Search results for: soil strength
1898 Fiber-Based 3D Cellular Reinforcing Structures for Mineral-Bonded Composites with Enhanced Structural Impact Tolerance
Authors: Duy M. P. Vo, Cornelia Sennewald, Gerald Hoffmann, Chokri Cherif
Abstract:
The development of solutions to improve the resistance of buildings to short-term dynamic loads, particularly impact load, is driven by the urgent demand worldwide on securing human life and critical infrastructures. The research training group GRK 2250/1 aims to develop mineral-bonded composites that allow the fabrication of thin-layered strengthening layers providing available concrete members with enhanced impact resistance. This paper presents the development of 3D woven wire cellular structures that can be used as innovative reinforcement for targeted composites. 3D woven wire cellular structures are truss-like architectures that can be fabricated in an automatized process with a great customization possibility. The specific architecture allows this kind of structures to have good load bearing capability and forming behavior, which is of great potential to give strength against impact loading. An appropriate combination of topology and material enables an optimal use of thin-layered reinforcement in concrete constructions.Keywords: 3D woven cellular structures, ductile behavior, energy absorption, fiber-based reinforced concrete, impact resistant
Procedia PDF Downloads 2981897 Integrating Assurance and Risk Management of Complex Systems
Authors: Odd Ivar Haugen
Abstract:
This paper explores the relationship between assurance, risk, and risk management in the context of complex safety-related systems. It introduces a nuanced understanding of assurance and argues that the foundation for grounds for justified confidence in claims made about a complex system is related to the system behaviour. It emphasises the importance of knowledge as the cornerstone of assurance. The paper addresses the challenges of epistemic and aleatory uncertainties inherent in safety-critical systems. A systems approach is proposed to model emergent properties and complexity using the composition, environment, structure, mechanisms (CESM) metamodel, offering a structured framework for analysing system behaviour. The interplay between assurance and risk management is conceptualised through two models: the domain model and the control model. Assurance and risk management are mutually dependent on each other to reduce uncertainty and control risk levels. This work highlights the dual roles of assurance in risk management, acting as an epistemic actuator on the one side and providing feedback about the strength of the justification on the other. Assurance and risk management have inseparable roles in ensuring safety in complex systems.Keywords: assurance, CESM metamodel, confidence, emergent properties, knowledge, objectivity, risk, system behaviour, system safety
Procedia PDF Downloads 51896 Simulation of Fiber Deposition on Molded Fiber Screen Using Multi-Sphere Discrete Element Method
Authors: Kim Quy Le, Duan Fei, Jia Wei Chew, Jun Zeng, Maria Fabiola Leyva
Abstract:
In line with the sustainable development goal, molded fiber products play important roles in reducing plastic-based packaging. To fabricate molded fiber products, besides using conventional meshing tools, 3D printing is employed to manufacture the molded fiber screen. 3D printing technique allows printing molded fiber screens with complex geometry, flexible in pore size and shape. The 3D printed molded fiber screens are in the progress of investigation to improve the de-watering efficiency, fiber collection, mechanical strength, etc. In addition, the fiber distribution on the screen is also necessary to access the quality of the screen. Besides using experimental methods to capture the fiber distribution on screen, simulation also offers using tools to access the uniformity of fiber. In this study, the fiber was simulated using the multi-sphere model to simulate the fibers. The interaction of the fibers was able to mimic by employing the discrete element method. The fiber distribution was captured and compared to the experiment. The simulation results were able to reveal the fiber deposition layer upon layer and explain the formation of uneven thickness on the tilted area of molded fiber screen.Keywords: 3D printing, multi-jet fusion, molded fiber screen, discrete element method
Procedia PDF Downloads 1141895 Production, Characterisation, and in vitro Degradation and Biocompatibility of a Solvent-Free Polylactic-Acid/Hydroxyapatite Composite for 3D-Printed Maxillofacial Bone-Regeneration Implants
Authors: Carlos Amnael Orozco-Diaz, Robert David Moorehead, Gwendolen Reilly, Fiona Gilchrist, Cheryl Ann Miller
Abstract:
The current gold-standard for maxillofacial reconstruction surgery (MRS) utilizes auto-grafted cancellous bone as a filler. This study was aimed towards developing a polylactic-acid/hydroxyapatite (PLA-HA) composite suitable for fused-deposition 3D printing. Functionalization of the polymer through the addition of HA was directed to promoting bone-regeneration properties so that the material can rival the performance of cancellous bone grafts in terms of bone-lesion repair. This kind of composite enables the production of MRS implants based off 3D-reconstructions from image studies – namely computed tomography – for anatomically-correct fitting. The present study encompassed in-vitro degradation and in-vitro biocompatibility profiling for 3D-printed PLA and PLA-HA composites. PLA filament (Verbatim Co.) and Captal S hydroxyapatite micro-scale HA powder (Plasma Biotal Ltd) were used to produce PLA-HA composites at 5, 10, and 20%-by-weight HA concentration. These were extruded into 3D-printing filament, and processed in a BFB-3000 3D-Printer (3D Systems Co.) into tensile specimens, and were mechanically challenged as per ASTM D638-03. Furthermore, tensile specimens were subjected to accelerated degradation in phosphate-buffered saline solution at 70°C for 23 days, as per ISO-10993-13-2010. This included monitoring of mass loss (through dry-weighing), crystallinity (through thermogravimetric analysis/differential thermal analysis), molecular weight (through gel-permeation chromatography), and tensile strength. In-vitro biocompatibility analysis included cell-viability and extracellular matrix deposition, which were performed both on flat surfaces and on 3D-constructs – both produced through 3D-printing. Discs of 1 cm in diameter and cubic 3D-meshes of 1 cm3 were 3D printed in PLA and PLA-HA composites (n = 6). The samples were seeded with 5000 MG-63 osteosarcoma-like cells, with cell viability extrapolated throughout 21 days via resazurin reduction assays. As evidence of osteogenicity, collagen and calcium deposition were indirectly estimated through Sirius Red staining and Alizarin Red staining respectively. Results have shown that 3D printed PLA loses structural integrity as early as the first day of accelerated degradation, which was significantly faster than the literature suggests. This was reflected in the loss of tensile strength down to untestable brittleness. During degradation, mass loss, molecular weight, and crystallinity behaved similarly to results found in similar studies for PLA. All composite versions and pure PLA were found to perform equivalent to tissue-culture plastic (TCP) in supporting the seeded-cell population. Significant differences (p = 0.05) were found on collagen deposition for higher HA concentrations, with composite samples performing better than pure PLA and TCP. Additionally, per-cell-calcium deposition on the 3D-meshes was significantly lower when comparing 3D-meshes to discs of the same material (p = 0.05). These results support the idea that 3D-printable PLA-HA composites are a viable resorbable material for artificial grafts for bone-regeneration. Degradation data suggests that 3D-printing of these materials – as opposed to other manufacturing methods – might result in faster resorption than currently-used PLA implants.Keywords: bone regeneration implants, 3D-printing, in vitro testing, biocompatibility, polymer degradation, polymer-ceramic composites
Procedia PDF Downloads 1551894 An Adaptive Neuro-Fuzzy Inference System (ANFIS) Modelling of Bleeding
Authors: Seyed Abbas Tabatabaei, Fereydoon Moghadas Nejad, Mohammad Saed
Abstract:
The bleeding prediction of the asphalt is one of the most complex subjects in the pavement engineering. In this paper, an Adaptive Neuro Fuzzy Inference System (ANFIS) is used for modeling the effect of important parameters on bleeding is trained and tested with the experimental results. bleeding index based on the asphalt film thickness differential as target parameter,asphalt content, temperature depth of two centemeter, heavy traffic, dust to effective binder, Marshall strength, passing 3/4 sieves, passing 3/8 sieves,passing 3/16 sieves, passing NO8, passing NO50, passing NO100, passing NO200 as input parameters. Then, we randomly divided empirical data into train and test sections in order to accomplish modeling. We instructed ANFIS network by 72 percent of empirical data. 28 percent of primary data which had been considered for testing the approprativity of the modeling were entered into ANFIS model. Results were compared by two statistical criterions (R2, RMSE) with empirical ones. Considering the results, it is obvious that our proposed modeling by ANFIS is efficient and valid and it can also be promoted to more general states.Keywords: bleeding, asphalt film thickness differential, Anfis Modeling
Procedia PDF Downloads 2691893 Nitrogen Uptake of Different Safflower (Carthamus tinctorius L.) Genotypes at Different Growth Stages in Semi-Arid Conditions
Authors: Zehra Aytac, Nurdilek Gulmezoglu
Abstract:
Safflower has been grown for centuries for many purposes worldwide. Especially it is important for the orange-red dye from its petal and for its high-quality oil obtained from the seeds. The crop is high adaptable to areas with insufficient rainfall and poor soil conditions. The plant has a deep taproot that can draw moisture and plant nutrients from deep to the subsoil. The research was carried out to study the nitrogen (N) uptake of different safflower cultivars and lines at different stages of growth and different plant parts in the experimental field of Faculty of Agriculture, Eskişehir Osmangazi University under semi-arid conditions. Different safflower cultivars and lines of varied origins were used as the material. The cultivars and lines were planted in a Randomized Complete Block Design with three replications. Two different growth stages (flowering and harvest) and three different plant parts (head, stem+leaf and seed) were determined. The nitrogen concentration of different plant parts was determined by the Kjeldahl method. Statistical analysis were performed by analysis of variance for each growth stage and plant parts taking a level of p < 0.05 and p < 0.01 as significant according to the LSD test. As a result, N concentration showed significant differences among different plant parts and different growth stages for different safflower genotypes of varied origins.Keywords: Carthamus tinctorius L., growth stages, head N, leaf N, N uptake, seed N, Safflower
Procedia PDF Downloads 2241892 Poly(S/DVB)HIPE Filled with Cellulose from Water Hyacinth
Authors: Metinee Kawsomboon, Thanchanok Tulaphol, Manit Nithitanakul, Jitima Preechawong
Abstract:
PolyHIPE is a porous polymeric material from polymerization of high internal phase emulsion (HIPE) which contains 74% of internal phase (disperse phase) and 26 % of external phase (continues phase). Typically, polyHIPE was prepared from styrene (S) and divinylbenzene (DVB) and they were used in various kind of applications such as catalyst support, gas adsorption, separation membranes, and tissue engineering scaffolds due to high specific surface areas, high porousity, ability to adsorb large quantities of liquid. In this research, cellulose from water hyacinth (Eichornia Crassipes), an aquatic plant that grows and spread rapidly in rivers and waterways in Thailand was added into polyHIPE to increase mechanical property of polyHIPE. Addition of unmodified and modified cellulose to poly(S/DVB)HIPE resulting in a decrease in the surface area and thermal stability of the resulting materials. Mechanical properties of the resulting polyHIPEs filled with both unmodified and modified cellulose exhibited higher compressive strength and Young’s modulus by 146.3% and 162.5% respectively, compared to unfilled polyHIPEs. The water adsorption capacity of filled polyHIPE was also improved.Keywords: porous polymer, PolyHIPE, cellulose, surface modification, water hyacinth
Procedia PDF Downloads 1421891 Development of Heating Elements Based on Fe₂O₃ Reduction Products by Waste Active Sludge
Authors: Abigail Parra Parra, Jorge L. Morelos Hernandez, Pedro A. Marquez Agilar, Marina Vlasova, Jesus Colin De La Cruz
Abstract:
Carbothermal reduction of metal oxides is widely used both in metallurgical processes and in the production of oxygen-free refractory ceramics. As a rule, crushed coke and graphite are used as a reducing agent. The products of carbonization of organic compounds are among the innovative reducing agents. The aim of this work was to study the process of reduction of iron oxide (hematite) down to iron by waste active sludge (WAS) carbonization products. WAS was chosen due to the accumulation of a large amount of this type of waste, soil pollution, and the relevance of the development of technologies for its disposal. The studies have shown that the temperature treatment of mixtures WAS-Fe₂O₃ in the temperature range 900-1000 ºC for 1-5 hours under oxygen deficiency is described by the following scheme: WAS + Fe₂O₃→ C,CO + Fe₂O₃→ C + FexO → Fe (amorphous and crystalline). During the heat treatment of the mixtures, strong samples are formed. The study of the electrical conductive properties of such samples showed that, depending on the ratio of the components in the initial mixtures, it is possible to change the values of electrical resistivity from 5.6 Ω‧m to 151.6 Ω‧m When a current is passed through the samples, they are heated from 240 to 378ºC. Thus, based on WAS-Fe₂O₃ mixtures, heating elements can be created that can be used to heat ceramics and concrete.Keywords: Fe₂O₃, reduction, waste activate sludge, electroconductivity
Procedia PDF Downloads 1371890 Investigating Reservior Sedimentation Control in the Conservation of Water
Authors: Mosupi Ratshaa
Abstract:
Despite years of diligent study, sedimentation is still undoubtedly the most severe technical problem faced by the dam industry. The problem of sedimentation build-up and its removal should be the focus as an approach to remedy this. The world's reservoirs lose about 1% of their storage capacity yearly to sedimentation, what this means is that 1% of water that could be stored is lost the world-over. The increase in population means that the need for water also increases and, therefore, the loss due to sedimentation is of great concern especially to the conservation of water. When it comes to reservoir sedimentation, the thought of water conservation comes with soil conservation since this increasing sediment that takes the volume meant for water is being lost from dry land. For this reason, reservoir sediment control is focused on reducing sediment entering the reservoir and reducing sediment within the reservoir. There are many problems with sediment control such as the difficulty to predict settling patterns, inability to greatly reduce the sediment volume entering the river flow which increases the reservoirs trap efficiency just to mention a few. Notably reservoirs are habitats for flora and fauna, the process of removing sediment from these reservoirs damages this ecosystem so there is an ethical point to be considered in this section. This paper looks at the methods used to control the sedimentation of reservoirs and their effects to the ecosystem in the aim of reducing water losses due to sedimentation. Various control measures which reduce sediment entering the reservoir such as Sabo dams or Check dams along with measures which emphasize the reduction in built-up settled sediment such as flushing will be reviewed all with the prospect of conservation.Keywords: sedimentation, conservation, ecosystem, flushing
Procedia PDF Downloads 3361889 Stress Analysis of the Ceramics Heads with Different Sizes under the Destruction Tests
Authors: V. Fuis, P. Janicek, T. Navrat
Abstract:
The global solved problem is the calculation of the parameters of ceramic material from a set of destruction tests of ceramic heads of total hip joint endoprosthesis. The standard way of calculation of the material parameters consists in carrying out a set of 3 or 4 point bending tests of specimens cut out from parts of the ceramic material to be analysed. In case of ceramic heads, it is not possible to cut out specimens of required dimensions because the heads are too small (if the cut out specimens were smaller than the normalized ones, the material parameters derived from them would exhibit higher strength values than those which the given ceramic material really has). A special destruction device for heads destruction was designed and the solved local problem is the modification of this destructive device based on the analysis of tensile stress in the head for two different values of the depth of the conical hole in the head. The goal of device modification is a shift of the location with extreme value of 1 max from the region of head’s hole bottom to its opening. This modification will increase the credibility of the obtained material properties of bio ceramics, which will be determined from a set of head destructions using the Weibull weakest link theory.Keywords: ceramic heads, depth of the conical hole, destruction test, material parameters, principal stress, total hip joint endoprosthesis
Procedia PDF Downloads 4191888 Strategy Management of Soybean (Glycine max L.) for Dealing with Extreme Climate through the Use of Cropsyst Model
Authors: Aminah Muchdar, Nuraeni, Eddy
Abstract:
The aims of the research are: (1) to verify the cropsyst plant model of experimental data in the field of soybean plants and (2) to predict planting time and potential yield soybean plant with the use of cropsyst model. This research is divided into several stages: (1) first calibration stage which conducted in the field from June until September 2015.(2) application models stage, where the data obtained from calibration in the field will be included in cropsyst models. The required data models are climate data, ground data/soil data,also crop genetic data. The relationship between the obtained result in field with simulation cropsyst model indicated by Efficiency Index (EF) which the value is 0,939.That is showing that cropsyst model is well used. From the calculation result RRMSE which the value is 1,922%.That is showing that comparative fault prediction results from simulation with result obtained in the field is 1,92%. The conclusion has obtained that the prediction of soybean planting time cropsyst based models that have been made valid for use. and the appropriate planting time for planting soybeans mainly on rain-fed land is at the end of the rainy season, in which the above study first planting time (June 2, 2015) which gives the highest production, because at that time there was still some rain. Tanggamus varieties more resistant to slow planting time cause the percentage decrease in the yield of each decade is lower than the average of all varieties.Keywords: soybean, Cropsyst, calibration, efficiency Index, RRMSE
Procedia PDF Downloads 1801887 Neural Networks-based Acoustic Annoyance Model for Laptop Hard Disk Drive
Authors: Yichao Ma, Chengsiong Chin, Wailok Woo
Abstract:
Since the last decade, there has been a rapid growth in digital multimedia, such as high-resolution media files and three-dimentional movies. Hence, there is a need for large digital storage such as Hard Disk Drive (HDD). As such, users expect to have a quieter HDD in their laptop. In this paper, a jury test has been conducted on a group of 34 people where 17 of them are students who is the potential consumer, and the remaining are engineers who know the HDD. A total 13 HDD sound samples have been selected from over hundred HDD noise recordings. These samples are selected based on an agreed subjective feeling. The samples are played to the participants using head acoustic playback system which enabled them to experience as similar as possible the same environment as have been recorded. Analysis has been conducted and the obtained results have indicated different group has different perception over the noises. Two neural network-based acoustic annoyance models are established based on back propagation neural network. Four psychoacoustic metrics, loudness, sharpness, roughness and fluctuation strength, are used as the input of the model, and the subjective evaluation results are taken as the output. The developed models are reasonably accurate in simulating both training and test samples.Keywords: hdd noise, jury test, neural network model, psychoacoustic annoyance
Procedia PDF Downloads 4381886 Metagenomics Profile during the Bioremediation of Fischer-Tropsch Derived Short-Chain Alcohols and Volatile Fatty Acids Using a Moving Bed Biofilm Reactor
Authors: Mabtho Moreroa-Monyelo, Grace Ijoma, Rosina Nkuna, Tonderayi Matambo
Abstract:
A moving bed biofilm reactor (MBBR) was used for the bioremediation of high strength chemical oxygen demand (COD) Fisher-Tropsch (FT) wastewater. The aerobic MBBR system was operated over 60 days. For metagenomics profile assessment of the targeted 16S sequence of bacteria involved in the bioremediation of the chemical compounds, sludge samples were collected every second day of operation. Parameters such as pH and COD were measured daily to compare the system efficiency as the changedin microbial diversity progressed. The study revealed that pH was a contributing factor to microbial diversity, which further affected the efficiency of the MBBR system. The highest COD removal rate of 86.4% was achieved at pH 8.3. It was observed that when there was more, A higher bacterial diversity led to an improvement in the reduction of COD. Furthermore, an OTUof 4530 was obtained, which were divided into 12 phyla, 27 classes, 44 orders, 74 families, and 138 genera across all sludge samples from the MBBR. A determination of the relative abundance of microorganisms at phyla level indicates that the most abundant phylum on day it was Firmicutes (50%); thereafter, the most abundant phylum changed toProteobacteria.Keywords: biodegradation, fischer-tropsch wastewater, metagenomics, moving bed biofilm reactor
Procedia PDF Downloads 1591885 Research and Innovation Centre
Authors: Krasimir Ivanov, Tonyo Tonev, Nguyen Nguyen, Alexander Peltekov, Anyo Mitkov
Abstract:
Maize is among the most economically important crops and at the same time one of the most sensitive to soil deficiency in zinc. In this paper, the impact of the foliar zinc application in the form of zinc hydroxy nitrate suspension on the micro and macro elements partitioning in maize leaves and grain was studied during spring maize season, 2017. The impact of the foliar zinc fertilization on the grain yield and quality was estimated too. The experiment was performed by the randomized block design with 8 variants in 3 replications. Seven suspension solutions whit different Zn concentration were used, including ZnO suspension and zinc hydroxyl nitrate alone or nixed with other nutrients. Fertilization and irrigation were the same for all variants. The Zn content and the content of selected micro (Cu, Fe) and macro (Ca, Mg, P and K) elements in maize leaves were determined two weeks after the first spraying (5-6 sheets), two weeks after the second spraying (9-10 sheets) and after harvesting. It was concluded that the synthesized zinc hydroxy nitrate demonstrates potential as the long-term foliar fertilizer. A significant (p < 0.05) effect of zinc accumulation in maize leaves by foliar zinc application during the first growth stage was found, followed by its reutilization to other plants organs during the second growth stage. Significant export of Cu, P, and K from lower and middle leaves was observed. The content of Ca and Mg remains constant in the whole longevity period, while the content of Fe decreases sharply.Keywords: foliar fertilization, zinc hydroxy nitrate, maize, zinc
Procedia PDF Downloads 1661884 Lessons Learnt from Moment Magnitude 7.8 Gorkha, Nepal Earthquake
Authors: Narayan Gurung, Fawu Wang, Ranjan Kumar Dahal
Abstract:
Nepal is highly prone to earthquakes and has witnessed at least one major earthquake in 80 to 90 years interval. The Gorkha earthquake, that measured 7.8 RS in magnitude and struck Nepal on 25th April 2015, after 81 years since Mw 8.3 Nepal Bihar earthquake in 1934, was the largest earthquake after Mw 8.3 Nepal Bihar earthquake. In this paper, an attempt has been made to highlight the lessons learnt from the MwW 7.8 Gorkha (Nepal) earthquake. Several types of damage patterns in buildings were observed for reinforced concrete buildings, as well as for unreinforced masonry and adobe houses in the earthquake of 25 April 2015. Many field visits in the affected areas were conducted, and thus, associated failure and damage patterns were identified and analyzed. Damage patterns in non-engineered buildings, middle and high-rise buildings, commercial complexes, administrative buildings, schools and other critical facilities are also included from the affected districts. For most buildings, the construction and structural deficiencies have been identified as the major causes of failure; however, topography, local soil amplification, foundation settlement, liquefaction associated damages and buildings built in hazard-prone areas were also significantly observed for the failure or damages to buildings and hence are reported. Finally, the lessons learnt from Mw 7.8 Gorkha (Nepal) earthquake are presented in order to mitigate impacts of future earthquakes in Nepal.Keywords: Gorkha earthquake, reinforced concrete structure, Nepal, lesson learnt
Procedia PDF Downloads 2021883 Consumer Acceptability of Crackers Produced from Blend of Sprouted Pigeon Pea, Unripe Plantain and Brewers’ Spent Grain and Its Hypoglycemic Effect in Diabetic Rats
Authors: Nneka N. Uchegbu
Abstract:
Physical, sensory properties and hypoglycemic effect of crackers produced from sprouted pigeon pea, unripe plantain and brewers’ spent grain fed to diabetic rats were investigated. Different composite flours were used to produce crackers. Physical and sensory properties of the crackers, the blood serum of the rats and changes in the rat body weight were measured. Spread ratio and break strength of the crackers from different flour blends ranges from 7.01 g to 8.51 g and 1.87 g to 3.01 g respectively. The acceptability of the crackers revealed that Sample A (100% wheat crackers) was not significantly (p>0.05) different from Samples C and D. Feeding the rats with formulated crackers caused an increase in the body weight of the rats but a reduced body weight was observed in diabetic rats fed with normal rat feed. The result indicated that cracker produced from the formulated flour blends caused a significant hypoglycemic effect in diabetic rats and led to a reduction of measured biochemical indices. Therefore, this work showed that consumption of crackers from the above formulated flour blend was able to decrease hyperglycemia in diabetic rats.Keywords: hypoglyceamia, hyperlipidimia, total lipid, triglyceride, total cholesterol
Procedia PDF Downloads 3011882 Narrative Psychology and Its Role in Illuminating the Experience of Suffering
Authors: Maureen Gibney
Abstract:
The examination of narrative in psychology has a long tradition, starting with psychoanalytic theory and embracing over time cognitive, social, and personality psychology, among others. Narrative use has been richly detailed as well in medicine, nursing, and social service. One aspect of narrative that has ready utility in higher education and in clinical work is the exploration of suffering and its meaning. Because it is such a densely examined topic, suffering provides a window into identity, sense of purpose, and views of humanity and of the divine. Storytelling analysis permits an exploration of a host of specific manifestations of suffering such as pain and illness, moral injury, and the impact of prolonged suffering on love and relationships. This presentation will review the origins and current understandings of narrative theory in general, and will draw from psychology, medicine, ethics, nursing, and social service in exploring the topic of suffering in particular. It is suggested that the use of narrative themes such as meaning making, agency and communion, generativity, and loss and redemption allows for a finely grained analysis of common and more atypical sources of suffering, their resolution, and the acceptance of their continuation when resolution is not possible. Such analysis, used in professional work and in higher education, can enrich one’s empathy and one’s sense of both the fragility and strength of everyday life.Keywords: meaning making, narrative theory, suffering, teaching
Procedia PDF Downloads 2651881 Structural Optimization of Shell and Arched Structures
Authors: Mitchell Gohnert, Ryan Bradley
Abstract:
This paper reviews some fundamental concepts of structural optimization, which are based on the type of materials used in construction and the shape of the structure. The first step in structural optimization is to break down all internal forces in a structure into fundamental stresses, which are tensions and compressions. Knowing the stress patterns directs our selection of structural shapes and the most appropriate type of construction material. In our selection of materials, it is essential to understand all construction materials have flaws, or micro-cracks, which reduce the capacity of the material, especially when subjected to tensions. Because of material defects, many construction materials perform significantly better when subjected to compressive forces. Structures are also more efficient if bending moments are eliminated. Bending stresses produce high peak stresses at each face of the member, and therefore, substantially more material is required to resist bending. The shape of the structure also has a profound effect on stress levels. Stress may be reduced dramatically by simply changing the shape. Catenary, triangular and linear shapes are the fundamental structural forms to achieve optimal stress flow. If the natural flow of stress matches the shape of the structures, the most optimal shape is determined.Keywords: arches, economy of stresses, material strength, optimization, shells
Procedia PDF Downloads 1161880 Chemical Analysis and Cytotoxic Evaluation of Asphodelus Aestivus Brot. Flowers
Authors: Mai M. Farid, Mona El-Shabrawy, Sameh R. Hussein, Ahmed Elkhateeb, El-Said S. Abdel-Hameed, Mona M. Marzouk
Abstract:
Asphodelus aestivus Brot. Is a wild plant distributed in Egypt and is considered one of the five Asphodelus spp. from the family Asphodelaceae; it grows in dry grasslands and on rocky or sandy soil. The chemical components of A. aestivus flowers extract were analyzed using different chromatographic and spectral techniques and led to the isolation of two anthraquinones identified as emodin and emodin-O-glucoside. In addition to, five flavonoid compounds;kaempferol,Kaempferol-3-O-glucoside,Apigenin-6-C-glucoside-7-O-glucoside (Saponarine), luteolin 7-O-β-glucopyranoside, Isoorientin-O-malic acid which is a new compound in nature. The LC-ESI-MS/MS analysis of the flower extract of A. aestivus led to the identification of twenty- two compounds characterized by the presence of flavones, flavonols, and flavone C-glycosides. While GC/MS analysis led to the identification of 24 compounds comprising 98.32% of the oil, the major components of the oil were 9, 12, 15-Octadecatrieoic acid methyl ester 28.72%, and 9, 12-Octadecadieroic acid (Z, Z)-methyl ester 19.96%. In vitro cytotoxic activity of the aqueous methanol extract of A. aestivus flowers against HEPG2, HCT-116, MCF-7, and A549 culture was examined and showed moderate inhibition (62.3±1.1)% on HEPG2 cell line followed by (36.8±0.2)% inhibition on HCT-116 and a weak inhibition (5.7± 0.0.2) on MCF-7 cell line followed by (4.5± 0.4) % inhibition on A549 cell line and this is considered the first cytotoxic report of A. aestivus flowers.Keywords: Anthraquinones, Asphodelus aestivus, Cytotoxic activity, Flavonoids, LC-ESI-MS/MS
Procedia PDF Downloads 2221879 Assessment of Spatial and Vertical Distribution of Heavy Metals in the Mid Sand Bars of Brahmaputra River in Assam, India
Authors: Vijay Meena, Arup Kumar Sarma, Chandan Mahanta
Abstract:
The environment has been getting contaminated by anthropogenic processes including those that discharge heavy metals to air, soil and water. The present work emphasizes the spatial distribution and vertical profile of six heavy metals (Cu, Zn, Mn, Ni, Fe, Cr) in three layers of mid sand bars (bed surface layer, 50 cm and 100 cm depth) at 42 sampling stations covering around 600 km stretch of the Brahmaputra River, India. Heavy metal analysis was conducted on the sample collected from mid-sand bars in the river stretch to examine the impact of dredging for various hydrological operations in the future. Sediment quality was assessed by calculating six different indices viz., EF, CF, CD, PLI, Igeo, and PERI. In all sediment layers, heavy metal concentrations have been observed to be the same as listed, Fe > Mn > Zn > Ni > Cr > Cu in μg/g. The average concentration of Cu, Mn, and Fe was found in the middle layer while Zn, Ni, and Cr were in the Surface layer. EF indicates higher enrichment in reach 2 which is likely to be due to anthropogenic sources of industrial and urbanized effluents. The sediment of the mid-sand bar was generally found moderately polluted possessing low risk to aquatic lives and the environment. Suggesting, Dredging can be possible in the future. An examination of correlation matrices, principal components analysis, and cluster analyses indicated that these heavy metals possess similar anthropogenic origins for their enrichment.Keywords: heavy metal contamination, risk assessment, anthropogenic impacts, sediment
Procedia PDF Downloads 971878 Long Term Evolution Multiple-Input Multiple-Output Network in Unmanned Air Vehicles Platform
Authors: Ashagrie Getnet Flattie
Abstract:
Line-of-sight (LOS) information, data rates, good quality, and flexible network service are limited by the fact that, for the duration of any given connection, they experience severe variation in signal strength due to fading and path loss. Wireless system faces major challenges in achieving wide coverage and capacity without affecting the system performance and to access data everywhere, all the time. In this paper, the cell coverage and edge rate of different Multiple-input multiple-output (MIMO) schemes in 20 MHz Long Term Evolution (LTE) system under Unmanned Air Vehicles (UAV) platform are investigated. After some background on the enormous potential of UAV, MIMO, and LTE in wireless links, the paper highlights the presented system model which attempts to realize the various benefits of MIMO being incorporated into UAV platform. The performances of the three MIMO LTE schemes are compared with the performance of 4x4 MIMO LTE in UAV scheme carried out to evaluate the improvement in cell radius, BER, and data throughput of the system in different morphology. The results show that significant performance gains such as bit error rate (BER), data rate, and coverage can be achieved by using the presented scenario.Keywords: LTE, MIMO, path loss, UAV
Procedia PDF Downloads 2791877 Analysis of Potential Flow around Two-Dimensional Body by Surface Panel Method and Vortex Lattice Method
Authors: M. Abir Hossain, M. Shahjada Tarafder
Abstract:
This paper deals with the analysis of potential flow past two-dimensional body by discretizing the body into panels where the Laplace equation was applied to each panel. The Laplace equation was solved at each panel by applying the boundary conditions. The boundary condition was applied at each panel to mathematically formulate the problem and then convert the problem into a computer-solvable problem. Kutta condition was applied at both the leading and trailing edges to see whether the condition is satisfied or not. Another approach that is applied for the analysis is Vortex Lattice Method (VLM). A vortex ring is considered at each control point. Using the Biot-Savart Law the strength at each control point is calculated and hence the pressure differentials are measured. For the comparison of the analytic result with the experimental result, different NACA section hydrofoil is used. The analytic result of NACA 0012 and NACA 0015 are compared with the experimental result of Abbott and Doenhoff and found significant conformity with the achieved result.Keywords: Kutta condition, Law of Biot-Savart, pressure differentials, potential flow, vortex lattice method
Procedia PDF Downloads 1901876 Surface Roughness Formed during Hybrid Turning of Inconel Alloy
Authors: Pawel Twardowski, Tadeusz Chwalczuk, Szymon Wojciechowski
Abstract:
Inconel 718 is a material characterized by the unique mechanical properties, high temperature strength, high thermal conductivity and the corrosion resistance. However, these features affect the low machinability of this material, which is usually manifested by the intense tool wear and low surface finish. Therefore, this paper is focused on the evaluation of surface roughness during hybrid machining of Inconel 718. The primary aim of the study was to determine the relations between the vibrations generated during hybrid turning and the formed surface roughness. Moreover, the comparison of tested machining techniques in terms of vibrations, tool wear and surface roughness has been made. The conducted tests included the face turning of Inconel 718 with laser assistance in the range of variable cutting speeds. The surface roughness was inspected with the application of stylus profile meter and accelerations of vibrations were measured with the use of three-component piezoelectric accelerometer. The carried out research shows that application of laser assisted machining can contribute to the reduction of surface roughness and cutting vibrations, in comparison to conventional turning. Moreover, the obtained results enable the selection of effective cutting speed allowing the improvement of surface finish and cutting dynamics.Keywords: hybrid machining, nickel alloys, surface roughness, turning, vibrations
Procedia PDF Downloads 3241875 Nonlinear Homogenized Continuum Approach for Determining Peak Horizontal Floor Acceleration of Old Masonry Buildings
Authors: Andreas Rudisch, Ralf Lampert, Andreas Kolbitsch
Abstract:
It is a well-known fact among the engineering community that earthquakes with comparatively low magnitudes can cause serious damage to nonstructural components (NSCs) of buildings, even when the supporting structure performs relatively well. Past research works focused mainly on NSCs of nuclear power plants and industrial plants. Particular attention should also be given to architectural façade elements of old masonry buildings (e.g. ornamental figures, balustrades, vases), which are very vulnerable under seismic excitation. Large numbers of these historical nonstructural components (HiNSCs) can be found in highly frequented historical city centers and in the event of failure, they pose a significant danger to persons. In order to estimate the vulnerability of acceleration sensitive HiNSCs, the peak horizontal floor acceleration (PHFA) is used. The PHFA depends on the dynamic characteristics of the building, the ground excitation, and induced nonlinearities. Consequently, the PHFA can not be generalized as a simple function of height. In the present research work, an extensive case study was conducted to investigate the influence of induced nonlinearity on the PHFA for old masonry buildings. Probabilistic nonlinear FE time-history analyses considering three different hazard levels were performed. A set of eighteen synthetically generated ground motions was used as input to the structure models. An elastoplastic macro-model (multiPlas) for nonlinear homogenized continuum FE-calculation was calibrated to multiple scales and applied, taking specific failure mechanisms of masonry into account. The macro-model was calibrated according to the results of specific laboratory and cyclic in situ shear tests. The nonlinear macro-model is based on the concept of multi-surface rate-independent plasticity. Material damage or crack formation are detected by reducing the initial strength after failure due to shear or tensile stress. As a result, shear forces can only be transmitted to a limited extent by friction when the cracking begins. The tensile strength is reduced to zero. The first goal of the calibration was the consistency of the load-displacement curves between experiment and simulation. The calibrated macro-model matches well with regard to the initial stiffness and the maximum horizontal load. Another goal was the correct reproduction of the observed crack image and the plastic strain activities. Again the macro-model proved to work well in this case and shows very good correlation. The results of the case study show that there is significant scatter in the absolute distribution of the PHFA between the applied ground excitations. An absolute distribution along the normalized building height was determined in the framework of probability theory. It can be observed that the extent of nonlinear behavior varies for the three hazard levels. Due to the detailed scope of the present research work, a robust comparison with code-recommendations and simplified PHFA distributions are possible. The chosen methodology offers a chance to determine the distribution of PHFA along the building height of old masonry structures. This permits a proper hazard assessment of HiNSCs under seismic loads.Keywords: nonlinear macro-model, nonstructural components, time-history analysis, unreinforced masonry
Procedia PDF Downloads 1691874 Three-Dimensional CFD Modeling of Flow Field and Scouring around Bridge Piers
Authors: P. Deepak Kumar, P. R. Maiti
Abstract:
In recent years, sediment scour near bridge piers and abutment is a serious problem which causes nationwide concern because it has resulted in more bridge failures than other causes. Scour is the formation of scour hole around the structure mounted on and embedded in erodible channel bed due to the erosion of soil by flowing water. The formation of scour hole around the structures depends upon shape and size of the pier, depth of flow as well as angle of attack of flow and sediment characteristics. The flow characteristics around these structures change due to man-made obstruction in the natural flow path which changes the kinetic energy of the flow around these structures. Excessive scour affects the stability of the foundation of the structure by the removal of the bed material. The accurate estimation of scour depth around bridge pier is very difficult. The foundation of bridge piers have to be taken deeper and to provide sufficient anchorage length required for stability of the foundation. In this study, computational model simulations using a 3D Computational Fluid Dynamics (CFD) model were conducted to examine the mechanism of scour around a cylindrical pier. Subsequently, the flow characteristics around these structures are presented for different flow conditions. Mechanism of scouring phenomenon, the formation of vortex and its consequent effect is discussed for a straight channel. Effort was made towards estimation of scour depth around bridge piers under different flow conditions.Keywords: bridge pier, computational fluid dynamics, multigrid, pier shape, scour
Procedia PDF Downloads 2961873 Interactive Effects of Organizational Learning and Market Orientation on New Product Performance
Authors: Qura-tul-aain Khair
Abstract:
Purpose- The purpose of this paper is to empirically examining the strength of association of responsive market orientation and proactive market orientation with new product performance and exploring the possible moderating role of organizational learning based on contingency theory. Design/methodology/approach- Data for this study was collected from FMCG manufacturing industry and services industry, where customers are in contact frequently and responses are recorded on continuous basis. Sample was collected through convenience sampling. The data collected from different marketing department and sales personnel were analysed using SPSS 16 version. Findings- The paper finds that responsive market orientation is more strongly associated with new product performance. The moderator, organizational learning, plays it significant role on the relationship between responsive market orientation and new product performance. Research limitations/implications- this paper has taken sample from just FMCG industry and service industry, more work can be done regarding how different-markets require different market orientation behaviours. Originality/value- This paper will be useful for foreign business looking for investing and expanding in Pakistan, they can find opportunity to get sustained competitive advantage through exploring the proactive side of market orientation and importance of organizational learning.Keywords: organizational learning, proactive market orientation, responsive market orientation, new product performance
Procedia PDF Downloads 3821872 Mechanically Strong and Highly Thermal Conductive Polymer Composites Enabled by Three-Dimensional Interconnected Graphite Network
Authors: Jian Zheng
Abstract:
Three-dimensional (3D) network structure has been recognized as an effective approach to enhance the mechanical and thermal conductive properties of polymeric composites. However, it has not been applied in energetic materials. In this work, a fluoropolymer based composite with vertically oriented and interconnected 3D graphite network was fabricated for polymer bonded explosives (PBXs). Here, the graphite and graphene oxide platelets were mixed, and self-assembled via rapid freezing and using crystallized ice as the template. The 3D structure was finally obtained by freezing-dry and infiltrating with the polymer. With the increasing of filler fraction and cooling rate, the thermal conductivity of the polymer composite was significantly improved to 2.15 W m⁻¹ K⁻¹ by 1094% than that of pure polymer. Moreover, the mechanical properties, such as tensile strength and elastic modulus, were enhanced by 82% and 310%, respectively, when the highly ordered structure was embedded in the polymer. We attribute the increased thermal and mechanical properties to this 3D network, which is beneficial to the effective heat conduction and force transfer. This study supports a desirable way to fabricate the strong and thermal conductive fluoropolymer composites used for the high-performance polymer bonded explosives (PBXs).Keywords: mechanical properties, oriented network, graphite polymer composite, thermal conductivity
Procedia PDF Downloads 1611871 Development of Nanocomposite from Poly (Lactic Acid) Plasticised Epoxidised Jatropha Oil and Nanocrystalline Cellulose
Authors: Siti Hasnah Kamarudin, Luqman Chuah Abdullah, Min Min Aung, Chantara Thevy Ratnam
Abstract:
The primary objective of this work was to develop fully nanocomposite material based on poly(lactic acid), epoxidized jatropha oil (EJO) and nanocrystalline cellulose. EJO was investigated as a sustainable alternative to petrochemical-based plasticizers to reinforce the ductility and toughness of plastics, in this case, nanocellulose/poly(lactic acid) (PLA). The EJO was melt blended into nanocellulose/PLA at concentrations from 1 wt% to 5 wt%. The blends were then hot-pressed into sheets to characterize their mechanical and physical properties. Microcrystalline cellulose had been converted to nanocrystalline cellulose by acid mercerisation technique and the effects thereof on the composites’ tensile, flexural, and impact properties, as well as their water absorption and density, were studied. The impact strengths of the nanocomposites were improved with the addition of NCC up to 0.5 wt%, with a maximum over 10 times that of the neat PLA. The flexural strength and modulus increased 4% and 50%, respectively, for NCC/PLA plasticized with EJO. This increase demonstrated the nanocrystalline cellulose addition gave notable improvements to the composites’ properties. Furthermore, analysis by scanning electron microscopy (SEM) of the nanocomposites’ tensile fracture surfaces indicated better interaction adhesion of the NCC/PLA plasticized with EJO compared with the PLA/EJO composites.Keywords: nanocrystalline cellulose, nanocomposite, poly (lactic acid), epoxidised jatropha oil
Procedia PDF Downloads 1481870 Cover Spalling in Reinforced Concrete Columns
Authors: Bambang Piscesa, Mario M. Attard, Dwi Presetya, Ali K. Samani
Abstract:
A numerical strategy formulated using a plasticity approach is presented to model spalling of the concrete cover in reinforced concrete columns. The stage at which the concrete cover within reinforced concrete column spalls has a direct bearing on the load capacity. The concrete cover can prematurely spall before the full cross-section can be utilized if the concrete is very brittle under compression such as for very high strength concretes. If the confinement to the core is high enough, the column can achieve a higher peak load by utilizing the core. A numerical strategy is presented to model spalling of the concrete cover. Various numerical strategies are employed to model the behavior of reinforced concrete columns which include: (1) adjusting the material properties to incorporate restrained shrinkage; (2) modifying the plastic dilation rate in the presence of the tensile pressure; (3) adding a tension cut-off failure surface and (4) giving the concrete cover region and the column core different material properties. Numerical comparisons against experimental results are carried out that shown excellent agreement with the experimental results and justify the use of the proposed strategies to predict the axial load capacity of reinforce concrete columns.Keywords: spalling, concrete, plastic dilation, reinforced concrete columns
Procedia PDF Downloads 1601869 A Modified Periodic 2D Cellular Re-Entrant Honeycomb Model to Enhance the Auxetic Elastic Properties
Authors: Sohaib Z. Khan, Farrukh Mustahsan, Essam R. I. Mahmoud, S. H. Masood
Abstract:
Materials or structures that contract laterally on the application of a compressive load and vice versa are said to be Auxetic materials which exhibit Negative Poisson’s Ratio (NPR). Numerous auxetic structures are proposed in the literature. One of the most studied periodic auxetic structure is the re-entrant honeycomb model. In this paper, a modified re-entrant model is proposed to enhance the auxetic behavior. The paper aimed to investigate the elastic behaviour of the proposed model to improve Young’s modulus and NPR by evaluating the analytical model. Finite Element Analysis (FEA) is also conducted to support the analytical results. A significant increment in Young’s modulus and NPR can be achieved in one of the two orthogonal directions of the loading at the cost of compromising these values in other direction. The proposed modification resulted in lower relative densities when compared to the existing re-entrant honeycomb structure. A trade-off in the elastic properties in one direction at low relative density makes the proposed model suitable for uni-direction applications where higher stiffness and NPR is required, and strength to weight ratio is important.Keywords: 2D model, auxetic materials, re-entrant honeycomb, negative Poisson's ratio
Procedia PDF Downloads 138