy (SEM) and micro-Computer Tomography (µ-CT). Ensuing that, in vitro enzyme degradation was performed to detect the most promising compositions for the development of in vivo assays. Suitable GO dispersion was ascertained within the biopolymer mix as nanolayers specific signals lack in both FTIR and XRD spectra, and the specific spectral features of the polymers persisted with GO load enhancement. Overall, correlations between the GO induced material structuration, crystallinity variations, and chemical interaction of the compounds can be correlated with the physical features and bioactivity of each composite formulation. Moreover, the HAp distribution within follows an auspicious density gradient tuned for hybrid osseous/cartilage matter architectures, which were mirrored in the mice model tests. Hence, the synthesis route of a natural polymer blend/hydroxyapatite-graphene oxide composite material is anticipated to emerge as influential formulation in bone tissue engineering. Acknowledgement: This work was supported by the project 'Work-based learning systems using entrepreneurship grants for doctoral and post-doctoral students' (Sisteme de invatare bazate pe munca prin burse antreprenor pentru doctoranzi si postdoctoranzi) - SIMBA, SMIS code 124705 and by a grant of the National Authority for Scientific Research and Innovation, Operational Program Competitiveness Axis 1 - Section E, Program co-financed from European Regional Development Fund 'Investments for your future' under the project number 154/25.11.2016, P_37_221/2015. The nano-CT experiments were possible due to European Regional Development Fund through Competitiveness Operational Program 2014-2020, Priority axis 1, ID P_36_611, MySMIS code 107066, INOVABIOMED.

Keywords: biopolymer blend, ectopic osteoinduction, graphene oxide composite, hydroxyapatite

Procedia PDF Downloads 86
51 Additional Opportunities of Forensic Medical Identification of Dead Bodies of Unkown Persons

Authors: Saule Mussabekova

Abstract:

A number of chemical elements widely presented in the nature is seldom met in people and vice versa. This is a peculiarity of accumulation of elements in the body, and their selective use regardless of widely changed parameters of external environment. Microelemental identification of human hair and particularly dead body is a new step in the development of modern forensic medicine which needs reliable criteria while identifying the person. In the condition of technology-related pressing of large industrial cities for many years and specific for each region multiple-factor toxic effect from many industrial enterprises it’s important to assess actuality and the role of researches of human hair while assessing degree of deposition with specific pollution. Hair is highly sensitive biological indicator and allows to assess ecological situation, to perform regionalism of large territories of geological and chemical methods. Besides, monitoring of concentrations of chemical elements in the regions of Kazakhstan gives opportunity to use these data while performing forensic medical identification of dead bodies of unknown persons. Methods based on identification of chemical composition of hair with further computer processing allowed to compare received data with average values for the sex, age, and to reveal causally significant deviations. It gives an opportunity preliminary to suppose the region of residence of the person, having concentrated actions of policy for search of people who are unaccounted for. It also allows to perform purposeful legal actions for its further identification having created more optimal and strictly individual scheme of personal identity. Hair is the most suitable material for forensic researches as it has such advances as long term storage properties with no time limitations and specific equipment. Besides, quantitative analysis of micro elements is well correlated with level of pollution of the environment, reflects professional diseases and with pinpoint accuracy helps not only to diagnose region of temporary residence of the person but to establish regions of his migration as well. Peculiarities of elemental composition of human hair have been established regardless of age and sex of persons residing on definite territories of Kazakhstan. Data regarding average content of 29 chemical elements in hair of population in different regions of Kazakhstan have been systemized. Coefficients of concentration of studies elements in hair relative to average values around the region have been calculated for each region. Groups of regions with specific spectrum of elements have been emphasized; these elements are accumulated in hair in quantities exceeding average indexes. Our results have showed significant differences in concentrations of chemical elements for studies groups and showed that population of Kazakhstan is exposed to different toxic substances. It depends on emissions to atmosphere from industrial enterprises dominating in each separate region. Performed researches have showed that obtained elemental composition of human hair residing in different regions of Kazakhstan reflects technogenic spectrum of elements.

Keywords: analysis of elemental composition of hair, forensic medical research of hair, identification of unknown dead bodies, microelements

Procedia PDF Downloads 125
50 Simulation Research of Innovative Ignition System of ASz62IR Radial Aircraft Engine

Authors: Miroslaw Wendeker, Piotr Kacejko, Mariusz Duk, Pawel Karpinski

Abstract:

The research in the field of aircraft internal combustion engines is currently driven by the needs of decreasing fuel consumption and CO2 emissions, while fulfilling the level of safety. Currently, reciprocating aircraft engines are found in sports, emergency, agricultural and recreation aviation. Technically, they are most at a pre-war knowledge of the theory of operation, design and manufacturing technology, especially if compared to that high level of development of automotive engines. Typically, these engines are driven by carburetors of a quite primitive construction. At present, due to environmental requirements and dealing with a climate change, it is beneficial to develop aircraft piston engines and adopt the achievements of automotive engineering such as computer-controlled low-pressure injection, electronic ignition control and biofuels. The paper describes simulation research of the innovative power and control systems for the aircraft radial engine of high power. Installing an electronic ignition system in the radial aircraft engine is a fundamental innovative idea of this solution. Consequently, the required level of safety and better functionality as compared to the today’s plug system can be guaranteed. In this framework, this research work focuses on describing a methodology for optimizing the electronically controlled ignition system. This attempt can reduce emissions of toxic compounds as a result of lowered fuel consumption, optimized combustion and engine capability of efficient combustion of ecological fuels. New, redundant elements of the control system can improve the safety of aircraft. Consequently, the required level of safety and better functionality as compared to the today’s plug system can be guaranteed. The simulation research aimed to determine the vulnerability of the values measured (they were planned as the quantities measured by the measurement systems) to determining the optimal ignition angle (the angle of maximum torque at a given operating point). The described results covered: a) research in steady states; b) velocity ranging from 1500 to 2200 rpm (every 100 rpm); c) loading ranging from propeller power to maximum power; d) altitude ranging according to the International Standard Atmosphere from 0 to 8000 m (every 1000 m); e) fuel: automotive gasoline ES95. The three models of different types of ignition coil (different energy discharge) were studied. The analysis aimed at the optimization of the design of the innovative ignition system for an aircraft engine. The optimization involved: a) the optimization of the measurement systems; b) the optimization of actuator systems. The studies enabled the research on the vulnerability of the signals to the control of the ignition timing. Accordingly, the number and type of sensors were determined for the ignition system to achieve its optimal performance. The results confirmed the limited benefits, in terms of fuel consumption. Thus, including spark management in the optimization is mandatory to significantly decrease the fuel consumption. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: piston engine, radial engine, ignition system, CFD model, engine optimization

Procedia PDF Downloads 362
49 Satisfaction Among Preclinical Medical Students with Low-Fidelity Simulation-Based Learning

Authors: Shilpa Murthy, Hazlina Binti Abu Bakar, Juliet Mathew, Chandrashekhar Thummala Hlly Sreerama Reddy, Pathiyil Ravi Shankar

Abstract:

Simulation is defined as a technique that replaces or expands real experiences with guided experiences that interactively imitate real-world processes or systems. Simulation enables learners to train in a safe and non-threatening environment. For decades, simulation has been considered an integral part of clinical teaching and learning strategy in medical education. The several types of simulation used in medical education and the clinical environment can be applied to several models, including full-body mannequins, task trainers, standardized simulated patients, virtual or computer-generated simulation, or Hybrid simulation that can be used to facilitate learning. Simulation allows healthcare practitioners to acquire skills and experience while taking care of patient safety. The recent COVID pandemic has also led to an increase in simulation use, as there were limitations on medical student placements in hospitals and clinics. The learning is tailored according to the educational needs of students to make the learning experience more valuable. Simulation in the pre-clinical years has challenges with resource constraints, effective curricular integration, student engagement and motivation, and evidence of educational impact, to mention a few. As instructors, we may have more reliance on the use of simulation for pre-clinical students while the students’ confidence levels and perceived competence are to be evaluated. Our research question was whether the implementation of simulation-based learning positively influences preclinical medical students' confidence levels and perceived competence. This study was done to align the teaching activities with the student’s learning experience to introduce more low-fidelity simulation-based teaching sessions for pre-clinical years and to obtain students’ input into the curriculum development as part of inclusivity. The study was carried out at International Medical University, involving pre-clinical year (Medical) students who were started with low-fidelity simulation-based medical education from their first semester and were gradually introduced to medium fidelity, too. The Student Satisfaction and Self-Confidence in Learning Scale questionnaire from the National League of Nursing was employed to collect the responses. The internal consistency reliability for the survey items was tested with Cronbach’s alpha using an Excel file. IBM SPSS for Windows version 28.0 was used to analyze the data. Spearman’s rank correlation was used to analyze the correlation between students’ satisfaction and self-confidence in learning. The significance level was set at p value less than 0.05. The results from this study have prompted the researchers to undertake a larger-scale evaluation, which is currently underway. The current results show that 70% of students agreed that the teaching methods used in the simulation were helpful and effective. The sessions are dependent on the learning materials that are provided and how the facilitators engage the students and make the session more enjoyable. The feedback provided inputs on the following areas to focus on while designing simulations for pre-clinical students. There are quality learning materials, an interactive environment, motivating content, skills and knowledge of the facilitator, and effective feedback.

Keywords: low-fidelity simulation, pre-clinical simulation, students satisfaction, self-confidence

Procedia PDF Downloads 36
48 Blue Economy and Marine Mining

Authors: Fani Sakellariadou

Abstract:

The Blue Economy includes all marine-based and marine-related activities. They correspond to established, emerging as well as unborn ocean-based industries. Seabed mining is an emerging marine-based activity; its operations depend particularly on cutting-edge science and technology. The 21st century will face a crisis in resources as a consequence of the world’s population growth and the rising standard of living. The natural capital stored in the global ocean is decisive for it to provide a wide range of sustainable ecosystem services. Seabed mineral deposits were identified as having a high potential for critical elements and base metals. They have a crucial role in the fast evolution of green technologies. The major categories of marine mineral deposits are deep-sea deposits, including cobalt-rich ferromanganese crusts, polymetallic nodules, phosphorites, and deep-sea muds, as well as shallow-water deposits including marine placers. Seabed mining operations may take place within continental shelf areas of nation-states. In international waters, the International Seabed Authority (ISA) has entered into 15-year contracts for deep-seabed exploration with 21 contractors. These contracts are for polymetallic nodules (18 contracts), polymetallic sulfides (7 contracts), and cobalt-rich ferromanganese crusts (5 contracts). Exploration areas are located in the Clarion-Clipperton Zone, the Indian Ocean, the Mid Atlantic Ridge, the South Atlantic Ocean, and the Pacific Ocean. Potential environmental impacts of deep-sea mining include habitat alteration, sediment disturbance, plume discharge, toxic compounds release, light and noise generation, and air emissions. They could cause burial and smothering of benthic species, health problems for marine species, biodiversity loss, reduced photosynthetic mechanism, behavior change and masking acoustic communication for mammals and fish, heavy metals bioaccumulation up the food web, decrease of the content of dissolved oxygen, and climate change. An important concern related to deep-sea mining is our knowledge gap regarding deep-sea bio-communities. The ecological consequences that will be caused in the remote, unique, fragile, and little-understood deep-sea ecosystems and inhabitants are still largely unknown. The blue economy conceptualizes oceans as developing spaces supplying socio-economic benefits for current and future generations but also protecting, supporting, and restoring biodiversity and ecological productivity. In that sense, people should apply holistic management and make an assessment of marine mining impacts on ecosystem services, including the categories of provisioning, regulating, supporting, and cultural services. The variety in environmental parameters, the range in sea depth, the diversity in the characteristics of marine species, and the possible proximity to other existing maritime industries cause a span of marine mining impact the ability of ecosystems to support people and nature. In conclusion, the use of the untapped potential of the global ocean demands a liable and sustainable attitude. Moreover, there is a need to change our lifestyle and move beyond the philosophy of single-use. Living in a throw-away society based on a linear approach to resource consumption, humans are putting too much pressure on the natural environment. Applying modern, sustainable and eco-friendly approaches according to the principle of circular economy, a substantial amount of natural resource savings will be achieved. Acknowledgement: This work is part of the MAREE project, financially supported by the Division VI of IUPAC. This work has been partly supported by the University of Piraeus Research Center.

Keywords: blue economy, deep-sea mining, ecosystem services, environmental impacts

Procedia PDF Downloads 55
47 Interactions between Sodium Aerosols and Fission Products: A Theoretical Chemistry and Experimental Approach

Authors: Ankita Jadon, Sidi Souvi, Nathalie Girault, Denis Petitprez

Abstract:

Safety requirements for Generation IV nuclear reactor designs, especially the new generation sodium-cooled fast reactors (SFR) require a risk-informed approach to model severe accidents (SA) and their consequences in case of outside release. In SFRs, aerosols are produced during a core disruptive accident when primary system sodium is ejected into the containment and burn in contact with the air; producing sodium aerosols. One of the key aspects of safety evaluation is the in-containment sodium aerosol behavior and their interaction with fission products. The study of the effects of sodium fires is essential for safety evaluation as the fire can both thermally damage the containment vessel and cause an overpressurization risk. Besides, during the fire, airborne fission product first dissolved in the primary sodium can be aerosolized or, as it can be the case for fission products, released under the gaseous form. The objective of this work is to study the interactions between sodium aerosols and fission products (Iodine, toxic and volatile, being the primary concern). Sodium fires resulting from an SA would produce aerosols consisting of sodium peroxides, hydroxides, carbonates, and bicarbonates. In addition to being toxic (in oxide form), this aerosol will then become radioactive. If such aerosols are leaked into the environment, they can pose a danger to the ecosystem. Depending on the chemical affinity of these chemical forms with fission products, the radiological consequences of an SA leading to containment leak tightness loss will also be affected. This work is split into two phases. Firstly, a method to theoretically understand the kinetics and thermodynamics of the heterogeneous reaction between sodium aerosols and fission products: I2 and HI are proposed. Ab-initio, density functional theory (DFT) calculations using Vienna ab-initio simulation package are carried out to develop an understanding of the surfaces of sodium carbonate (Na2CO3) aerosols and hence provide insight on its affinity towards iodine species. A comprehensive study of I2 and HI adsorption, as well as bicarbonate formation on the calculated lowest energy surface of Na2CO3, was performed which provided adsorption energies and description of the optimized configuration of adsorbate on the stable surface. Secondly, the heterogeneous reaction between (I2)g and Na2CO3 aerosols were investigated experimentally. To study this, (I2)g was generated by heating a permeation tube containing solid I2, and, passing it through a reaction chamber containing Na2CO3 aerosol deposit. The concentration of iodine was then measured at the exit of the reaction chamber. Preliminary observations indicate that there is an effective uptake of (I2)g on Na2CO3 surface, as suggested by our theoretical chemistry calculations. This work is the first step in addressing the gaps in knowledge of in-containment and atmospheric source term which are essential aspects of safety evaluation of SFR SA. In particular, this study is aimed to determine and characterize the radiological and chemical source term. These results will then provide useful insights for the developments of new models to be implemented in integrated computer simulation tool to analyze and evaluate SFR safety designs.

Keywords: iodine adsorption, sodium aerosols, sodium cooled reactor, DFT calculations, sodium carbonate

Procedia PDF Downloads 193
46 Examining Language as a Crucial Factor in Determining Academic Performance: A Case of Business Education in Hong Kong

Authors: Chau So Ling

Abstract:

I.INTRODUCTION: Educators have always been interested in exploring factors that contribute to students’ academic success. It is beyond question that language, as a medium of instruction, will affect student learning. This paper tries to investigate whether language is a crucial factor in determining students’ achievement in their studies. II. BACKGROUND AND SIGNIFICANCE OF STUDY: The issue of using English as a medium of instruction in Hong Kong is a special topic because Hong Kong is a post-colonial and international city which a British colony. In such a specific language environment, researchers in the education field have always been interested in investigating students’ language proficiency and its relation to academic achievement and other related educational indicators such as motivation to learn, self-esteem, learning effectiveness, self-efficacy, etc. Along this line of thought, this study specifically focused on business education. III. METHODOLOGY: The methodology in this study involved two sequential stages, namely, a focus group interview and a data analysis. The whole study was directed towards both qualitative and quantitative aspects. The subjects of the study were divided into two groups. For the first group participating in the interview, a total of ten high school students were invited. They studied Business Studies, and their English standard was varied. The theme of the discussion was “Does English affect your learning and examination results of Business Studies?” The students were facilitated to discuss the extent to which English standard affected their learning of Business subjects and requested to rate the correlation between English and performance of Business Studies on a five-point scale. The second stage of the study involved another group of students. They were high school graduates who had taken the public examination for entering universities. A database containing their public examination results for different subjects has been obtained for the purpose of statistical analysis. Hypotheses were tested and evidence was obtained from the focus group interview to triangulate the findings. V. MAJOR FINDINGS AND CONCLUSION: By sharing of personal experience, the discussion of focus group interviews indicated that higher English standards could help the students achieve better learning and examination performance. In order to end the interview, the students were asked to indicate the correlation between English proficiency and performance of Business Studies on a five-point scale. With point one meant least correlated, ninety percent of the students gave point four for the correlation. The preliminary results illustrated that English plays an important role in students’ learning of Business Studies, or at least this was what the students perceived, which set the hypotheses for the study. After conducting the focus group interview, further evidence had to be gathered to support the hypotheses. The data analysis part tried to find out the relationship by correlating the students’ public examination results of Business Studies and levels of English standard. The results indicated a positive correlation between their English standard and Business Studies examination performance. In order to highlight the importance of the English language to the study of Business Studies, the correlation between the public examination results of other non-business subjects was also tested. Statistical results showed that language does play a role in affecting students’ performance in studying Business subjects than the other subjects. The explanation includes the dynamic subject nature, examination format and study requirements, the specialist language used, etc. Unlike Science and Geography, students in their learning process might find it more difficult to relate business concepts or terminologies to their own experience, and there are not many obvious physical or practical activities or visual aids to serve as evidence or experiments. It is well-researched in Hong Kong that English proficiency is a determinant of academic success. Other research studies verified such a notion. For example, research revealed that the more enriched the language experience, the better the cognitive performance in conceptual tasks. The ability to perform this kind of task is particularly important to students taking Business subjects. Another research was carried out in the UK, which was geared towards identifying and analyzing the reasons for underachievement across a cohort of GCSE students taking Business Studies. Results showed that weak language ability was the main barrier to raising students’ performance levels. It seemed that the interview result was successfully triangulated with data findings. Although education failure cannot be restricted to linguistic failure and language is just one of the variables to play in determining academic achievement, it is generally accepted that language does affect students’ academic performance. It is just a matter of extent. This paper provides recommendations for business educators on students’ language training and sheds light on more research possibilities in this area.

Keywords: academic performance, language, learning, medium of instruction

Procedia PDF Downloads 93
45 Reduced General Dispersion Model in Cylindrical Coordinates and Isotope Transient Kinetic Analysis in Laminar Flow

Authors: Masood Otarod, Ronald M. Supkowski

Abstract:

This abstract discusses a method that reduces the general dispersion model in cylindrical coordinates to a second order linear ordinary differential equation with constant coefficients so that it can be utilized to conduct kinetic studies in packed bed tubular catalytic reactors at a broad range of Reynolds numbers. The model was tested by 13CO isotope transient tracing of the CO adsorption of Boudouard reaction in a differential reactor at an average Reynolds number of 0.2 over Pd-Al2O3 catalyst. Detailed experimental results have provided evidence for the validity of the theoretical framing of the model and the estimated parameters are consistent with the literature. The solution of the general dispersion model requires the knowledge of the radial distribution of axial velocity. This is not always known. Hence, up until now, the implementation of the dispersion model has been largely restricted to the plug-flow regime. But, ideal plug-flow is impossible to achieve and flow regimes approximating plug-flow leave much room for debate as to the validity of the results. The reduction of the general dispersion model transpires as a result of the application of a factorization theorem. Factorization theorem is derived from the observation that a cross section of a catalytic bed consists of a solid phase across which the reaction takes place and a void or porous phase across which no significant measure of reaction occurs. The disparity in flow and the heterogeneity of the catalytic bed cause the concentration of reacting compounds to fluctuate radially. These variabilities signify the existence of radial positions at which the radial gradient of concentration is zero. Succinctly, factorization theorem states that a concentration function of axial and radial coordinates in a catalytic bed is factorable as the product of the mean radial cup-mixing function and a contingent dimensionless function. The concentration of adsorbed compounds are also factorable since they are piecewise continuous functions and suffer the same variability but in the reverse order of the concentration of mobile phase compounds. Factorability is a property of packed beds which transforms the general dispersion model to an equation in terms of the measurable mean radial cup-mixing concentration of the mobile phase compounds and mean cross-sectional concentration of adsorbed species. The reduced model does not require the knowledge of the radial distribution of the axial velocity. Instead, it is characterized by new transport parameters so denoted by Ωc, Ωa, Ωc, and which are respectively denominated convection coefficient cofactor, axial dispersion coefficient cofactor, and radial dispersion coefficient cofactor. These cofactors adjust the dispersion equation as compensation for the unavailability of the radial distribution of the axial velocity. Together with the rest of the kinetic parameters they can be determined from experimental data via an optimization procedure. Our data showed that the estimated parameters Ωc, Ωa Ωr, are monotonically correlated with the Reynolds number. This is expected to be the case based on the theoretical construct of the model. Computer generated simulations of methanation reaction on nickel provide additional support for the utility of the newly conceptualized dispersion model.

Keywords: factorization, general dispersion model, isotope transient kinetic, partial differential equations

Procedia PDF Downloads 244
44 A Model to Assess Sustainability Using Multi-Criteria Analysis and Geographic Information Systems: A Case Study

Authors: Antonio Boggia, Luisa Paolotti, Gianluca Massei, Lucia Rocchi, Elaine Pace, Maria Attard

Abstract:

The aim of this paper is to present a methodology and a computer model for sustainability assessment based on the integration of Multi-criteria Decision Analysis (MCDA) with a Geographic Information System (GIS). It presents the result of a study for the implementation of a model for measuring sustainability to address the policy actions for the improvement of sustainability at territory level. The aim is to rank areas in order to understand the specific technical and/or financial support that is required to develop sustainable growth. Assessing sustainable development is a multidimensional problem: economic, social and environmental aspects have to be taken into account at the same time. The tool for a multidimensional representation is a proper set of indicators. The set of indicators must be integrated into a model, that is an assessment methodology, to be used for measuring sustainability. The model, developed by the Environmental Laboratory of the University of Perugia, is called GeoUmbriaSUIT. It is a calculation procedure developed as a plugin working in the open-source GIS software QuantumGIS. The multi-criteria method used within GeoUmbriaSUIT is the algorithm TOPSIS (Technique for Order Preference by Similarity to Ideal Design), which defines a ranking based on the distance from the worst point and the closeness to an ideal point, for each of the criteria used. For the sustainability assessment procedure, GeoUmbriaSUIT uses a geographic vector file where the graphic data represent the study area and the single evaluation units within it (the alternatives, e.g. the regions of a country, or the municipalities of a region), while the alphanumeric data (attribute table), describe the environmental, economic and social aspects related to the evaluation units by means of a set of indicators (criteria). The use of the algorithm available in the plugin allows to treat individually the indicators representing the three dimensions of sustainability, and to compute three different indices: environmental index, economic index and social index. The graphic output of the model allows for an integrated assessment of the three dimensions, avoiding aggregation. The presence of separate indices and graphic output make GeoUmbriaSUIT a readable and transparent tool, since it doesn’t produce an aggregate index of sustainability as final result of the calculations, which is often cryptic and difficult to interpret. In addition, it is possible to develop a “back analysis”, able to explain the positions obtained by the alternatives in the ranking, based on the criteria used. The case study presented is an assessment of the level of sustainability in the six regions of Malta, an island state in the middle of the Mediterranean Sea and the southernmost member of the European Union. The results show that the integration of MCDA-GIS is an adequate approach for sustainability assessment. In particular, the implemented model is able to provide easy to understand results. This is a very important condition for a sound decision support tool, since most of the time decision makers are not experts and need understandable output. In addition, the evaluation path is traceable and transparent.

Keywords: GIS, multi-criteria analysis, sustainability assessment, sustainable development

Procedia PDF Downloads 249
43 Development of Adaptive Proportional-Integral-Derivative Feeding Mechanism for Robotic Additive Manufacturing System

Authors: Andy Alubaidy

Abstract:

In this work, a robotic additive manufacturing system (RAMS) that is capable of three-dimensional (3D) printing in six degrees of freedom (DOF) with very high accuracy and virtually on any surface has been designed and built. One of the major shortcomings in existing 3D printer technology is the limitation to three DOF, which results in prolonged fabrication time. Depending on the techniques used, it usually takes at least two hours to print small objects and several hours for larger objects. Another drawback is the size of the printed objects, which is constrained by the physical dimensions of most low-cost 3D printers, which are typically small. In such cases, large objects are produced by dividing them into smaller components that fit the printer’s workable area. They are then glued, bonded or otherwise attached to create the required object. Another shortcoming is material constraints and the need to fabricate a single part using different materials. With the flexibility of a six-DOF robot, the RAMS has been designed to overcome these problems. A feeding mechanism using an adaptive Proportional-Integral-Derivative (PID) controller is utilized along with a national instrument compactRIO (NI cRIO), an ABB robot, and off-the-shelf sensors. The RAMS have the ability to 3D print virtually anywhere in six degrees of freedom with very high accuracy. It is equipped with an ABB IRB 120 robot to achieve this level of accuracy. In order to convert computer-aided design (CAD) files to digital format that is acceptable to the robot, Hypertherm Robotic Software Inc.’s state-of-the-art slicing software called “ADDMAN” is used. ADDMAN is capable of converting any CAD file into RAPID code (the programing language for ABB robots). The robot uses the generated code to perform the 3D printing. To control the entire process, National Instrument (NI) compactRIO (cRio 9074), is connected and communicated with the robot and a feeding mechanism that is designed and fabricated. The feeding mechanism consists of two major parts, cold-end and hot-end. The cold-end consists of what is conventionally known as an extruder. Typically, a stepper-motor is used to control the push on the material, however, for optimum control, a DC motor is used instead. The hot-end consists of a melt-zone, nozzle, and heat-brake. The melt zone ensures a thorough melting effect and consistent output from the nozzle. Nozzles are made of brass for thermo-conductivity while the melt-zone is comprised of a heating block and a ceramic heating cartridge to transfer heat to the block. The heat-brake ensures that there is no heat creep-up effect as this would swell the material and prevent consistent extrusion. A control system embedded in the cRio is developed using NI Labview which utilizes adaptive PID to govern the heating cartridge in conjunction with a thermistor. The thermistor sends temperature feedback to the cRio, which will issue heat increase or decrease based on the system output. Since different materials have different melting points, our system will allow us to adjust the temperature and vary the material.

Keywords: robotic, additive manufacturing, PID controller, cRIO, 3D printing

Procedia PDF Downloads 193
42 Tales of Two Cities: 'Motor City' Detroit and 'King Cotton' Manchester: Transatlantic Transmissions and Transformations, Flows of Communications, Commercial and Cultural Connections

Authors: Dominic Sagar

Abstract:

Manchester ‘King Cotton’, the first truly industrial city of the nineteenth century, passing on the baton to Detroit ‘Motor City’, is the first truly modern city. We are exploring the tales of the two cities, their rise and fall and subsequent post-industrial decline, their transitions and transformations, whilst alongside paralleling their corresponding, commercial, cultural, industrial and even agricultural, artistic and musical transactions and connections. The paper will briefly contextualize how technologies of the industrial age and modern age have been instrumental in the development of these cities and other similar cities including New York. However, the main focus of the study will be the present and more importantly the future, how globalisation and the advancements of digital technologies and industries have shaped the cities developments from AlanTuring and the making of the first programmable computer to the effect of digitalisation and digital initiatives. Manchester now has a thriving creative digital infrastructure of Digilabs, FabLabs, MadLabs and hubs, the study will reference the Smart Project and the Manchester Digital Development Association whilst paralleling similar digital and creative industrial initiatives now starting to happen in Detroit. The paper will explore other topics including the need to allow for zones of experimentation, areas to play, think and create in order develop and instigate new initiatives and ideas of production, carrying on the tradition of influential inventions throughout the history of these key cities. Other topics will be briefly touched on, such as urban farming, citing the Biospheric foundation in Manchester and other similar projects in Detroit. However, the main thread will focus on the music industries and how they are contributing to the regeneration of cities. Musically and artistically, Manchester and Detroit have been closely connected by the flow and transmission of information and transfer of ideas via ‘cars and trains and boats and planes’ through to the new ‘super highway’. From Detroit to Manchester often via New York and Liverpool and back again, these musical and artistic connections and flows have greatly affected and influenced both cities and the advancement of technology are still connecting the cities. In summary two hugely important industrial cities, subsequently both experienced massive decline in fortunes, having had their large industrial hearts ripped out, ravaged leaving dying industrial carcasses and car crashes of despair, dereliction, desolation and post-industrial wastelands vacated by a massive exodus of the cities’ inhabitants. To examine the affinity, similarity and differences between Manchester & Detroit, from their industrial importance to their post-industrial decline and their current transmutations, transformations, transient transgressions, cities in transition; contrasting how they have dealt with these problems and how they can learn from each other. With a view to framing these topics with regard to how various communities have shaped these cities and the creative industries and design [the new cotton/car manufacturing industries] are reinventing post-industrial cities, to speculate on future development of these themes in relation to Globalisation, digitalisation and how cities can function to develop solutions to communal living in cities of the future.

Keywords: cultural capital, digital developments, musical initiatives, zones of experimentation

Procedia PDF Downloads 165