Search results for: actual consumption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4993

Search results for: actual consumption

463 Establishing a Sustainable Construction Industry: Review of Barriers That Inhibit Adoption of Lean Construction in Lesotho

Authors: Tsepiso Mofolo, Luna Bergh

Abstract:

The Lesotho construction industry fails to embrace environmental practices, which has then lead to excessive consumption of resources, land degradation, air and water pollution, loss of habitats, and high energy usage. The industry is highly inefficient, and this undermines its capability to yield the optimum contribution to social, economic and environmental developments. Sustainable construction is, therefore, imperative to ensure the cultivation of benefits from all these intrinsic themes of sustainable development. The development of a sustainable construction industry requires a holistic approach that takes into consideration the interaction between Lean Construction principles, socio-economic and environmental policies, technological advancement and the principles of construction or project management. Sustainable construction is a cutting-edge phenomenon, forming a component of a subjectively defined concept called sustainable development. Sustainable development can be defined in terms of attitudes and judgments to assist in ensuring long-term environmental, social and economic growth in society. The key concept of sustainable construction is Lean Construction. Lean Construction emanates from the principles of the Toyota Production System (TPS), namely the application and adaptation of the fundamental concepts and principles that focus on waste reduction, the increase in value to the customer, and continuous improvement. The focus is on the reduction of socio-economic waste, and protestation of environmental degradation by reducing carbon dioxide emission footprint. Lean principles require a fundamental change in the behaviour and attitudes of the parties involved in order to overcome barriers to cooperation. Prevalent barriers to adoption of Lean Construction in Lesotho are mainly structural - such as unavailability of financing, corruption, operational inefficiency or wastage, lack of skills and training and inefficient construction legislation and political interferences. The consequential effects of these problems trigger down to quality, cost and time of the project - which then result in an escalation of operational costs due to the cost of rework or material wastage. Factor and correlation analysis of these barriers indicate that they are highly correlated, which then poses a detrimental potential to the country’s welfare, environment and construction safety. It is, therefore, critical for Lesotho’s construction industry to develop a robust governance through bureaucracy reforms and stringent law enforcement.

Keywords: construction industry, sustainable development, sustainable construction industry, lean construction, barriers to sustainable construction

Procedia PDF Downloads 294
462 Systemic Functional Linguistics in the Rhetorical Strategies of Persuasion: A Longitudinal Study of Transitivity and Ergativity in the Rhetoric of Saras’ Sustainability Reports

Authors: Antonio Piga

Abstract:

This study explores the correlation between Systemic Functional Linguistics (SFL) and Critical Discourse Analysis (CDA) as tools for analysing the evolution of rhetoric in the communicative strategies adopted in a company’s Reports on social and environmental responsibility. In more specific terms, transitivity and ergativity- concepts from Systemic Functional Linguistics (SFL) - through the lenses of CDA, are employed as a theoretical means for the analysis of a longitudinal study in the communicative strategies employed by Saras SpA pre- and during the Covid-19 pandemic crisis. Saras is an Italian joint-stock company operating in oil refining and power generation. The qualitative and quantitative linguistic analysis carried out through the use of Sketch Engine software aims to identify and explain how rhetoric - and ideology - is constructed and presented through language use in Saras SpA Sustainability Reports. Specific focus is given to communication strategies to local and global communities and stakeholders in the years immediately before and during the Covid-19 pandemic. The rationale behind the study lies in the fact that 2020 and 2021 have been among the most difficult years since the end of World War II. Lives were abruptly turned upside down by the pandemic, which had grave negative effects on people’s health and on the economy. The result has been a threefold crisis involving health, the economy and social tension, with the refining sector being one of the hardest hit, since the oil refining industry was one of the most affected industries due to the general reduction in mobility and oil consumption brought about by the virus-fighting measures. Emphasis is placed on the construction of rhetorical strategies pre- and during the pandemic crisis using the representational process of transitivity and ergativity (SFL), thus revealing the close relationship between the use language in terms of Social Actors and semantic roles of syntactic transformation on the one hand, and ideological assumptions on the other. The results show that linguistic decisions regarding transitivity and ergativity choices play a crucial role in how effective writing achieves its rhetorical objectives in terms of spreading and maintaining dominant and implicit ideologies and underlying persuasive actions, and that some ideological motivation is perpetuated – if not actually overtly or subtly strengthened - in social-environmental Reports issued in the midst of the Covid-19 pandemic crisis.

Keywords: systemic functional linguistics, sustainability, critical discourse analysis, transitivity, ergativity

Procedia PDF Downloads 107
461 Automatic and High Precise Modeling for System Optimization

Authors: Stephanie Chen, Mitja Echim, Christof Büskens

Abstract:

To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.

Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization

Procedia PDF Downloads 409
460 Economic Evaluation of Degradation by Corrosion of an On-Grid Battery Energy Storage System: A Case Study in Algeria Territory

Authors: Fouzia Brihmat

Abstract:

Economic planning models, which are used to build microgrids and distributed energy resources, are the current norm for expressing such confidence (DER). These models often decide both short-term DER dispatch and long-term DER investments. This research investigates the most cost-effective hybrid (photovoltaic-diesel) renewable energy system (HRES) based on Total Net Present Cost (TNPC) in an Algerian Saharan area, which has a high potential for solar irradiation and has a production capacity of 1GW/h. Lead-acid batteries have been around much longer and are easier to understand, but have limited storage capacity. Lithium-ion batteries last longer, are lighter, but generally more expensive. By combining the advantages of each chemistry, we produce cost-effective high-capacity battery banks that operate solely on AC coupling. The financial implications of this research describe the corrosion process that occurs at the interface between the active material and grid material of the positive plate of a lead-acid battery. The best cost study for the HRES is completed with the assistance of the HOMER Pro MATLAB Link. Additionally, during the course of the project's 20 years, the system is simulated for each time step. In this model, which takes into consideration decline in solar efficiency, changes in battery storage levels over time, and rises in fuel prices above the rate of inflation. The trade-off is that the model is more accurate, but it took longer to compute. As a consequence, the model is more precise, but the computation takes longer. We initially utilized the Optimizer to run the model without MultiYear in order to discover the best system architecture. The optimal system for the single-year scenario is the Danvest generator, which has 760 kW, 200 kWh of the necessary quantity of lead-acid storage, and a somewhat lower COE of $0.309/kWh. Different scenarios that account for fluctuations in the gasified biomass generator's production of electricity have been simulated, and various strategies to guarantee the balance between generation and consumption have been investigated. The technological optimization of the same system has been finished and is being reviewed in a recent paper study.

Keywords: battery, corrosion, diesel, economic planning optimization, hybrid energy system, lead-acid battery, multi-year planning, microgrid, price forecast, PV, total net present cost

Procedia PDF Downloads 88
459 Kinetic Modelling of Fermented Probiotic Beverage from Enzymatically Extracted Annona Muricata Fruit

Authors: Calister Wingang Makebe, Wilson Ambindei Agwanande, Emmanuel Jong Nso, P. Nisha

Abstract:

Traditional liquid-state fermentation processes of Annona muricata L. juice can result in fluctuating product quality and quantity due to difficulties in control and scale up. This work describes a laboratory-scale batch fermentation process to produce a probiotic Annona muricata L. enzymatically extracted juice, which was modeled using the Doehlert design with independent extraction factors being incubation time, temperature, and enzyme concentration. It aimed at a better understanding of the traditional process as an initial step for future optimization. Annona muricata L. juice was fermented with L. acidophilus (NCDC 291) (LA), L. casei (NCDC 17) (LC), and a blend of LA and LC (LCA) for 72 h at 37 °C. Experimental data were fitted into mathematical models (Monod, Logistic and Luedeking and Piret models) using MATLAB software, to describe biomass growth, sugar utilization, and organic acid production. The optimal fermentation time was obtained based on cell viability, which was 24 h for LC and 36 h for LA and LCA. The model was particularly effective in estimating biomass growth, reducing sugar consumption, and lactic acid production. The values of the determination coefficient, R2, were 0.9946, 0.9913 and 0.9946, while the residual sum of square error, SSE, was 0.2876, 0.1738 and 0.1589 for LC, LA and LCA, respectively. The growth kinetic parameters included the maximum specific growth rate, µm, which was 0.2876 h-1, 0.1738 h-1 and 0.1589 h-1 as well as the substrate saturation, Ks, with 9.0680 g/L, 9.9337 g/L and 9.0709 g/L respectively for LC, LA and LCA. For the stoichiometric parameters, the yield of biomass based on utilized substrate (YXS) was 50.7932, 3.3940 and 61.0202, and the yield of product based on utilized substrate (YPS) was 2.4524, 0.2307 and 0.7415 for LC, LA, and LCA, respectively. In addition, the maintenance energy parameter (ms) was 0.0128, 0.0001 and 0.0004 with respect to LC, LA and LCA. With the kinetic model proposed by Luedeking and Piret for lactic acid production rate, the growth associated, and non-growth associated coefficients were determined as 1.0028 and 0.0109, respectively. The model was demonstrated for batch growth of LA, LC, and LCA in Annona muricata L. juice. The present investigation validates the potential of Annona muricata L. based medium for heightened economical production of a probiotic medium.

Keywords: L. acidophilus, L. casei, fermentation, modelling, kinetics

Procedia PDF Downloads 81
458 Study of Bis(Trifluoromethylsulfonyl)Imide Based Ionic Liquids by Gas Chromatography

Authors: F. Mutelet, L. Cesari

Abstract:

Development of safer and environmentally friendly processes and products is needed to achieve sustainable production and consumption patterns. Ionic liquids, which are of great interest to the chemical and related industries because of their attractive properties as solvents, should be considered. Ionic liquids are comprised of an asymmetric, bulky organic cation and a weakly coordinating organic or inorganic anion. A large number of possible combinations allows for the ability to ‘fine tune’ the solvent properties for a specific purpose. Physical and chemical properties of ionic liquids are not only influenced by the nature of the cation and the nature of cation substituents but also by the polarity and the size of the anion. These features infer to ionic liquids numerous applications, in organic synthesis, separation processes, and electrochemistry. Separation processes required a good knowledge of the behavior of organic compounds with ionic liquids. Gas chromatography is a useful tool to estimate the interactions between organic compounds and ionic liquids. Indeed, retention data may be used to determine infinite dilution thermodynamic properties of volatile organic compounds in ionic liquids. Among others, the activity coefficient at infinite dilution is a direct measure of solute-ionic liquid interaction. In this work, infinite dilution thermodynamic properties of volatile organic compounds in specific bis(trifluoromethylsulfonyl)imide based ionic liquids measured by gas chromatography is presented. It was found that apolar compounds are not miscible in this family of ionic liquids. As expected, the solubility of organic compounds is related to their polarity and hydrogen-bond. Through activity coefficients data, the performance of these ionic liquids was evaluated for different separation processes (benzene/heptane, thiophene/heptane and pyridine/heptane). Results indicate that ionic liquids may be used for the extraction of polar compounds (aromatics, alcohols, pyridine, thiophene, tetrahydrofuran) from aliphatic media. For example, 1-benzylpyridinium bis(trifluoromethylsulfonyl) imide and 1-cyclohexylmethyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide are more efficient for the extraction of aromatics or pyridine from aliphatics than classical solvents. Ionic liquids with long alkyl chain length present important capacity values but their selectivity values are low. In conclusion, we have demonstrated that specific bis(trifluoromethylsulfonyl)imide based ILs containing polar chain grafted on the cation (for example benzyl or cyclohexyl) increases considerably their performance in separation processes.

Keywords: interaction organic solvent-ionic liquid, gas chromatography, solvation model, COSMO-RS

Procedia PDF Downloads 109
457 Risk Based Maintenance Planning for Loading Equipment in Underground Hard Rock Mine: Case Study

Authors: Sidharth Talan, Devendra Kumar Yadav, Yuvraj Singh Rajput, Subhajit Bhattacharjee

Abstract:

Mining industry is known for its appetite to spend sizeable capital on mine equipment. However, in the current scenario, the mining industry is challenged by daunting factors of non-uniform geological conditions, uneven ore grade, uncontrollable and volatile mineral commodity prices and the ever increasing quest to optimize the capital and operational costs. Thus, the role of equipment reliability and maintenance planning inherits a significant role in augmenting the equipment availability for the operation and in turn boosting the mine productivity. This paper presents the Risk Based Maintenance (RBM) planning conducted on mine loading equipment namely Load Haul Dumpers (LHDs) at Vedanta Resources Ltd subsidiary Hindustan Zinc Limited operated Sindesar Khurd Mines, an underground zinc and lead mine situated in Dariba, Rajasthan, India. The mining equipment at the location is maintained by the Original Equipment Manufacturers (OEMs) namely Sandvik and Atlas Copco, who carry out the maintenance and inspection operations for the equipment. Based on the downtime data extracted for the equipment fleet over the period of 6 months spanning from 1st January 2017 until 30th June 2017, it was revealed that significant contribution of three downtime issues related to namely Engine, Hydraulics, and Transmission to be common among all the loading equipment fleet and substantiated by Pareto Analysis. Further scrutiny through Bubble Matrix Analysis of the given factors revealed the major influence of selective factors namely Overheating, No Load Taken (NTL) issues, Gear Changing issues and Hose Puncture and leakage issues. Utilizing the equipment wise analysis of all the downtime factors obtained, spares consumed, and the alarm logs extracted from the machines, technical design changes in the equipment and pre shift critical alarms checklist were proposed for the equipment maintenance. The given analysis is beneficial to allow OEMs or mine management to focus on the critical issues hampering the reliability of mine equipment and design necessary maintenance strategies to mitigate them.

Keywords: bubble matrix analysis, LHDs, OEMs, Pareto chart analysis, spares consumption matrix, critical alarms checklist

Procedia PDF Downloads 153
456 The Study of Fine and Nanoscale Gold in the Ores of Primary Deposits and Gold-Bearing Placers of Kazakhstan

Authors: Omarova Gulnara, Assubayeva Saltanat, Tugambay Symbat, Bulegenov Kanat

Abstract:

The article discusses the problem of developing a methodology for studying thin and nanoscale gold in ores and placers of primary deposits, which will allow us to develop schemes for revealing dispersed gold inclusions and thus improve its recovery rate to increase the gold reserves of the Republic of Kazakhstan. The type of studied gold, is characterized by a number of features. In connection with this, the conditions of its concentration and distribution in ore bodies and formations, as well as the possibility of reliably determining it by "traditional" methods, differ significantly from that of fine gold (less than 0.25 microns) and even more so from that of larger grains. The mineral composition of rocks (metasomatites) and gold ore and the mineralization associated with them were studied in detail on the Kalba ore field in Kazakhstan. Mineralized zones were identified, and samples were taken from them for analytical studies. The research revealed paragenetic relationships of newly formed mineral formations at the nanoscale, which makes it possible to clarify the conditions for the formation of deposits with a particular type of mineralization. This will provide significant assistance in developing a scheme for study. Typomorphic features of gold were revealed, and mechanisms of formation and aggregation of gold nanoparticles were proposed. The presence of a large number of particles isolated at the laboratory stage from concentrates of gravitational enrichment can serve as an indicator of the presence of even smaller particles in the object. Even the most advanced devices based on gravitational methods for gold concentration provide extraction of metal at a level of around 50%, while pulverized metal is extracted much worse, and gold of less than 1 micron size is extracted at only a few percent. Therefore, when particles of gold smaller than 10 microns are detected, their actual numbers may be significantly higher than expected. In particular, at the studied sites, enrichment of slurry and samples with volumes up to 1 m³ was carried out using a screw lock or separator to produce a final concentrate weighing up to several kilograms. Free gold particles were extracted from the concentrates in the laboratory using a number of processes (magnetic and electromagnetic separation, washing with bromoform in a cup to obtain an ultracontentrate, etc.) and examined under electron microscopes to investigate the nature of their surface and chemical composition. The main result of the study was the detection of gold nanoparticles located on the surface of loose metal grains. The most characteristic forms of gold secretions are individual nanoparticles and aggregates of different configurations. Sometimes, aggregates form solid dense films, deposits, and crusts, all of which are confined to the negative forms of the nano- and microrelief on the surfaces of golden. The results will provide significant knowledge about the prevalence and conditions for the distribution of fine and nanoscale gold in Kazakhstan deposits, as well as the development of methods for studying it, which will minimize losses of this type of gold during extraction. Acknowledgments: This publication has been produced within the framework of the Grant "Development of methodology for studying fine and nanoscale gold in ores of primary deposits, placers and products of their processing" (АР23485052, №235/GF24-26).

Keywords: electron microscopy, microminerology, placers, thin and nanoscale gold

Procedia PDF Downloads 21
455 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose

Authors: Kumar Shashvat, Amol P. Bhondekar

Abstract:

In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.

Keywords: odor classification, generative models, naive bayes, linear discriminant analysis

Procedia PDF Downloads 387
454 Prevailing Clinical Evidence on Medicinal Hemp (Cannabis Sativa L.)

Authors: Siti Hajar Muhamad Rosli, Xin Yi Lim, Terence Yew Chin Tan, Muhammad nor Farhan Sa’At, Syazwani Sirdar Ali, Ami Fazlin Syed Mohamed

Abstract:

A growing interest on therapeutic benefits of hemp (Cannabis sativa subsp. sativa) is evident in the pharmaceutical market, attributed to its lower levels of psychoactive constituent delta-9-tetrahydronannabidiol (THC). Deemed as a legal and safer alternative to its counterpart marijuana, the use of medicinal hemp is highly debatable as current scientific evidence on the efficacy for clinical use is yet to be established This study was aimed to provide an overview of the current landscape of hemp research, through recent clinical findings specific to the pharmacological properties of the hemp plant and its derived compounds. A systematic search was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analysis-ScR (PRISMA) checklist on electronic databases (MEDLINE, OVID, Cochrane Library Central, and Clinicaltrials.gov) for articles published from 2009 to 2019. With predetermined inclusion criteria, all human trials with hemp intervention were included. A total of 18 human trials were identified, investigating therapeutic effects on the neuronal, gastrointestinal, musculoskeletal and immune system, with sample sizes ranging from one to 194 subjects. Three randomised controlled trials showed hempseed pills (in Traditional Chinese Medicine formulation MaZiRenWan) consumption significantly improved spontaneous bowel movement in functional constipation. The use of commercial cannabidiol (CBD) sourced from hemp suggested benefits in cannabis dependence, epilepsy, and anxiety disorders. However, there was insufficient evidence to suggest analgesic or anxiolytics effects of hemp being equivalent to marijuana. All clinical trials reviewed varied in terms of test item formulation and standardisation, which made it challenging to confirm overall efficacy for a specific disease or condition. Published efficacy data on hemp are still at a preliminary level, with limited high quality clinical evidence for any specific therapeutic indication. With multiple variants of this plant having different phytochemical and bioactive compounds, future empirical research should focus on uniformity in experimental designs to further strengthen the notion of using medicinal hemp.

Keywords: cannabis, complementary medicine, hemp, herbal medicine.

Procedia PDF Downloads 118
453 Deep Learning for SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network

Procedia PDF Downloads 67
452 Artificial Intelligence in Management Simulators

Authors: Nuno Biga

Abstract:

Artificial Intelligence (AI) has the potential to transform management into several impactful ways. It allows machines to interpret information to find patterns in big data and learn from context analysis, optimize operations, make predictions sensitive to each specific situation and support data-driven decision making. The introduction of an 'artificial brain' in organization also enables learning through complex information and data provided by those who train it, namely its users. The "Assisted-BIGAMES" version of the Accident & Emergency (A&E) simulator introduces the concept of a "Virtual Assistant" (VA) sensitive to context, that provides users useful suggestions to pursue the following operations such as: a) to relocate workstations in order to shorten travelled distances and minimize the stress of those involved; b) to identify in real time existing bottleneck(s) in the operations system so that it is possible to quickly act upon them; c) to identify resources that should be polyvalent so that the system can be more efficient; d) to identify in which specific processes it may be advantageous to establish partnership with other teams; and e) to assess possible solutions based on the suggested KPIs allowing action monitoring to guide the (re)definition of future strategies. This paper is built on the BIGAMES© simulator and presents the conceptual AI model developed and demonstrated through a pilot project (BIG-AI). Each Virtual Assisted BIGAME is a management simulator developed by the author that guides operational and strategic decision making, providing users with useful information in the form of management recommendations that make it possible to predict the actual outcome of different alternative management strategic actions. The pilot project developed incorporates results from 12 editions of the BIGAME A&E that took place between 2017 and 2022 at AESE Business School, based on the compilation of data that allows establishing causal relationships between decisions taken and results obtained. The systemic analysis and interpretation of data is powered in the Assisted-BIGAMES through a computer application called "BIGAMES Virtual Assistant" (VA) that players can use during the Game. Each participant in the VA permanently asks himself about the decisions he should make during the game to win the competition. To this end, the role of the VA of each team consists in guiding the players to be more effective in their decision making, through presenting recommendations based on AI methods. It is important to note that the VA's suggestions for action can be accepted or rejected by the managers of each team, as they gain a better understanding of the issues along time, reflect on good practice and rely on their own experience, capability and knowledge to support their own decisions. Preliminary results show that the introduction of the VA provides a faster learning of the decision-making process. The facilitator designated as “Serious Game Controller” (SGC) is responsible for supporting the players with further analysis. The recommended actions by the SGC may differ or be similar to the ones previously provided by the VA, ensuring a higher degree of robustness in decision-making. Additionally, all the information should be jointly analyzed and assessed by each player, who are expected to add “Emotional Intelligence”, an essential component absent from the machine learning process.

Keywords: artificial intelligence, gamification, key performance indicators, machine learning, management simulators, serious games, virtual assistant

Procedia PDF Downloads 104
451 Study of the Hydrodynamic of Electrochemical Ion Pumping for Lithium Recovery

Authors: Maria Sofia Palagonia, Doriano Brogioli, Fabio La Mantia

Abstract:

In the last decade, lithium has become an important raw material in various sectors, in particular for rechargeable batteries. Its production is expected to grow more and more in the future, especially for mobile energy storage and electromobility. Until now it is mostly produced by the evaporation of water from salt lakes, which led to a huge water consumption, a large amount of waste produced and a strong environmental impact. A new, clean and faster electrochemical technique to recover lithium has been recently proposed: electrochemical ion pumping. It consists in capturing lithium ions from a feed solution by intercalation in a lithium-selective material, followed by releasing them into a recovery solution; both steps are driven by the passage of a current. In this work, a new configuration of the electrochemical cell is presented, used to study and optimize the process of the intercalation of lithium ions through the hydrodynamic condition. Lithium Manganese Oxide (LiMn₂O₄) was used as a cathode to intercalate lithium ions selectively during the reduction, while Nickel Hexacyano Ferrate (NiHCF), used as an anode, releases positive ion. The effect of hydrodynamics on the process has been studied by conducting the experiments at various fluxes of the electrolyte through the electrodes, in terms of charge circulated through the cell, captured lithium per unit mass of material and overvoltage. The result shows that flowing the electrolyte inside the cell improves the lithium capture, in particular at low lithium concentration. Indeed, in Atacama feed solution, at 40 mM of lithium, the amount of lithium captured does not increase considerably with the flux of the electrolyte. Instead, when the concentration of the lithium ions is 5 mM, the amount of captured lithium in a single capture cycle increases by increasing the flux, thus leading to the conclusion that the slowest step in the process is the transport of the lithium ion in the liquid phase. Furthermore, an influence of the concentration of other cations in solution on the process performance was observed. In particular, the capturing of the lithium using a different concentration of NaCl together with 5 mM of LiCl was performed, and the results show that the presence of NaCl limits the amount of the captured lithium. Further studies can be performed in order to understand why the full capacity of the material is not reached at the highest flow rate. This is probably due to the porous structure of the material since the liquid phase is likely not affected by the convection flow inside the pores. This work proves that electrochemical ion pumping, with a suitable hydrodynamic design, enables the recovery of lithium from feed solutions at the lower concentration than the sources that are currently exploited, down to 1 mM.

Keywords: desalination battery, electrochemical ion pumping, hydrodynamic, lithium

Procedia PDF Downloads 208
450 High Strength, High Toughness Polyhydroxybutyrate-Co-Valerate Based Biocomposites

Authors: S. Z. A. Zaidi, A. Crosky

Abstract:

Biocomposites is a field that has gained much scientific attention due to the current substantial consumption of non-renewable resources and the environmentally harmful disposal methods required for traditional polymer composites. Research on natural fiber reinforced polyhydroxyalkanoates (PHAs) has gained considerable momentum over the past decade. There is little work on PHAs reinforced with unidirectional (UD) natural fibers and little work on using epoxidized natural rubber (ENR) as a toughening agent for PHA-based biocomposites. In this work, we prepared polyhydroxybutyrate-co-valerate (PHBV) biocomposites reinforced with UD 30 wt.% flax fibers and evaluated the use of ENR with 50% epoxidation (ENR50) as a toughening agent for PHBV biocomposites. Quasi-unidirectional flax/PHBV composites were prepared by hand layup, powder impregnation followed by compression molding.  Toughening agents – polybutylene adiphate-co-terephthalate (PBAT) and ENR50 – were cryogenically ground into powder and mechanically mixed with main matrix PHBV to maintain the powder impregnation process. The tensile, flexural and impact properties of the biocomposites were measured and morphology of the composites examined using optical microscopy (OM) and scanning electron microscopy (SEM). The UD biocomposites showed exceptionally high mechanical properties as compared to the results obtained previously where only short fibers have been used. The improved tensile and flexural properties were attributed to the continuous nature of the fiber reinforcement and the increased proportion of fibers in the loading direction. The improved impact properties were attributed to a larger surface area for fiber-matrix debonding and for subsequent sliding and fiber pull-out mechanisms to act on, allowing more energy to be absorbed. Coating cryogenically ground ENR50 particles with PHBV powder successfully inhibits the self-healing nature of ENR-50, preventing particles from coalescing and overcoming problems in mechanical mixing, compounding and molding. Cryogenic grinding, followed by powder impregnation and subsequent compression molding is an effective route to the production of high-mechanical-property biocomposites based on renewable resources for high-obsolescence applications such as plastic casings for consumer electronics.

Keywords: natural fibers, natural rubber, polyhydroxyalkanoates, unidirectional

Procedia PDF Downloads 289
449 Comparison of Phytochemicals in Grapes and Wine from Shenton Park Winery

Authors: Amanda Sheard, Garry Lee, Katherine Stockham

Abstract:

Introduction: Health benefits associated with wine consumption have been well documented; these include anticancer, anti-inflammatory, and cardiovascular protection. The majority of these health benefits have been linked to polyphenols found within wine and grapes. Once consumed polyphenols exhibit free radical quenching capabilities. Environmental factors such as rainfall, temperature, CO2 levels and sunlight exposure have been shown to affect the polyphenol content of grapes. The objective of this work was to evaluate the effect of growing conditions on the antioxidant capacity of grapes obtained from a single plot vineyard in Perth. This was achieved through the analysis of samples using; oxygen radical antioxidant capacity (ORAC), cellular antioxidant activity (CAA) in human red blood cells, ICP-MS and ICP-OES, total polyphenols (PP’s), and total flavonoid’s (FLa). The data obtained was compared to observed climate data. The 14 Selected Vitis Vinefera L. cultivars included Cabernet franc, Cabernet Sauvignon, Carnelian, Chardonnay, Grenache, Melbec, Merlot, Orange muscat, Rousanne, Sauvignon Blanc, Shiraz, Tempernillo, Verdelho, and Voignier. Results: Notable variation’s between cultivars included results ranging from 125 mg/100 g-350 mg/100 g for PP’s, 93 mg/100 g–300 mg/100 g for FLa, 13 mM T.E/kg–33 mM T.E/kg for ORAC and 0.3 mM Q.E/kg–27 mM Q.E/kg CAA were found between red and white grape cultivars. No correlation was found between CAA and the ORAC obtained in this study; except that white cultivars were consistently lower than red. ICP analysis showed that seeds contained the highest concentration of copper followed by skins and flesh of the grape. A positive correlation between copper and ORAC was found. The ORAC, PP’s, and FLa in red grapes were consistently higher than white grape cultivars; these findings were supported by literature values. Significance: The cellular antioxidant activities of white and red wine cultivars were used to compare the bioactivity of these grapes against the chemical ORAC measurement. The common method of antioxidant activity measurement is the chemical value from ORAC analysis; however this may not reflect the activity within the human body. Hence, the measurements were also carried out using the cellular antioxidant activity to perform a comparison. Additionally, the study explored the influence of weather systems such as El Niño and La Niña on the polyphenol content of Australian wine cultivars grown in Perth.

Keywords: oxygen radical antioxidant activity, cellular antioxidant activity, total polyphenols, total flavonoids, wine grapes, climate

Procedia PDF Downloads 290
448 Flood Early Warning and Management System

Authors: Yogesh Kumar Singh, T. S. Murugesh Prabhu, Upasana Dutta, Girishchandra Yendargaye, Rahul Yadav, Rohini Gopinath Kale, Binay Kumar, Manoj Khare

Abstract:

The Indian subcontinent is severely affected by floods that cause intense irreversible devastation to crops and livelihoods. With increased incidences of floods and their related catastrophes, an Early Warning System for Flood Prediction and an efficient Flood Management System for the river basins of India is a must. Accurately modeled hydrological conditions and a web-based early warning system may significantly reduce economic losses incurred due to floods and enable end users to issue advisories with better lead time. This study describes the design and development of an EWS-FP using advanced computational tools/methods, viz. High-Performance Computing (HPC), Remote Sensing, GIS technologies, and open-source tools for the Mahanadi River Basin of India. The flood prediction is based on a robust 2D hydrodynamic model, which solves shallow water equations using the finite volume method. Considering the complexity of the hydrological modeling and the size of the basins in India, it is always a tug of war between better forecast lead time and optimal resolution at which the simulations are to be run. High-performance computing technology provides a good computational means to overcome this issue for the construction of national-level or basin-level flash flood warning systems having a high resolution at local-level warning analysis with a better lead time. High-performance computers with capacities at the order of teraflops and petaflops prove useful while running simulations on such big areas at optimum resolutions. In this study, a free and open-source, HPC-based 2-D hydrodynamic model, with the capability to simulate rainfall run-off, river routing, and tidal forcing, is used. The model was tested for a part of the Mahanadi River Basin (Mahanadi Delta) with actual and predicted discharge, rainfall, and tide data. The simulation time was reduced from 8 hrs to 3 hrs by increasing CPU nodes from 45 to 135, which shows good scalability and performance enhancement. The simulated flood inundation spread and stage were compared with SAR data and CWC Observed Gauge data, respectively. The system shows good accuracy and better lead time suitable for flood forecasting in near-real-time. To disseminate warning to the end user, a network-enabled solution is developed using open-source software. The system has query-based flood damage assessment modules with outputs in the form of spatial maps and statistical databases. System effectively facilitates the management of post-disaster activities caused due to floods, like displaying spatial maps of the area affected, inundated roads, etc., and maintains a steady flow of information at all levels with different access rights depending upon the criticality of the information. It is designed to facilitate users in managing information related to flooding during critical flood seasons and analyzing the extent of the damage.

Keywords: flood, modeling, HPC, FOSS

Procedia PDF Downloads 89
447 Decision Support Tool for Water Re-used Systems

Authors: Katarzyna Pawęska, Aleksandra Bawiec, Ewa Burszta-Adamiak, Wiesław Fiałkiewicz

Abstract:

The water shortage becomes a serious problem not only in African and Middle Eastern countries, but also recently in the European Union. Scarcity of water means that not all agricultural, industrial and municipal needs will be met. When the annual availability of renewable freshwater per capita is less than 1,700 cubic meters, countries begin to experience periodic or regular water shortages. The phenomenon of water stress is the result of an imbalance between the constantly growing demand for water and its availability. The constant development of industry, population growth, and climate changes make the situation even worse. The search for alternative water sources and independent supplies is becoming a priority for many countries. Data enabling the assessment of country’s condition regarding water resources, water consumption, water price, wastewater volume, forecasted climate changes e.g. temperature, precipitation, are scattered and their interpretation by common entrepreneurs may be difficult. For this purpose, a digital tool has been developed to support decisions related to the implementation of water and wastewater re-use systems, as a result of an international research project “Framework for organizational decision-making process in water reuse for smart cities” (SMART-WaterDomain) funded under the EIG-CONCERT Japan call on Smart Water Management for Sustainable Society. The developed geo-visualization tool graphically presents, among others, data about the capacity of wastewater treatment plants and the volume of water demand in the private and public sectors for Poland, Germany, and the Czech Republic. It is expected that such a platform, extended with economical water management data and climate forecasts (temperature, precipitation), will allow in the future independent investigation and assessment of water use rate and wastewater production on the local and regional scale. The tool is a great opportunity for small business owners, entrepreneurs, farmers, local authorities, and common users to analyze the impact of climate change on the availability of water in the regions of their business activities. Acknowledgments: The authors acknowledge the support of the Project Organisational Decision Making in Water Reuse for Smart Cities (SMART- WaterDomain), funded by The National Centre for Research and Development and supported by the EIG-Concert Japan.

Keywords: circular economy, digital tool, geo-visualization, wastewater re-use

Procedia PDF Downloads 56
446 Plasma Arc Burner for Pulverized Coal Combustion

Authors: Gela Gelashvili, David Gelenidze, Sulkhan Nanobashvili, Irakli Nanobashvili, George Tavkhelidze, Tsiuri Sitchinava

Abstract:

Development of new highly efficient plasma arc combustion system of pulverized coal is presented. As it is well-known, coal is one of the main energy carriers by means of which electric and heat energy is produced in thermal power stations. The quality of the extracted coal decreases very rapidly. Therefore, the difficulties associated with its firing and complete combustion arise and thermo-chemical preparation of pulverized coal becomes necessary. Usually, other organic fuels (mazut-fuel oil or natural gas) are added to low-quality coal for this purpose. The fraction of additional organic fuels varies within 35-40% range. This decreases dramatically the economic efficiency of such systems. At the same time, emission of noxious substances in the environment increases. Because of all these, intense development of plasma combustion systems of pulverized coal takes place in whole world. These systems are equipped with Non-Transferred Plasma Arc Torches. They allow practically complete combustion of pulverized coal (without organic additives) in boilers, increase of energetic and financial efficiency. At the same time, emission of noxious substances in the environment decreases dramatically. But, the non-transferred plasma torches have numerous drawbacks, e.g. complicated construction, low service life (especially in the case of high power), instability of plasma arc and most important – up to 30% of energy loss due to anode cooling. Due to these reasons, intense development of new plasma technologies that are free from these shortcomings takes place. In our proposed system, pulverized coal-air mixture passes through plasma arc area that burns between to carbon electrodes directly in pulverized coal muffler burner. Consumption of the carbon electrodes is low and does not need a cooling system, but the main advantage of this method is that radiation of plasma arc directly impacts on coal-air mixture that accelerates the process of thermo-chemical preparation of coal to burn. To ensure the stability of the plasma arc in such difficult conditions, we have developed a power source that provides fixed current during fluctuations in the arc resistance automatically compensated by the voltage change as well as regulation of plasma arc length over a wide range. Our combustion system where plasma arc acts directly on pulverized coal-air mixture is simple. This should allow a significant improvement of pulverized coal combustion (especially low-quality coal) and its economic efficiency. Preliminary experiments demonstrated the successful functioning of the system.

Keywords: coal combustion, plasma arc, plasma torches, pulverized coal

Procedia PDF Downloads 161
445 Mobile App versus Website: A Comparative Eye-Tracking Case Study of Topshop

Authors: Zofija Tupikovskaja-Omovie, David Tyler, Sam Dhanapala, Steve Hayes

Abstract:

The UK is leading in online retail and mobile adoption. However, there is a dearth of information relating to mobile apparel retail, and developing an understanding about consumer browsing and purchase behavior in m-retail channel would provide apparel marketers, mobile website and app developers with the necessary understanding of consumers’ needs. Despite the rapid growth of mobile retail businesses, no published study has examined shopping behaviour on fashion mobile websites and apps. A mixed method approach helped to understand why fashion consumers prefer websites on mobile devices, when mobile apps are also available. The following research methods were employed: survey, eye-tracking experiments, observation, and interview with retrospective think aloud. The mobile gaze tracking device by SensoMotoric Instruments was used to understand frustrations in navigation and other issues facing consumers in mobile channel. This method helped to validate and compliment other traditional user-testing approaches in order to optimize user experience and enhance the development of mobile retail channel. The study involved eight participants - females aged 18 to 35 years old, who are existing mobile shoppers. The participants used the Topshop mobile app and website on a smart phone to complete a task according to a specified scenario leading to a purchase. The comparative study was based on: duration and time spent at different stages of the shopping journey, number of steps involved and product pages visited, search approaches used, layout and visual clues, as well as consumer perceptions and expectations. The results from the data analysis show significant differences in consumer behaviour when using a mobile app or website on a smart phone. Moreover, two types of problems were identified, namely technical issues and human errors. Having a mobile app does not guarantee success in satisfying mobile fashion consumers. The differences in the layout and visual clues seem to influence the overall shopping experience on a smart phone. The layout of search results on the website was different from the mobile app. Therefore, participants, in most cases, behaved differently on different platforms. The number of product pages visited on the mobile app was triple the number visited on the website due to a limited visibility of products in the search results. Although, the data on traffic trends held by retailers to date, including retail sector breakdowns for visits and views, data on device splits and duration, might seem a valuable source of information, it cannot explain why consumers visit many product pages, stay longer on the website or mobile app, or abandon the basket. A comprehensive list of pros and cons was developed by highlighting issues for website and mobile app, and recommendations provided. The findings suggest that fashion retailers need to be aware of actual consumers’ behaviour on the mobile channel and their expectations in order to offer a seamless shopping experience. Added to which is the challenge of retaining existing and acquiring new customers. There seem to be differences in the way fashion consumers search and shop on mobile, which need to be explored in further studies.

Keywords: consumer behavior, eye-tracking technology, fashion retail, mobile app, m-retail, smart phones, topshop, user experience, website

Procedia PDF Downloads 459
444 Driving Environmental Quality through Fuel Subsidy Reform in Nigeria

Authors: O. E. Akinyemi, P. O. Alege, O. O. Ajayi, L. A. Amaghionyediwe, A. A. Ogundipe

Abstract:

Nigeria as an oil-producing developing country in Africa is one of the many countries that had been subsidizing consumption of fossil fuel. Despite the numerous advantage of this policy ranging from increased energy access, fostering economic and industrial development, protecting the poor households from oil price shocks, political considerations, among others; they have been found to impose economic cost, wasteful, inefficient, create price distortions discourage investment in the energy sector and contribute to environmental pollution. These negative consequences coupled with the fact that the policy had not been very successful at achieving some of its stated objectives, led to a number of organisations and countries such as the Group of 7 (G7), World Bank, International Monetary Fund (IMF), International Energy Agency (IEA), Organisation for Economic Co-operation and Development (OECD), among others call for global effort towards reforming fossil fuel subsidies. This call became necessary in view of seeking ways to harmonise certain existing policies which may by design hamper current effort at tackling environmental concerns such as climate change. This is in addition to driving a green growth strategy and low carbon development in achieving sustainable development. The energy sector is identified to play a vital role. This study thus investigates the prospects of using fuel subsidy reform as a viable tool in driving an economy that de-emphasizes carbon growth in Nigeria. The method used is the Johansen and Engle-Granger two-step Co-integration procedure in order to investigate the existence or otherwise of a long-run equilibrium relationship for the period 1971 to 2011. Its theoretical framework is rooted in the Environmental Kuznet Curve (EKC) hypothesis. In developing three case scenarios (case of subsidy payment, no subsidy payment and effective subsidy), findings from the study supported evidence of a long run sustainable equilibrium model. Also, estimation results reflected that the first and the second scenario do not significantly influence the indicator of environmental quality. The implication of this is that in reforming fuel subsidy to drive environmental quality for an economy like Nigeria, strong and effective regulatory framework (measure that was interacted with fuel subsidy to yield effective subsidy) is essential.

Keywords: environmental quality, fuel subsidy, green growth, low carbon growth strategy

Procedia PDF Downloads 326
443 Modern Hybrid of Older Black Female Stereotypes in Hollywood Film

Authors: Frederick W. Gooding, Jr., Mark Beeman

Abstract:

Nearly a century ago, the groundbreaking 1915 film ‘The Birth of a Nation’ popularized the way Hollywood made movies with its avant-garde, feature-length style. The movie's subjugating and demeaning depictions of African American women (and men) reflected popular racist beliefs held during the time of slavery and the early Jim Crow era. Although much has changed concerning race relations in the past century, American sociologist Patricia Hill Collins theorizes that the disparaging images of African American women originating in the era of plantation slavery are adaptable and endure as controlling images today. In this context, a comparative analysis of the successful contemporary film, ‘Bringing Down the House’ starring Queen Latifah is relevant as this 2004 film was designed to purposely defy and ridicule classic stereotypes of African American women. However, the film is still tied to the controlling images from the past, although in a modern hybrid form. Scholars of race and film have noted that the pervasive filmic imagery of the African American woman as the loyal mammy stereotype faded from the screen in the post-civil rights era in favor of more sexualized characters (i.e., the Jezebel trope). Analyzing scenes and dialogue through the lens of sociological and critical race theory, the troubling persistence of African American controlling images in film stubbornly emerge in a movie like ‘Bringing Down the House.’ Thus, these controlling images, like racism itself, can adapt to new social and economic conditions. Although the classic controlling images appeared in the first feature length film focusing on race relations a century ago, ‘The Birth of a Nation,’ this black and white rendition of the mammy figure was later updated in 1939 with the classic hit, ‘Gone with the Wind’ in living color. These popular controlling images have loomed quite large in the minds of international audiences, as ‘Gone with the Wind’ is still shown in American theaters currently, and experts at the British Film Institute in 2004 rated ‘Gone with the Wind’ as the number one movie of all time in UK movie history based upon the total number of actual viewings. Critical analysis of character patterns demonstrate that images that appear superficially benign contribute to a broader and quite persistent pattern of marginalization within the aggregate. This approach allows experts and viewers alike to detect more subtle and sophisticated strands of racial discrimination that are ‘hidden in plain sight’ despite numerous changes in the Hollywood industry that appear to be more voluminous and diverse than three or four decades ago. In contrast to white characters, non-white or minority characters are likely to be subtly compromised or marginalized relative to white characters if and when seen within mainstream movies, rather than be subjected to obvious and offensive racist tropes. The hybrid form of both the older Jezebel and Mammy stereotypes exhibited by lead actress Queen Latifah in ‘Bringing Down the House’ represents a more suave and sophisticated merging of past imagery ideas deemed problematic in the past as well as the present.

Keywords: African Americans, Hollywood film, hybrid, stereotypes

Procedia PDF Downloads 177
442 Deep Learning Based Polarimetric SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry

Procedia PDF Downloads 90
441 Effect of Laser Ablation OTR Films on the Storability of Endive and Pak Choi by Baby Vegetables in Modified Atmosphere Condition

Authors: In-Lee Choi, Min Jae Jeong, Jun Pill Baek, Ho-Min Kang

Abstract:

As the consumption trends of vegetables become different from the past, it is increased using vegetable more convenience such as fresh-cut vegetables, sprouts, baby vegetables rather than an existing hole piece of vegetables. Selected baby vegetables have various functional materials but they have short shelf life. This study was conducted to improve storability by using suitable laser ablation OTR (oxygen transmission rate) films. Baby vegetable of endive (Cichorium endivia L.) and pak choi (Brassica rapa chinensis) for this research, around 10 cm height, cultivated in glass greenhouse during 3 weeks. Harvested endive and pak choi were stored at 8 ℃ for 5 days and were packed by PP (Polypropylene) container and covered different types of laser ablation OTR film (DaeRyung Co., Ltd.) such as 1,300 cc, 10,000 cc, 20,000 cc, 40,000 cc /m2•day•atm, and control (perforated film) with heat sealing machine (SC200-IP, Kumkang, Korea). All the samples conducted 5 times replication. Statistical analysis was carried out using a Microsoft Excel 2010 program and results were expressed as standard deviations. The fresh weight loss rate of both baby vegetables were less than 0.3 % in treated films as maximum weight loss rate. On the other hands, control in the final storage day had around 3.0 % weight loss rate and it followed decreasing quantity. Endive had less 2.0 % carbon dioxide contents as maximum contents in 20,000 cc and 40,000 cc. Oxygen contents was maintained between 17 and 20 % in endive, 19 and 20 % in pak choi. Ethylene concentration of both vegetables maintained little lower contents in 20,000 cc treatments than others at final storage day without statistical significance. In the case of hardness, 40,000 cc film was shown little higher value at both baby vegetables without statistical significance. Visual quality was good at 10,000 cc and 20,000 cc in endive and pak choi, and off-flavor was not appeard any off-flavor in both vegetables. Chlorophyll (SPAD-502, Minolta, Japan) value of endive was shown as similar result with initial in all treatments except 20,000 cc as little lower. And chlorophyll value of pak choi decreased in all treatments compared with initial value but was not shown significantly difference each other. Color of leaves (CR-400, Minolta, Japan) changed significantly in 40,000 cc at endive. In an event of pak choi, all the treatments started yellowing by increasing hunter b value, among them control increased substantially. As above the result, 10,000 cc film was most reasonable packaging film for storing at endive and 20,000 cc at pak choi with good quality.

Keywords: carbon dioxide, shelf-life, visual quality, pak choi

Procedia PDF Downloads 789
440 Simulation Research of Diesel Aircraft Engine

Authors: Łukasz Grabowski, Michał Gęca, Mirosław Wendeker

Abstract:

This paper presents the simulation results of a new opposed piston diesel engine to power a light aircraft. Created in the AVL Boost, the model covers the entire charge passage, from the inlet up to the outlet. The model shows fuel injection into cylinders and combustion in cylinders. The calculation uses the module for two-stroke engines. The model was created using sub-models available in this software that structure the model. Each of the sub-models is complemented with parameters in line with the design premise. Since engine weight resulting from geometric dimensions is fundamental in aircraft engines, two configurations of stroke were studied. For each of the values, there were calculated selected operating conditions defined by crankshaft speed. The required power was achieved by changing air fuel ratio (AFR). There was also studied brake specific fuel consumption (BSFC). For stroke S1, the BSFC was lowest at all of the three operating points. This difference is approximately 1-2%, which means higher overall engine efficiency but the amount of fuel injected into cylinders is larger by several mg for S1. The cylinder maximum pressure is lower for S2 due to the fact that compressor gear driving remained the same and boost pressure was identical in the both cases. Calculations for various values of boost pressure were the next stage of the study. In each of the calculation case, the amount of fuel was changed to achieve the required engine power. In the former case, the intake system dimensions were modified, i.e. the duct connecting the compressor and the air cooler, so its diameter D = 40 mm was equal to the diameter of the compressor outlet duct. The impact of duct length was also examined to be able to reduce the flow pulsation during the operating cycle. For the so selected geometry of the intake system, there were calculations for various values of boost pressure. The boost pressure was changed by modifying the gear driving the compressor. To reach the required level of cruising power N = 68 kW. Due to the mechanical power consumed by the compressor, high pressure ratio results in a worsened overall engine efficiency. The figure on the change in BSFC from 210 g/kWh to nearly 270 g/kWh shows this correlation and the overall engine efficiency is reduced by about 8%. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: aircraft, diesel, engine, simulation

Procedia PDF Downloads 207
439 Mixed Mode Fracture Analyses Using Finite Element Method of Edge Cracked Heavy Annulus Pulley

Authors: Bijit Kalita, K. V. N. Surendra

Abstract:

The pulley works under both compressive loading due to contacting belt in tension and central torque due to cause rotation. In a power transmission system, the belt pulley assemblies offer a contact problem in the form of two mating cylindrical parts. In this work, we modeled a pulley as a heavy two-dimensional circular disk. Stress analysis due to contact loading in the pulley mechanism is performed. Finite element analysis (FEA) is conducted for a pulley to investigate the stresses experienced on its inner and outer periphery. In most of the heavy-duty applications, most frequently used mechanisms to transmit power in applications such as automotive engines, industrial machines, etc. is Belt Drive. Usually, very heavy circular disks are used as pulleys. A pulley could be entitled as a drum and may have a groove between two flanges around the circumference. A rope, belt, cable or chain can be the driving element of a pulley system that runs over the pulley inside the groove. A pulley is experienced by normal and shear tractions on its contact region in the process of motion transmission. The region may be belt-pulley contact surface or pulley-shaft contact surface. In 1895, Hertz solved the elastic contact problem for point contact and line contact of an ideal smooth object. Afterward, this hypothesis is generally utilized for computing the actual contact zone. Detailed stress analysis in such contact region of such pulleys is quite necessary to prevent early failure. In this paper, the results of the finite element analyses carried out on the compressed disk of a belt pulley arrangement using fracture mechanics concepts are shown. Based on the literature on contact stress problem induced in the wide field of applications, generated stress distribution on the shaft-pulley and belt-pulley interfaces due to the application of high-tension and torque was evaluated in this study using FEA concepts. Finally, the results obtained from ANSYS (APDL) were compared with the Hertzian contact theory. The study is mainly focused on the fatigue life estimation of a rotating part as a component of an engine assembly using the most famous Paris equation. Digital Image Correlation (DIC) analyses have been performed using the open-source software. From the displacement computed using the images acquired at a minimum and maximum force, displacement field amplitude is computed. From these fields, the crack path is defined and stress intensity factors and crack tip position are extracted. A non-linear least-squares projection is used for the purpose of the estimation of fatigue crack growth. Further study will be extended for the various application of rotating machinery such as rotating flywheel disk, jet engine, compressor disk, roller disk cutter etc., where Stress Intensity Factor (SIF) calculation plays a significant role on the accuracy and reliability of a safe design. Additionally, this study will be progressed to predict crack propagation in the pulley using maximum tangential stress (MTS) criteria for mixed mode fracture.

Keywords: crack-tip deformations, contact stress, stress concentration, stress intensity factor

Procedia PDF Downloads 124
438 Technical and Economic Potential of Partial Electrification of Railway Lines

Authors: Rafael Martins Manzano Silva, Jean-Francois Tremong

Abstract:

Electrification of railway lines allows to increase speed, power, capacity and energetic efficiency of rolling stocks. However, this process of electrification is complex and costly. An electrification project is not just about design of catenary. It also includes installation of structures around electrification, as substation installation, electrical isolation, signalling, telecommunication and civil engineering structures. France has more than 30,000 km of railways, whose only 53% are electrified. The others 47% of railways use diesel locomotive and represent only 10% of the circulation (tons.km). For this reason, a new type of electrification, less expensive than the usual, is requested to enable the modernization of these railways. One solution could be the use of hybrids trains. This technology opens up new opportunities for less expensive infrastructure development such as the partial electrification of railway lines. In a partially electrified railway, the power supply of theses hybrid trains could be made either by the catenary or by the on-board energy storage system (ESS). Thus, the on-board ESS would feed the energetic needs of the train along the non-electrified zones while in electrified zones, the catenary would feed the train and recharge the on-board ESS. This paper’s objective deals with the technical and economic potential identification of partial electrification of railway lines. This study provides different scenarios of electrification by replacing the most expensive places to electrify using on-board ESS. The target is to reduce the cost of new electrification projects, i.e. reduce the cost of electrification infrastructures while not increasing the cost of rolling stocks. In this study, scenarios are constructed in function of the electrification’s cost of each structure. The electrification’s cost varies considerably because of the installation of catenary support in tunnels, bridges and viaducts is much more expensive than in others zones of the railway. These scenarios will be used to describe the power supply system and to choose between the catenary and the on-board energy storage depending on the position of the train on the railway. To identify the influence of each partial electrification scenario in the sizing of the on-board ESS, a model of the railway line and of the rolling stock is developed for a real case. This real case concerns a railway line located in the south of France. The energy consumption and the power demanded at each point of the line for each power supply (catenary or on-board ESS) are provided at the end of the simulation. Finally, the cost of a partial electrification is obtained by adding the civil engineering costs of the zones to be electrified plus the cost of the on-board ESS. The study of the technical and economic potential ends with the identification of the most economically interesting scenario of electrification.

Keywords: electrification, hybrid, railway, storage

Procedia PDF Downloads 431
437 Decoding Kinematic Characteristics of Finger Movement from Electrocorticography Using Classical Methods and Deep Convolutional Neural Networks

Authors: Ksenia Volkova, Artur Petrosyan, Ignatii Dubyshkin, Alexei Ossadtchi

Abstract:

Brain-computer interfaces are a growing research field producing many implementations that find use in different fields and are used for research and practical purposes. Despite the popularity of the implementations using non-invasive neuroimaging methods, radical improvement of the state channel bandwidth and, thus, decoding accuracy is only possible by using invasive techniques. Electrocorticography (ECoG) is a minimally invasive neuroimaging method that provides highly informative brain activity signals, effective analysis of which requires the use of machine learning methods that are able to learn representations of complex patterns. Deep learning is a family of machine learning algorithms that allow learning representations of data with multiple levels of abstraction. This study explores the potential of deep learning approaches for ECoG processing, decoding movement intentions and the perception of proprioceptive information. To obtain synchronous recording of kinematic movement characteristics and corresponding electrical brain activity, a series of experiments were carried out, during which subjects performed finger movements at their own pace. Finger movements were recorded with a three-axis accelerometer, while ECoG was synchronously registered from the electrode strips that were implanted over the contralateral sensorimotor cortex. Then, multichannel ECoG signals were used to track finger movement trajectory characterized by accelerometer signal. This process was carried out both causally and non-causally, using different position of the ECoG data segment with respect to the accelerometer data stream. The recorded data was split into training and testing sets, containing continuous non-overlapping fragments of the multichannel ECoG. A deep convolutional neural network was implemented and trained, using 1-second segments of ECoG data from the training dataset as input. To assess the decoding accuracy, correlation coefficient r between the output of the model and the accelerometer readings was computed. After optimization of hyperparameters and training, the deep learning model allowed reasonably accurate causal decoding of finger movement with correlation coefficient r = 0.8. In contrast, the classical Wiener-filter like approach was able to achieve only 0.56 in the causal decoding mode. In the noncausal case, the traditional approach reached the accuracy of r = 0.69, which may be due to the presence of additional proprioceptive information. This result demonstrates that the deep neural network was able to effectively find a representation of the complex top-down information related to the actual movement rather than proprioception. The sensitivity analysis shows physiologically plausible pictures of the extent to which individual features (channel, wavelet subband) are utilized during the decoding procedure. In conclusion, the results of this study have demonstrated that a combination of a minimally invasive neuroimaging technique such as ECoG and advanced machine learning approaches allows decoding motion with high accuracy. Such setup provides means for control of devices with a large number of degrees of freedom as well as exploratory studies of the complex neural processes underlying movement execution.

Keywords: brain-computer interface, deep learning, ECoG, movement decoding, sensorimotor cortex

Procedia PDF Downloads 177
436 Techno-Economic Assessment of Distributed Heat Pumps Integration within a Swedish Neighborhood: A Cosimulation Approach

Authors: Monica Arnaudo, Monika Topel, Bjorn Laumert

Abstract:

Within the Swedish context, the current trend of relatively low electricity prices promotes the electrification of the energy infrastructure. The residential heating sector takes part in this transition by proposing a switch from a centralized district heating system towards a distributed heat pumps-based setting. When it comes to urban environments, two issues arise. The first, seen from an electricity-sector perspective, is related to the fact that existing networks are limited with regards to their installed capacities. Additional electric loads, such as heat pumps, can cause severe overloads on crucial network elements. The second, seen from a heating-sector perspective, has to do with the fact that the indoor comfort conditions can become difficult to handle when the operation of the heat pumps is limited by a risk of overloading on the distribution grid. Furthermore, the uncertainty of the electricity market prices in the future introduces an additional variable. This study aims at assessing the extent to which distributed heat pumps can penetrate an existing heat energy network while respecting the technical limitations of the electricity grid and the thermal comfort levels in the buildings. In order to account for the multi-disciplinary nature of this research question, a cosimulation modeling approach was adopted. In this way, each energy technology is modeled in its customized simulation environment. As part of the cosimulation methodology: a steady-state power flow analysis in pandapower was used for modeling the electrical distribution grid, a thermal balance model of a reference building was implemented in EnergyPlus to account for space heating and a fluid-cycle model of a heat pump was implemented in JModelica to account for the actual heating technology. With the models set in place, different scenarios based on forecasted electricity market prices were developed both for present and future conditions of Hammarby Sjöstad, a neighborhood located in the south-east of Stockholm (Sweden). For each scenario, the technical and the comfort conditions were assessed. Additionally, the average cost of heat generation was estimated in terms of levelized cost of heat. This indicator enables a techno-economic comparison study among the different scenarios. In order to evaluate the levelized cost of heat, a yearly performance simulation of the energy infrastructure was implemented. The scenarios related to the current electricity prices show that distributed heat pumps can replace the district heating system by covering up to 30% of the heating demand. By lowering of 2°C, the minimum accepted indoor temperature of the apartments, this level of penetration can increase up to 40%. Within the future scenarios, if the electricity prices will increase, as most likely expected within the next decade, the penetration of distributed heat pumps can be limited to 15%. In terms of levelized cost of heat, a residential heat pump technology becomes competitive only within a scenario of decreasing electricity prices. In this case, a district heating system is characterized by an average cost of heat generation 7% higher compared to a distributed heat pumps option.

Keywords: cosimulation, distributed heat pumps, district heating, electrical distribution grid, integrated energy systems

Procedia PDF Downloads 150
435 Challenges to Ensure Food Safety through Sanitation and Hygiene Coverage in Bangladesh

Authors: Moshiur Rahman, Tahmida Jakia

Abstract:

Bangladesh, a densely populated South Asian country is home to more than 160 million people. In two decades ago, the people of this developing nation drank heavily contaminated surface water. Over the past thirty years, the country, and its development partners, has undertaken extensive efforts to provide microbiologically safe groundwater based drinking water through the use of tube-wells. About 85% of the people now drink tube-well water from about 11 million tube-wells/hand pumps. However, diarrhoeal and other water-related diseases are still reported among the major causes of morbidity and mortality among Bangladeshi children. This implies that the mode of transmission of pathogens through water and/or other modes continue. In addition, massive scale arsenic contamination has been recently reported in the ground water. Thirty five million people may be at risk of consuming arsenic contaminated water exceeding 0.05 mg/l in Bangladesh. Drinking of arsenic contaminated water has been linked with skin problems, cancer, cardiovascular diseases, neurological diseases, eye problems, cancer of the internal organs, and other diseases. In the study area, Narail district, recent investigations about existing water quality situations indicated presence of low to high levels of arsenic, salinity, iron, manganese and bacteriological contamination risks. As challenges for safe water exist; it is likely that sanitation and food hygiene practices are poor which lead threat to ensure food security.The main attempt of this study is to find out the challenges to ensure food security andprovide probable solutions to ensure food safety towards 0.7 million of people in study area. A survey has been conducted at Lohagara and Kalia sub district of Narail district with a pretested questionnaire. Primary data are collected through a questionnaire, while secondary data are collected from pertinent offices as well as academic journals. FGD has also been done to know the knowledge regarding water, sanitation as well as food preparation and consumption practice of community people in study area. The major focus of this study is to assess the state of sanitation and food hygiene condition of rural people. It is found that most of the villagers have lack of knowledge about food safety. Open defecation rate is high which lead threat to ensure food security.

Keywords: food safety, challenges, hygiene, Bangladesh

Procedia PDF Downloads 334
434 Features of Formation and Development of Possessory Risk Management Systems of Organization in the Russian Economy

Authors: Mikhail V. Khachaturyan, Inga A. Koryagina, Maria Nikishova

Abstract:

The study investigates the impact of the ongoing financial crisis, started in the 2nd half of 2014, on marketing budgets spent by Fast-moving consumer goods companies. In these conditions, special importance is given to efficient possessory risk management systems. The main objective for establishing and developing possessory risk management systems for FMCG companies in a crisis is to analyze the data relating to the external environment and consumer behavior in a crisis. Another important objective for possessory risk management systems of FMCG companies is to develop measures and mechanisms to maintain and stimulate sales. In this regard, analysis of risks and threats which consumers define as the main reasons affecting their level of consumption become important. It is obvious that in crisis conditions the effective risk management systems responsible for development and implementation of strategies for consumer demand stimulation, as well as the identification, analysis, assessment and management of other types of risks of economic security will be the key to sustainability of a company. In terms of financial and economic crisis, the problem of forming and developing possessory risk management systems becomes critical not only in the context of management models of FMCG companies, but for all the companies operating in other sectors of the Russian economy. This study attempts to analyze the specifics of formation and development of company possessory risk management systems. In the modern economy, special importance among all the types of owner’s risks has the risk of reduction in consumer activity. This type of risk is common not only for the consumer goods trade. Study of consumer activity decline is especially important for Russia due to domestic market of consumer goods being still in the development stage, despite its significant growth. In this regard, it is especially important to form and develop possessory risk management systems for FMCG companies. The authors offer their own interpretation of the process of forming and developing possessory risk management systems within owner’s management models of FMCG companies as well as in Russian economy in general. Proposed methods and mechanisms of problem analysis of formation and development of possessory risk management systems in FMCG companies and the results received can be helpful for researchers interested in problems of consumer goods market development in Russia and overseas.

Keywords: FMCG companies, marketing budget, risk management, owner, Russian economy, organization, formation, development, system

Procedia PDF Downloads 376