Search results for: feature learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8046

Search results for: feature learning

3516 Yawning Computing Using Bayesian Networks

Authors: Serge Tshibangu, Turgay Celik, Zenzo Ncube

Abstract:

Road crashes kill nearly over a million people every year, and leave millions more injured or permanently disabled. Various annual reports reveal that the percentage of fatal crashes due to fatigue/driver falling asleep comes directly after the percentage of fatal crashes due to intoxicated drivers. This percentage is higher than the combined percentage of fatal crashes due to illegal/Un-Safe U-turn and illegal/Un-Safe reversing. Although a relatively small percentage of police reports on road accidents highlights drowsiness and fatigue, the importance of these factors is greater than we might think, hidden by the undercounting of their events. Some scenarios show that these factors are significant in accidents with killed and injured people. Thus the need for an automatic drivers fatigue detection system in order to considerably reduce the number of accidents owing to fatigue.This research approaches the drivers fatigue detection problem in an innovative way by combining cues collected from both temporal analysis of drivers’ faces and environment. Monotony in driving environment is inter-related with visual symptoms of fatigue on drivers’ faces to achieve fatigue detection. Optical and infrared (IR) sensors are used to analyse the monotony in driving environment and to detect the visual symptoms of fatigue on human face. Internal cues from drivers faces and external cues from environment are combined together using machine learning algorithms to automatically detect fatigue.

Keywords: intelligent transportation systems, bayesian networks, yawning computing, machine learning algorithms

Procedia PDF Downloads 440
3515 Factors Affecting Internet Behavior and Life Satisfaction of Older Adult Learners with Use of Smartphone

Authors: Horng-Ji Lai

Abstract:

The intuitive design features and friendly interface of smartphone attract older adults. In Taiwan, many senior education institutes offer smartphone training courses for older adult learners who are interested in learning this innovative technology. It is expected that the training courses can help them to enjoy the benefits of using smartphone and increase their life satisfaction. Therefore, it is important to investigate the factors that influence older adults’ behavior of using smartphone. The purpose of the research was to develop and test a research model that investigates the factors (self-efficacy, social connection, the need to seek health information, and the need to seek financial information) affecting older adult learners’ Internet behaviour and their life satisfaction with use of smartphone. Also, this research sought to identify the relationship between the proposed variables. Survey method was used to collect research data. A Structural Equation Modeling was performed using Partial Least Squares (PLS) regression for data exploration and model estimation. The participants were 394 older adult learners from smartphone training courses in active aging learning centers located in central Taiwan. The research results revealed that self-efficacy significantly affected older adult learner’ social connection, the need to seek health information, and the need to seek financial information. The construct of social connection yielded a positive influence in respondents’ life satisfaction. The implications of these results for practice and future research are also discussed.

Keywords: older adults, smartphone, internet behaviour, life satisfaction

Procedia PDF Downloads 171
3514 An Evaluation of the Auxiliary Instructional App Amid Learning Chinese Characters for Children with Specific Learning Disorders

Authors: Chieh-Ning Lan, Tzu-Shin Lin, Kun-Hao Lin

Abstract:

Chinese handwriting skill is one of the basic skills of school-age children in Taiwan, which helps them to learn most academic subjects. Differ from the alphabetic language system, Chinese written language is a logographic script with a complicated 2-dimensional character structure as a morpheme. Visuospatial ability places a great role in Chinese handwriting to maintain good proportion and alignment of these interwoven strokes. In Taiwan, school-age students faced the challenge to recognize and write down Chinese characters, especially in children with written expression difficulties (CWWDs). In this study, we developed an instructional app to help CWWDs practice Chinese handwriting skills, and we aimed to apply the mobile assisted language learning (MALL) system in clinical writing strategies. To understand the feasibility and satisfaction of this auxiliary instructional writing app, we investigated the perceive and value both from school-age students and the clinic therapists, who were the target users and the experts. A group of 8 elementary school children, as well as 8 clinic therapists, were recruited. The school-age students were asked to go through a paper-based instruction and were asked to score the visual expression based on their graphic preference; the clinic therapists were asked to watch an introductive video of this instructional app and complete the online formative questionnaire. In the results of our study, from the perspective of user interface design, school-age students were more attracted to cartoon-liked pictures rather than line drawings or vivid photos. Moreover, compared to text, pictures which have higher semantic transparency were more commonly chosen by children. In terms of the quantitative survey from clinic therapists, they were highly satisfied with this auxiliary instructional writing app, including the concepts such as visual design, teaching contents, and positive reinforcement system. Furthermore, the qualitative results also suggested comprehensive positive feedbacks on the teaching contents and the feasibility of integrating the app into clinical treatments. Interestingly, we found that clinic therapists showed high agreement in approving CWWDs’ writing ability with using orthographic knowledge; however, in the qualitative section, clinic therapists pointed out that CWWDs usually have relative insufficient background knowledge in Chinese character orthographic rules, which because it is not a key-point in conventional handwriting instruction. Also, previous studies indicated that conventional Chinese reading and writing instructions were lacked of utilizing visual-spatial arrangement strategies. Based on the sharing experiences from all participants, we concluded several interesting topics that are worth to dedicate to in the future. In this undergoing app system, improvement and revision will be applied into the system design, and will establish a better and more useful instructional system for CWWDs within their treatments; enlightened by the opinions related to learning content, the importance of orthographic knowledge in Chinese character recognition should be well discussed and involved in CWWDs’ intervention in the future.

Keywords: auxiliary instructional app, children with writing difficulties, Chinese handwriting, orthographic knowledge

Procedia PDF Downloads 153
3513 Model-Based Field Extraction from Different Class of Administrative Documents

Authors: Jinen Daghrir, Anis Kricha, Karim Kalti

Abstract:

The amount of incoming administrative documents is massive and manually processing these documents is a costly task especially on the timescale. In fact, this problem has led an important amount of research and development in the context of automatically extracting fields from administrative documents, in order to reduce the charges and to increase the citizen satisfaction in administrations. In this matter, we introduce an administrative document understanding system. Given a document in which a user has to select fields that have to be retrieved from a document class, a document model is automatically built. A document model is represented by an attributed relational graph (ARG) where nodes represent fields to extract, and edges represent the relation between them. Both of vertices and edges are attached with some feature vectors. When another document arrives to the system, the layout objects are extracted and an ARG is generated. The fields extraction is translated into a problem of matching two ARGs which relies mainly on the comparison of the spatial relationships between layout objects. Experimental results yield accuracy rates from 75% to 100% tested on eight document classes. Our proposed method has a good performance knowing that the document model is constructed using only one single document.

Keywords: administrative document understanding, logical labelling, logical layout analysis, fields extraction from administrative documents

Procedia PDF Downloads 193
3512 Reconceptualising Faculty Teaching Competence: The Role of Agency during the Pandemic

Authors: Ida Fatimawati Adi Badiozaman, Augustus Raymond Segar

Abstract:

The Covid-19 pandemic transformed teaching contexts at an unprecedented level. Although studies have focused mainly on its impact on students, little is known about how emergency online teaching affects faculty members in higher education. Given that the pandemic has robbed teachers of opportunities for adequate preparation, it is vital to understand how teaching competencies were perceived in the crisis-response transition to online teaching and learning (OTL). Therefore, the study explores how academics perceive their readiness for OTL and what competencies were perceived to be central. Therefore, through a mixed-methods design, the study first explores through a survey how academics perceive their readiness for OTL and what competencies were perceived to be central. Emerging trends from the quantitative data of 330 academics (three public and three private Higher learning institutions) led to the formulation of interview guides for the subsequent qualitative phase. The authors use critical sensemaking (CSM) to analyse interviews with twenty-two teachers (n = 22) (three public; three private HEs) toward understanding the interconnected layers of influences they draw from as they make sense of their teaching competence. The sensemaking process reframed competence and readiness in that agentic competency emerged as crucial in shaping resilience and adaptability during the transition to OTL. The findings also highlight professional learningcriticalto teacher competence: course design, communication, time management, technological competence, and identity (re)construction. The findings highlight opportunities for strategic orientation to change during crisis. Implications for pedagogy and policy are discussed.

Keywords: online teaching, pedagogical competence, agentic competence, agency, technological competence

Procedia PDF Downloads 61
3511 Reading Strategies of Generation X and Y: A Survey on Learners' Skills and Preferences

Authors: Kateriina Rannula, Elle Sõrmus, Siret Piirsalu

Abstract:

Mixed generation classroom is a phenomenon that current higher education establishments are faced with daily trying to meet the needs of modern labor market with its emphasis on lifelong learning and retraining. Representatives of mainly X and Y generations in one classroom acquiring higher education is a challenge to lecturers considering all the characteristics that differ one generation from another. The importance of outlining different strategies and considering the needs of the students lies in the necessity for everyone to acquire the maximum of the provided knowledge as well as to understand each other to study together in one classroom and successfully cooperate in future workplaces. In addition to different generations, there are also learners with different native languages which have an impact on reading and understanding texts in third languages, including possible translation. Current research aims to investigate, describe and compare reading strategies among the representatives of generation X and Y. Hypotheses were formulated - representatives of generation X and Y use different reading strategies which is also different among first and third year students of the before mentioned generations. Current study is an empirical, qualitative study. To achieve the aim of the research, relevant literature was analyzed and a semi-structured questionnaire conducted among the first and third year students of Tallinn Health Care College. Questionnaire consisted of 25 statements on the text reading strategies, 3 multiple choice questions on preferences considering the design and medium of the text, and three open questions on the translation process when working with a text in student’s third language. The results of the questionnaire were categorized, analyzed and compared. Both, generation X and Y described their reading strategies to be 'scanning' and 'surfing'. Compared to generation X, first year generation Y learners valued interactivity and nonlinear texts. Students frequently used strategies of skimming, scanning, translating and highlighting together with relevant-thinking and assistance-seeking. Meanwhile, the third-year generation Y students no longer frequently used translating, resourcing and highlighting while Generation X learners still incorporated these strategies. Knowing about different needs of the generations currently inside the classrooms and on the labor market enables us with tools to provide sustainable education and grants the society a work force that is more flexible and able to move between professions. Future research should be conducted in order to investigate the amount of learning and strategy- adoption between generations. As for reading, main suggestions arising from the research are as follows: make a variety of materials available to students; allow them to select what they want to read and try to make those materials visually attractive, relevant, and appropriately challenging for learners considering the differences of generations.

Keywords: generation X, generation Y, learning strategies, reading strategies

Procedia PDF Downloads 164
3510 A Study of Transferable Skills for Work-Based Learning (WBL) Assessment

Authors: Abdool Qaiyum Mohabuth

Abstract:

Transferrable skills are learnt abilities which are mainly acquired when experiencing work. University students have the opportunities to develop the knowledge and aptitude at work when they undertake WBL placement during their studies. There is a range of transferrable skills which students may acquire at their placement settings. Several studies have tried to identify a core set of transferrable skills which students can acquire at their placement settings. However, the different lists proposed have often been criticised for being exhaustive and duplicative. In addition, assessing the achievement of students on practice learning based on the transferrable skills is regarded as being complex and tedious due to the variability of placement settings. No attempt has been made in investigating whether these skills are assessable at practice settings. This study seeks to define a set of generic transferrable skills that can be assessed during WBL practice. Quantitative technique was used involving the design of two questionnaires. One was administered to University of Mauritius students who have undertaken WBL practice and the other was slightly modified, destined to mentors who have supervised and assessed students at placement settings. To obtain a good representation of the student’s population, the sample considered was stratified over four Faculties. As for the mentors, probability sampling was considered. Findings revealed that transferrable skills may be subject to formal assessment at practice settings. Hypothesis tested indicate that there was no significant difference between students and mentors as regards to the application of transferrable skills for formal assessment. A list of core transferrable skills that are assessable at any practice settings has been defined after taking into account their degree of being generic, extent of acquisition at work settings and their consideration for formal assessment. Both students and mentors assert that these transferrable skills are accessible at work settings and require commitment and energy to be acquired successfully.

Keywords: knowledge, skills, assessment, placement, mentors

Procedia PDF Downloads 253
3509 Transformer Fault Diagnostic Predicting Model Using Support Vector Machine with Gradient Decent Optimization

Authors: R. O. Osaseri, A. R. Usiobaifo

Abstract:

The power transformer which is responsible for the voltage transformation is of great relevance in the power system and oil-immerse transformer is widely used all over the world. A prompt and proper maintenance of the transformer is of utmost importance. The dissolved gasses content in power transformer, oil is of enormous importance in detecting incipient fault of the transformer. There is a need for accurate prediction of the incipient fault in transformer oil in order to facilitate the prompt maintenance and reducing the cost and error minimization. Study on fault prediction and diagnostic has been the center of many researchers and many previous works have been reported on the use of artificial intelligence to predict incipient failure of transformer faults. In this study machine learning technique was employed by using gradient decent algorithms and Support Vector Machine (SVM) in predicting incipient fault diagnosis of transformer. The method focuses on creating a system that improves its performance on previous result and historical data. The system design approach is basically in two phases; training and testing phase. The gradient decent algorithm is trained with a training dataset while the learned algorithm is applied to a set of new data. This two dataset is used to prove the accuracy of the proposed model. In this study a transformer fault diagnostic model based on Support Vector Machine (SVM) and gradient decent algorithms has been presented with a satisfactory diagnostic capability with high percentage in predicting incipient failure of transformer faults than existing diagnostic methods.

Keywords: diagnostic model, gradient decent, machine learning, support vector machine (SVM), transformer fault

Procedia PDF Downloads 297
3508 CFD simulation of Near Wall Turbulence and Heat Transfer of Molten Salts

Authors: C. S. Sona, Makrand A. Khanwale, Channamallikarjun S. Mathpati

Abstract:

New generation nuclear power plants are currently being developed to be highly economical, to be passive safe, to produce hydrogen. An important feature of these reactors will be the use of coolants at temperature higher than that being used in current nuclear reactors. The molten fluoride salt with a eutectic composition of 46.5% LiF - 11.5% NaF - 42% KF (mol %) commonly known as FLiNaK is a leading candidate for heat transfer coolant for these nuclear reactors. CFD simulations were carried out using large eddy simulations to investigate the flow characteristics of molten FLiNaK at 850°C at a Reynolds number of 10,500 in a cylindrical pipe. Simulation results have been validated with the help of mean velocity profile using direct numerical simulation data. Transient velocity information was used to identify and characterise turbulent structures which are important for transfer of heat across solid-fluid interface. A wavelet transform based methodology called wavelet transform modulus maxima was used to identify and characterise the singularities. This analysis was also used for flow visualisation, and also to calculate the heat transfer coefficient using small eddy model. The predicted Nusselt number showed good agreement with the available experimental data.

Keywords: FLiNaK, heat transfer, molten salt, turbulent structures

Procedia PDF Downloads 431
3507 Attracting European Youths to STEM Education and Careers: A Pedagogical Approach to a Hybrid Learning Environment

Authors: M. Assaad, J. Mäkiö, T. Mäkelä, M. Kankaanranta, N. Fachantidis, V. Dagdilelis, A. Reid, C. R. del Rio, E. V. Pavlysh, S. V. Piashkun

Abstract:

To bring science and society together in Europe, thus increasing the continent’s international competitiveness, STEM (science, technology, engineering and mathematics) education must be more relatable to European youths in their everyday life. STIMEY (Science, Technology, Innovation, Mathematics, Engineering for the Young) project researches and develops a hybrid educational environment with multi-level components that is being designed and developed based on a well-researched pedagogical framework, aiming to make STEM education more attractive to young people aged 10 to 18 years in this digital era. This environment combines social media components, robotic artefacts, and radio to educate, engage and increase students’ interest in STEM education and careers from a young age. Additionally, it offers educators the necessary modern tools to deliver STEM education in an attractive and engaging manner in or out of class. Moreover, it enables parents to keep track of their children’s education, and collaborate with their teachers on their development. Finally, the open platform allows businesses to invest in the growth of the youths’ talents and skills in line with the economic and labour market needs through entrepreneurial tools. Thus, universities, schools, teachers, students, parents, and businesses come together to complete a circle in which STEM becomes part of the daily life of youths through a hybrid educational environment that also prepares them for future careers.

Keywords: e-learning, entrepreneurship, pedagogy, robotics, serious gaming, social media, STEM education

Procedia PDF Downloads 349
3506 Development of Instructional Material Using Scientific Approach to Make the Nature of Science (NOS) and Critical Thinking Explicit on Chemical Bonding and Intermolecular Forces Topics

Authors: Ivan Ashif Ardhana, Intan Mahanani

Abstract:

Chemistry education tends to change from triplet representation among macroscopic, microscopic, and symbolic to tetrahedron shape. This change set the aspect of human element on the top of learning. Meaning that students are expected to solve the problems involving the ethic, morality, and humanity through the class. Ability to solve the problems connecting either theories or applications is called scientific literacy which have been implemented in curriculum 2013 implicitly. Scientific literacy has an aspect of nature science and critical thinking. Both can be integrated to learning using scientific approach and scientific inquiry. Unfortunately, students’ ability of scientific literacy in Indonesia is far from expectation. A survey from PISA had proven it. Scientific literacy of Indonesian students is always at bottom five position from 2002 till 2012. Improving a scientific literacy needs many efforts against them. Developing an instructional material based on scientific approach is one kind of that efforts. Instructional material contains both aspect of nature of science and critical thinking which is instructed explicitly to improve the students’ understanding about science. Developing goal is to produce a prototype and an instructional material using scientific approach whose chapter is chemical bonding and intermolecular forces for high school students grade ten. As usual, the material is subjected to get either quantitative mark or suggestion through validation process using validation sheet instrument. Development model is adapted from 4D model containing four steps. They are define, design, develop, and disseminate. Nevertheless, development of instructional material had only done until third step. The final step wasn’t done because of time, cost, and energy limitations. Developed instructional material had been validated by four validators. They are coming from chemistry lecture and high school’s teacher which two at each. The result of this development research shown the average of quantitative mark of students’ book is 92.75% with very proper in criteria. Given at same validation process, teacher’s guiding book got the average mark by 96.98%, similar criteria with students’ book. Qualitative mark including both comments and suggestions resulted from validation process were used as consideration for the revision. The result concluded us how the instructional materials using scientific approach to explicit nature of science and critical thinking on the topic of chemical bonding and intermolecular forces are very proper if they are used at learning activity.

Keywords: critical thinking, instructional material, nature of science, scientific literacy

Procedia PDF Downloads 244
3505 Factors Impacting Technology Integration in EFL Classrooms: A Study of Qatari Independent Schools

Authors: Youmen Chaaban, Maha Ellili-Cherif

Abstract:

The purpose of this study was to examine the effects of teachers’ individual characteristics and perceptions of environmental factors that impact their technology integration into their EFL (English as a Foreign Language) classrooms. To this end, a national survey examining EFL teachers’ perceptions was conducted at Qatari Independent schools. 263 EFL teachers responded to the survey which investigated several factors known to impact technology integration. These factors included technology availability and support, EFL teachers’ perceptions of importance, obstacles facing technology integration, competency with technology use, and formal technology preparation. The impact of these factors on teachers’ and students’ educational technology use was further measured. The analysis of the data included descriptive statistics and a chi-square analysis test in order to examine the relationship between these factors. The results revealed important cultural factors that impact teachers’ practices and attitudes towards technology in the Qatari context. EFL teachers were found to integrate technology most prominently for instructional delivery and preparation. The use of technology as a learning tool received less emphasis. Teachers further revealed consistent perceptions about obstacles to integration, high levels of confidence in using technology, and consistent beliefs about the importance of using technology as a learning tool. Further analyses of the factors impacting technology integration can assist with Qatar’s technology advancement and development efforts by indicating the areas of strength and areas where additional efforts are needed. The results will lay the foundation for conducting context-specific professional development suitable for the needs of EFL teachers in Qatari Independent Schools.

Keywords: educational technology integration, Qatar, EFL, independent schools, ICT

Procedia PDF Downloads 363
3504 What We Know About Effective Learning for Pupils with SEN: Results of 2 Systematic Reviews and of a Global Classroom

Authors: Claudia Mertens, Amanda Shufflebarger

Abstract:

Step one: What we know about effective learning for pupils with SEN: results of 2 systematic reviews: Before establishing principles and practices for teaching and learning of pupils with SEN, we need a good overview of the results of empirical studies conducted in the respective field. Therefore, two systematic reviews on the use of digital tools in inclusive and non-inclusive school settings were conducted - taking into consideration studies published in German: One systematic review included studies having undergone a peer review process, and the second included studies without peer review). The results (collaboration of two German universities) will be presented during the conference. Step two: Students’ results of a research lab on “inclusive media education”: On this basis, German students worked on “inclusive media education” in small research projects (duration: 1 year). They were “education majors” enrolled in a course on inclusive media education. They conducted research projects on topics ranging from smartboards in inclusive settings, digital media in gifted math education, Tik Tok in German as a Foreign Language education and many more. As part of their course, the German students created an academic conference poster. In the conference, the results of these research projects/papers are put into the context of the results of the systematic reviews. Step three: Global Classroom: The German students’ posters were critically discussed in a global classroom in cooperation with Indiana University East (USA) and Hamburg University (Germany) in the winter/spring term of 2022/2023. 15 students in Germany collaborated with 15 students at Indiana University East. The IU East student participants were enrolled in “Writing in the Arts and Sciences,” which is specifically designed for pre-service teachers. The joint work began at the beginning of the Spring 2023 semester in January 2023 and continued until the end of the Uni Hamburg semester in February 2023. Before January, Uni Hamburg students had been working on a research project individually or in pairs. Didactic Approach: Both groups of students posted a brief video or audio introduction to a shared Canvas discussion page. In the joint long synchronous session, the students discussed key content terms such as inclusion, inclusive, diversity, etc., with the help of prompt cards, and they compared how they understood or applied these terms differently. Uni Hamburg students presented drafts of academic posters. IU East students gave them specific feedback. After that, IU East students wrote brief reflections summarizing what they learned from the poster. After the class, small groups were expected to create a voice recording reflecting on their experiences. In their recordings, they examined critical incidents, highlighting what they learned from these incidents. Major results of the student research and of the global classroom collaboration can be highlighted during the conference. Results: The aggregated results of the two systematic reviews AND of the research lab/global classroom can now be a sound basis for 1) improving accessibility for students with SEN and 2) for adjusting teaching materials and concepts to the needs of the students with SEN - in order to create successful learning.

Keywords: digitalization, inclusion, inclusive media education, global classroom, systematic review

Procedia PDF Downloads 64
3503 Jordan Water District Interactive Billing and Accounting Information System

Authors: Adrian J. Forca, Simeon J. Cainday III

Abstract:

The Jordan Water District Interactive Billing and Accounting Information Systems is designed for Jordan Water District to uplift the efficiency and effectiveness of its services to its customers. It is designed to process computations of water bills in accurate and fast way through automating the manual process and ensures that correct rates and fees are applied. In addition to billing process, a mobile app will be integrated into it to support rapid and accurate water bill generation. An interactive feature will be incorporated to support electronic billing to customers who wish to receive water bills through the use of electronic mail. The system will also improve, organize and avoid data inaccuracy in accounting processes because data will be stored in a database which is designed logically correct through normalization. Furthermore, strict programming constraints will be plunged to validate account access privilege based on job function and data being stored and retrieved to ensure data security, reliability, and accuracy. The system will be able to cater the billing and accounting services of Jordan Water District resulting in setting forth the manual process and adapt to the modern technological innovations.

Keywords: accounting, bill, information system, interactive

Procedia PDF Downloads 231
3502 The Role of Teacher Candidates' Beliefs in Their Development of Inclusive Teaching Practices

Authors: Charlotte Brenner, Fisayo Latilo, McKenna Causey

Abstract:

This study explores the transformation of teacher candidates' beliefs regarding inclusion and inclusive teaching practices during their instructional and practicum experiences in the Canadian context. With the increasing diversity of schools, the study investigates how teacher candidates' beliefs impact their implementation of inclusive teaching practices, which are essential for meeting diverse student needs. The research examines the influence of teacher education programs, transformative learning experiences, and inclusive practicum placements on teacher candidates' beliefs about inclusion. Using a multiple case study approach, the study assesses teacher candidates' initial beliefs, documents changes in these beliefs after coursework on inclusion, and explores the supports and constraints affecting belief development in both university and practicum settings. Preliminary findings suggest that teacher candidates generally hold positive beliefs about inclusion at the outset of their teacher education programs. However, coursework and practicum experiences significantly shape their understanding of diversity, strategies for inclusion, and awareness of broader social issues related to inclusive classrooms. The research underscores the critical role of teacher education programs in shaping teacher candidates' beliefs about inclusion and highlights the value of transformative learning experiences and inclusive practicum placements in enhancing their understanding of equity and inclusion. Continued research is necessary to identify specific elements within courses and practicum experiences that promote positive beliefs about inclusive teaching practices, ultimately contributing to the creation of more equitable classrooms and improved student outcomes.

Keywords: inclusion, beliefs, teacher candidates, inclusive teaching practices

Procedia PDF Downloads 55
3501 Magnetic Navigation in Underwater Networks

Authors: Kumar Divyendra

Abstract:

Underwater Sensor Networks (UWSNs) have wide applications in areas such as water quality monitoring, marine wildlife management etc. A typical UWSN system consists of a set of sensors deployed randomly underwater which communicate with each other using acoustic links. RF communication doesn't work underwater, and GPS too isn't available underwater. Additionally Automated Underwater Vehicles (AUVs) are deployed to collect data from some special nodes called Cluster Heads (CHs). These CHs aggregate data from their neighboring nodes and forward them to the AUVs using optical links when an AUV is in range. This helps reduce the number of hops covered by data packets and helps conserve energy. We consider the three-dimensional model of the UWSN. Nodes are initially deployed randomly underwater. They attach themselves to the surface using a rod and can only move upwards or downwards using a pump and bladder mechanism. We use graph theory concepts to maximize the coverage volume while every node maintaining connectivity with at least one surface node. We treat the surface nodes as landmarks and each node finds out its hop distance from every surface node. We treat these hop-distances as coordinates and use them for AUV navigation. An AUV intending to move closer to a node with given coordinates moves hop by hop through nodes that are closest to it in terms of these coordinates. In absence of GPS, multiple different approaches like Inertial Navigation System (INS), Doppler Velocity Log (DVL), computer vision-based navigation, etc., have been proposed. These systems have their own drawbacks. INS accumulates error with time, vision techniques require prior information about the environment. We propose a method that makes use of the earth's magnetic field values for navigation and combines it with other methods that simultaneously increase the coverage volume under the UWSN. The AUVs are fitted with magnetometers that measure the magnetic intensity (I), horizontal inclination (H), and Declination (D). The International Geomagnetic Reference Field (IGRF) is a mathematical model of the earth's magnetic field, which provides the field values for the geographical coordinateson earth. Researchers have developed an inverse deep learning model that takes the magnetic field values and predicts the location coordinates. We make use of this model within our work. We combine this with with the hop-by-hop movement described earlier so that the AUVs move in such a sequence that the deep learning predictor gets trained as quickly and precisely as possible We run simulations in MATLAB to prove the effectiveness of our model with respect to other methods described in the literature.

Keywords: clustering, deep learning, network backbone, parallel computing

Procedia PDF Downloads 77
3500 A Retrospective Study to Evaluate Verbal Scores of Autistic Children Who Received Hyperbaric Oxygen Therapy

Authors: Tami Peterson

Abstract:

Hyperbaric oxygen therapy (HBOT) has been hypothesized as an effective treatment for increasing verbal language skills in individuals on the autism spectrum. A child’s ability to effectively communicate with peers, parents, and caregivers impacts their level of independence and quality of personal relationships. This retrospective study will compare the speech development of participants aged 2-17 years that received 40 sessions of HBOT at 2.0 ATA to those who had not. Both groups will have a verbal assessment every six months. There were 31 subjects in the HBO group and 32 subjects in the non-HBO group. The statistical analysis will focus on whether hyperbaric oxygen therapy made a significant difference in Verbal Behavior Milestones Assessment and Placement Program (VB-MAPP) or Assessment of Basic Language and Learning Skills (ABLLS) results. The evidence demonstrates a strong correlation between HBOT and an increased change from baseline verbal scores compared to the control group, even in difficult to grasp areas such as spontaneous vocalization. We suggest this is due to the anti-inflammatory effects of hyperbaric oxygen therapy. Neuroinflammation causes hypoperfusion of critical central nervous system areas responsible for the symptoms described within the autism spectrum, such as problems with thought processing, memory, and speech. Decreasing the inflammation allows the brain to function properly, which results in improved verbal scores for the participants that underwent HBOT.

Keywords: assessment of basic language and learning skills, autism spectrum disorder, hyperbaric oxygen therapy, verbal behavior milestones assessment and placement program

Procedia PDF Downloads 192
3499 Hazardous Gas Detection Robot in Coal Mines

Authors: Kanchan J. Kakade, S. A. Annadate

Abstract:

This paper presents design and development of underground coal mine monitoring using mbed arm cortex controller and ZigBee communication. Coal mine is a special type of mine which is dangerous in nature. Safety is the most important feature of a coal industry for proper functioning. It’s not only for employees and workers but also for environment and nation. Many coal producing countries in the world face phenomenal frequently occurred accidents in coal mines viz, gas explosion, flood, and fire breaking out during coal mines exploitation. Thus, such emissions of various gases from coal mines are necessary to detect with the help of robot. Coal is a combustible, sedimentary, organic rock, which is made up of mainly carbon, hydrogen and oxygen. Coal Mine Detection Robot mainly detects mash gas and carbon monoxide. The mash gas is the kind of the mixed gas which mainly make up of methane in the underground of the coal mine shaft, and sometimes it abbreviate to methane. It is formed from vegetation, which has been fused between other rock layers and altered by the combined effects of heat and pressure over millions of years to form coal beds. Coal has many important uses worldwide. The most significant uses of coal are in electricity generation, steel production, cement manufacturing and as a liquid fuel.

Keywords: Zigbee communication, various sensors, hazardous gases, mbed arm cortex M3 core controller

Procedia PDF Downloads 450
3498 Conduction Accompanied With Transient Radiative Heat Transfer Using Finite Volume Method

Authors: A. Ashok, K.Satapathy, B. Prerana Nashine

Abstract:

The objective of this research work is to investigate for one dimensional transient radiative transfer equations with conduction using finite volume method. Within the infrastructure of finite-volume, we obtain the conservative discretization of the terms in order to preserve the overall conservative property of finitevolume schemes. Coupling of conductive and radiative equation resulting in fluxes is governed by the magnitude of emissivity, extinction coefficient, and temperature of the medium as well as geometry of the problem. The problem under consideration has been solved, for a slab dominating radiation coupled with transient conduction based on finite volume method. The boundary conditions are also chosen so as to give a good model of the discretized form of radiation transfer equation. The important feature of the present method is flexibility in specifying the control angles in the FVM, while keeping the simplicity in the solution procedure. Effects of various model parameters are examined on the distributions of temperature, radiative and conductive heat fluxes and incident radiation energy etc. The finite volume method is considered to effectively evaluate the propagation of radiation intensity through a participating medium.

Keywords: participating media, finite volume method, radiation coupled with conduction, transient radiative heat transfer

Procedia PDF Downloads 369
3497 Effectiveness of Simulation Resuscitation Training to Improve Self-Efficacy of Physicians and Nurses at Aga Khan University Hospital in Advanced Cardiac Life Support Courses Quasi-Experimental Study Design

Authors: Salima R. Rajwani, Tazeen Ali, Rubina Barolia, Yasmin Parpio, Nasreen Alwani, Salima B. Virani

Abstract:

Introduction: Nurses and physicians have a critical role in initiating lifesaving interventions during cardiac arrest. It is important that timely delivery of high quality Cardio Pulmonary Resuscitation (CPR) with advanced resuscitation skills and management of cardiac arrhythmias is a key dimension of code during cardiac arrest. It will decrease the chances of patient survival if the healthcare professionals are unable to initiate CPR timely. Moreover, traditional training will not prepare physicians and nurses at a competent level and their knowledge level declines over a period of time. In this regard, simulation training has been proven to be effective in promoting resuscitation skills. Simulation teaching learning strategy improves knowledge level, and skills performance during resuscitation through experiential learning without compromising patient safety in real clinical situations. The purpose of the study is to evaluate the effectiveness of simulation training in Advanced Cardiac Life Support Courses by using the selfefficacy tool. Methods: The study design is a quantitative research design and non-randomized quasi-experimental study design. The study examined the effectiveness of simulation through self-efficacy in two instructional methods; one is Medium Fidelity Simulation (MFS) and second is Traditional Training Method (TTM). The sample size was 220. Data was compiled by using the SPSS tool. The standardized simulation based training increases self-efficacy, knowledge, and skills and improves the management of patients in actual resuscitation. Results: 153 students participated in study; CG: n = 77 and EG: n = 77. The comparison was done between arms in pre and post-test. (F value was 1.69, p value is <0.195 and df was 1). There was no significant difference between arms in the pre and post-test. The interaction between arms was observed and there was no significant difference in interaction between arms in the pre and post-test. (F value was 0.298, p value is <0.586 and df is 1. However, the results showed self-efficacy scores were significantly higher within experimental group in post-test in advanced cardiac life support resuscitation courses as compared to Traditional Training Method (TTM) and had overall (p <0.0001) and F value was 143.316 (mean score was 45.01 and SD was 9.29) verses pre-test result showed (mean score was 31.15 and SD was 12.76) as compared to TTM in post-test (mean score was 29.68 and SD was 14.12) verses pre-test result showed (mean score was 42.33 and SD was 11.39). Conclusion: The standardized simulation-based training was conducted in the safe learning environment in Advanced Cardiac Life Suport Courses and physicians and nurses benefited from self-confidence, early identification of life-threatening scenarios, early initiation of CPR, and provides high-quality CPR, timely administration of medication and defibrillation, appropriate airway management, rhythm analysis and interpretation, and Return of Spontaneous Circulation (ROSC), team dynamics, debriefing, and teaching and learning strategies that will improve the patient survival in actual resuscitation.

Keywords: advanced cardiac life support, cardio pulmonary resuscitation, return of spontaneous circulation, simulation

Procedia PDF Downloads 58
3496 Identity Formation Towards Design Typology of Malay Traditional House in Negeri Sembilan, Malaysia

Authors: Noor Hayati Binti Ismail, Mastor Bin Surat, Raja Nafida Binti Raja Shahminan, Shahrul Kamil Bin Yunus

Abstract:

Traditional Malay house built in the various custom and culture for every state in Malaysia. Each state has its characteristics, design and different concepts that form the distinctive identity. The uniqueness of a traditional house design is a symbolize of Negeri Sembilan society. The purpose of this paper is to introduce the feature, a traditional Malay house in Negeri Sembilan, Malaysia. This typology will describe five types of traditional Malay houses in Negeri Sembilan by briefly about the concept of a traditional Malay house design. The design represents a variety of purposes that are often associated with its own culture and customs practiced by the community. In addition, the design of long tapering roof with both ends of the roof went up a little bit architecture has become an identity of its own in Negeri Sembilan. The study involves several villages of traditional houses in Negeri Sembilan, Malaysia. Data collection was obtained through a process of observation, interviews, questionnaire and taking photos related. Through this research, We are expected to provide awareness and also a reference to the next generation of traditional houses in Malaysia especially in Negeri Sembilan. Identity and uniqueness of traditional houses Negeri Sembilan increasingly difficult to maintain and can be kept from being lost in their own land.

Keywords: design, identity, traditional Malay house, typology

Procedia PDF Downloads 600
3495 Using Machine Learning to Build a Real-Time COVID-19 Mask Safety Monitor

Authors: Yash Jain

Abstract:

The US Center for Disease Control has recommended wearing masks to slow the spread of the virus. The research uses a video feed from a camera to conduct real-time classifications of whether or not a human is correctly wearing a mask, incorrectly wearing a mask, or not wearing a mask at all. Utilizing two distinct datasets from the open-source website Kaggle, a mask detection network had been trained. The first dataset that was used to train the model was titled 'Face Mask Detection' on Kaggle, where the dataset was retrieved from and the second dataset was titled 'Face Mask Dataset, which provided the data in a (YOLO Format)' so that the TinyYoloV3 model could be trained. Based on the data from Kaggle, two machine learning models were implemented and trained: a Tiny YoloV3 Real-time model and a two-stage neural network classifier. The two-stage neural network classifier had a first step of identifying distinct faces within the image, and the second step was a classifier to detect the state of the mask on the face and whether it was worn correctly, incorrectly, or no mask at all. The TinyYoloV3 was used for the live feed as well as for a comparison standpoint against the previous two-stage classifier and was trained using the darknet neural network framework. The two-stage classifier attained a mean average precision (MAP) of 80%, while the model trained using TinyYoloV3 real-time detection had a mean average precision (MAP) of 59%. Overall, both models were able to correctly classify stages/scenarios of no mask, mask, and incorrectly worn masks.

Keywords: datasets, classifier, mask-detection, real-time, TinyYoloV3, two-stage neural network classifier

Procedia PDF Downloads 133
3494 Content-Based Image Retrieval Using HSV Color Space Features

Authors: Hamed Qazanfari, Hamid Hassanpour, Kazem Qazanfari

Abstract:

In this paper, a method is provided for content-based image retrieval. Content-based image retrieval system searches query an image based on its visual content in an image database to retrieve similar images. In this paper, with the aim of simulating the human visual system sensitivity to image's edges and color features, the concept of color difference histogram (CDH) is used. CDH includes the perceptually color difference between two neighboring pixels with regard to colors and edge orientations. Since the HSV color space is close to the human visual system, the CDH is calculated in this color space. In addition, to improve the color features, the color histogram in HSV color space is also used as a feature. Among the extracted features, efficient features are selected using entropy and correlation criteria. The final features extract the content of images most efficiently. The proposed method has been evaluated on three standard databases Corel 5k, Corel 10k and UKBench. Experimental results show that the accuracy of the proposed image retrieval method is significantly improved compared to the recently developed methods.

Keywords: content-based image retrieval, color difference histogram, efficient features selection, entropy, correlation

Procedia PDF Downloads 228
3493 Randomness in Cybertext: A Study on Computer-Generated Poetry from the Perspective of Semiotics

Authors: Hongliang Zhang

Abstract:

The use of chance procedures and randomizers in poetry-writing can be traced back to surrealist works, which, by appealing to Sigmund Freud's theories, were still logocentrism. In the 1960s, random permutation and combination were extensively used by the Oulipo, John Cage and Jackson Mac Low, which further deconstructed the metaphysical presence of writing. Today, the randomly-generated digital poetry has emerged as a genre of cybertext which should be co-authored by readers. At the same time, the classical theories have now been updated by cybernetics and media theories. N· Katherine Hayles put forward the concept of ‘the floating signifiers’ by Jacques Lacan to be the ‘the flickering signifiers’ , arguing that the technology per se has become a part of the textual production. This paper makes a historical review of the computer-generated poetry in the perspective of semiotics, emphasizing that the randomly-generated digital poetry which hands over the dual tasks of both interpretation and writing to the readers demonstrates the intervention of media technology in literature. With the participation of computerized algorithm and programming languages, poems randomly generated by computers have not only blurred the boundary between encoder and decoder, but also raises the issue of human-machine. It is also a significant feature of the cybertext that the productive process of the text is full of randomness.

Keywords: cybertext, digital poetry, poetry generator, semiotics

Procedia PDF Downloads 159
3492 Using Artificial Intelligence Technology to Build the User-Oriented Platform for Integrated Archival Service

Authors: Lai Wenfang

Abstract:

Tthis study will describe how to use artificial intelligence (AI) technology to build the user-oriented platform for integrated archival service. The platform will be launched in 2020 by the National Archives Administration (NAA) in Taiwan. With the progression of information communication technology (ICT) the NAA has built many systems to provide archival service. In order to cope with new challenges, such as new ICT, artificial intelligence or blockchain etc. the NAA will try to use the natural language processing (NLP) and machine learning (ML) skill to build a training model and propose suggestions based on the data sent to the platform. NAA expects the platform not only can automatically inform the sending agencies’ staffs which records catalogues are against the transfer or destroy rules, but also can use the model to find the details hidden in the catalogues and suggest NAA’s staff whether the records should be or not to be, to shorten the auditing time. The platform keeps all the users’ browse trails; so that the platform can predict what kinds of archives user could be interested and recommend the search terms by visualization, moreover, inform them the new coming archives. In addition, according to the Archives Act, the NAA’s staff must spend a lot of time to mark or remove the personal data, classified data, etc. before archives provided. To upgrade the archives access service process, the platform will use some text recognition pattern to black out automatically, the staff only need to adjust the error and upload the correct one, when the platform has learned the accuracy will be getting higher. In short, the purpose of the platform is to deduct the government digital transformation and implement the vision of a service-oriented smart government.

Keywords: artificial intelligence, natural language processing, machine learning, visualization

Procedia PDF Downloads 150
3491 Clustering of Association Rules of ISIS & Al-Qaeda Based on Similarity Measures

Authors: Tamanna Goyal, Divya Bansal, Sanjeev Sofat

Abstract:

In world-threatening terrorist attacks, where early detection, distinction, and prediction are effective diagnosis techniques and for functionally accurate and precise analysis of terrorism data, there are so many data mining & statistical approaches to assure accuracy. The computational extraction of derived patterns is a non-trivial task which comprises specific domain discovery by means of sophisticated algorithm design and analysis. This paper proposes an approach for similarity extraction by obtaining the useful attributes from the available datasets of terrorist attacks and then applying feature selection technique based on the statistical impurity measures followed by clustering techniques on the basis of similarity measures. On the basis of degree of participation of attributes in the rules, the associative dependencies between the attacks are analyzed. Consequently, to compute the similarity among the discovered rules, we applied a weighted similarity measure. Finally, the rules are grouped by applying using hierarchical clustering. We have applied it to an open source dataset to determine the usability and efficiency of our technique, and a literature search is also accomplished to support the efficiency and accuracy of our results.

Keywords: association rules, clustering, similarity measure, statistical approaches

Procedia PDF Downloads 299
3490 A Physiological Approach for Early Detection of Hemorrhage

Authors: Rabie Fadil, Parshuram Aarotale, Shubha Majumder, Bijay Guargain

Abstract:

Hemorrhage is the loss of blood from the circulatory system and leading cause of battlefield and postpartum related deaths. Early detection of hemorrhage remains the most effective strategy to reduce mortality rate caused by traumatic injuries. In this study, we investigated the physiological changes via non-invasive cardiac signals at rest and under different hemorrhage conditions simulated through graded lower-body negative pressure (LBNP). Simultaneous electrocardiogram (ECG), photoplethysmogram (PPG), blood pressure (BP), impedance cardiogram (ICG), and phonocardiogram (PCG) were acquired from 10 participants (age:28 ± 6 year, weight:73 ± 11 kg, height:172 ± 8 cm). The LBNP protocol consisted of applying -20, -30, -40, -50, and -60 mmHg pressure to the lower half of the body. Beat-to-beat heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean aerial pressure (MAP) were extracted from ECG and blood pressure. Systolic amplitude (SA), systolic time (ST), diastolic time (DT), and left ventricle Ejection time (LVET) were extracted from PPG during each stage. Preliminary results showed that the application of -40 mmHg i.e. moderate stage simulated hemorrhage resulted significant changes in HR (85±4 bpm vs 68 ± 5bpm, p < 0.01), ST (191 ± 10 ms vs 253 ± 31 ms, p < 0.05), LVET (350 ± 14 ms vs 479 ± 47 ms, p < 0.05) and DT (551 ± 22 ms vs 683 ± 59 ms, p < 0.05) compared to rest, while no change was observed in SA (p > 0.05) as a consequence of LBNP application. These findings demonstrated the potential of cardiac signals in detecting moderate hemorrhage. In future, we will analyze all the LBNP stages and investigate the feasibility of other physiological signals to develop a predictive machine learning model for early detection of hemorrhage.

Keywords: blood pressure, hemorrhage, lower-body negative pressure, LBNP, machine learning

Procedia PDF Downloads 145
3489 A Review of Test Protocols for Assessing Coating Performance of Water Ballast Tank Coatings

Authors: Emmanuel A. Oriaifo, Noel Perera, Alan Guy, Pak. S. Leung, Kian T. Tan

Abstract:

Concerns on corrosion and effective coating protection of double hull tankers and bulk carriers in service have been raised especially in water ballast tanks (WBTs). Test protocols/methodologies specifically that which is incorporated in the International Maritime Organisation (IMO), Performance Standard for Protective Coatings for Dedicated Sea Water ballast tanks (PSPC) are being used to assess and evaluate the performance of the coatings for type approval prior to their application in WBTs. However, some of the type approved coatings may be applied as very thick films to less than ideally prepared steel substrates in the WBT. As such films experience hygrothermal cycling from operating and environmental conditions, they become embrittled which may ultimately result in cracking. This embrittlement of the coatings is identified as an undesirable feature in the PSPC but is not mentioned in the test protocols within it. There is therefore renewed industrial research aimed at understanding this issue in order to eliminate cracking and achieve the intended coating lifespan of 15 years in good condition. This paper will critically review test protocols currently used for assessing and evaluating coating performance, particularly the IMO PSPC.

Keywords: corrosion test, hygrothermal cycling, coating test protocols, water ballast tanks

Procedia PDF Downloads 412
3488 Digital Survey to Detect Factors That Determine Successful Implementation of Cooperative Learning in Physical Education

Authors: Carolin Schulze

Abstract:

Characterized by a positive interdependence of learners, cooperative learning (CL) is one possibility of successfully dealing with the increasing heterogeneity of students. Various positive effects of CL on the mental, physical and social health of students have already been documented. However, this structure is still rarely used in physical education (PE). Moreover, there is a lack of information about factors that determine the successful implementation of CL in PE. Therefore, the objective of the current study was to find out factors that determine the successful implementation of CL in PE using a digital questionnaire that was conducted from November to December 2022. In addition to socio-demographic data (age, gender, teaching experience, and education level), frequency of using CL, implementation strategies (theory-led, student-centred), and positive and negative effects of CL were measured. Furthermore, teachers were asked to rate the success of implementation on a 6-point rating scale (1-very successful to 6-not successful at all). For statistical analysis, multiple linear regression was performed, setting the success of implementation as the dependent variable. A total of 224 teachers (mean age=44.81±10.60 years; 58% male) took part in the current study. Overall, 39% of participants stated that they never use CL in their PE classes. Main reasons against the implementations of CL in PE were no time for preparation (74%) or for implementation (61%) and high heterogeneity of students (55%). When using CL, most of the reported difficulties are related to uncertainties about the correct procedure (54%) and the heterogeneous performance of students (54%). The most frequently mentioned positive effect was increased motivation of students (42%) followed by an improvement of psychological abilities (e.g. self-esteem, self-concept; 36%) and improved class cohesion (31%). Reported negative effects were unpredictability (29%), restlessness (24%), confusion (24%), and conflicts between students (17%). The successful use of CL is related to a theory-based preparation (e.g., heterogeneous formation of groups, use of rules and rituals) and a flexible implementation tailored to the needs and conditions of students (e.g., the possibility of individual work, omission of CL phases). Compared to teachers who solely implemented CL theory-led or student-adapted, teachers who switched from theory-led preparation to student-centred implementation of CL reported more successful implementation (t=5.312; p<.001). Neither frequency of using CL in PE nor the gender, age, the teaching experience, or the education level of the teacher showed a significant connection with the successful use of CL. Corresponding to the results of the current study, it is advisable that teachers gather enough knowledge about CL during their education and to point out the need to adapt the learning structure according to the diversity of their students. In order to analyse implementation strategies of teachers more deeply, qualitative methods and guided interviews with teachers are needed.

Keywords: diversity, educational technology, physical education, teaching styles

Procedia PDF Downloads 63
3487 The Impact of Kids Science Labs Intervention Program on Independent Thinking and Academic Achievement in Young Children

Authors: Aliya Kamilyevna Salahova

Abstract:

This study examines the effectiveness of the Kids Science Labs intervention program, based on STEM, in fostering independent thinking among preschool and elementary school children and its influence on their academic achievement. Through a comprehensive methodology involving interviews, surveys, observations, case studies, and statistical tests, data were collected from various sources to accurately analyze the program's effects. The findings indicate a significant positive impact on children's independent thinking abilities, leading to improved academic performance in mathematics and science, enhanced learning motivation, and a propensity to critically evaluate problem-solving approaches. This research contributes to the theoretical understanding of how STEM activities can foster independent thinking and academic success in young children, providing valuable insights for the development of educational programs. Introduction: The goal of this study is to investigate the influence of the Kids Science Labs intervention program, grounded in STEM, on the development of independent thinking skills among preschool and elementary school children. By addressing this objective, we aim to explore the program's potential to enhance academic performance in mathematics and science. The study's findings have theoretical significance as they shed light on the ways in which STEM activities can foster independent thinking in young children, thus enabling educators to design effective learning programs that promote academic success. Methodology: This study employs a robust methodology that includes interviews, surveys, observations, case studies, and statistical tests. These methods were carefully selected to collect comprehensive data from multiple sources, such as documents and records, ensuring a thorough analysis of the program's effects. The use of diverse data collection and analysis procedures facilitated an in-depth exploration of the research questions and yielded reliable results. Results: The results indicate that children participating in the Kids Science Labs program experienced a sustained positive impact on their independent thinking abilities. Moreover, these children demonstrated improved academic performance in mathematics and science, displaying higher learning motivation and the capacity to critically evaluate problem-solving methods and seek optimal solutions. Theoretical Importance: This study contributes significantly to the existing theoretical knowledge by elucidating how STEM activities can foster independent thinking and enhance academic success in preschool and elementary school children. The findings have practical implications for educators, empowering them to develop learning programs that stimulate independent thinking, leading to improved academic performance in young children. Discussion: The findings of this research affirm that the Kids Science Labs intervention program is highly effective in fostering independent thinking among preschool and elementary school children. The program's positive impact extends to improved academic performance in mathematics and science, highlighting its potential to enhance learning outcomes. Educators can leverage these findings to develop educational programs that promote independent thinking and elevate academic achievement in young children. Conclusion: In conclusion, the Kids Science Labs intervention program has been found to be highly effective in fostering independent thinking among preschool and elementary school children. Furthermore, participation in the program correlates with improved academic performance in mathematics and science. The study's outcomes underscore the importance of developing educational initiatives that stimulate independent thinking in young children, thereby enhancing their academic success.

Keywords: STEM in preschool, STEM in elementary school, kids science labs, independent thinking, STEM activities in early childhood education

Procedia PDF Downloads 71