Search results for: computer- supported collaborative learning
6820 Artificial Intelligence for Cloud Computing
Authors: Sandesh Achar
Abstract:
Artificial intelligence is being increasingly incorporated into many applications across various sectors such as health, education, security, and agriculture. Recently, there has been rapid development in cloud computing technology, resulting in AI’s implementation into cloud computing to enhance and optimize the technology service rendered. The deployment of AI in cloud-based applications has brought about autonomous computing, whereby systems achieve stated results without human intervention. Despite the amount of research into autonomous computing, work incorporating AI/ML into cloud computing to enhance its performance and resource allocation remain a fundamental challenge. This paper highlights different manifestations, roles, trends, and challenges related to AI-based cloud computing models. This work reviews and highlights excellent investigations and progress in the domain. Future directions are suggested for leveraging AI/ML in next-generation computing for emerging computing paradigms such as cloud environments. Adopting AI-based algorithms and techniques to increase operational efficiency, cost savings, automation, reducing energy consumption and solving complex cloud computing issues are the major findings outlined in this paper.Keywords: artificial intelligence, cloud computing, deep learning, machine learning, internet of things
Procedia PDF Downloads 1126819 On the Numerical and Experimental Analysis of Internal Pressure in Air Bearings
Authors: Abdurrahim Dal, Tuncay Karaçay
Abstract:
Dynamics of a rotor supported by air bearings is strongly depends on the pressure distribution between the rotor and the bearing. In this study, internal pressure in air bearings is numerical and experimental analyzed for different radial clearances. Firstly the pressure distribution between rotor and bearing is modeled using Reynold's equation and this model is solved numerically. The rotor-bearing system is also modeled in four degree of freedom and it is simulated for different radial clearances. Then, in order to validate numerical results, a test rig is designed and the rotor bearing system is run under the same operational conditions. Pressure signals of left and right bearings are recorded. Internal pressure variations are compared for numerical and experimental results for different radial clearances.Keywords: air bearing, internal pressure, Reynold’s equation, rotor
Procedia PDF Downloads 4446818 Characteristics of Middle Grade Students' Solution Strategies While Reasoning the Correctness of the Statements Related to Numbers
Authors: Ayşegül Çabuk, Mine Işıksal
Abstract:
Mathematics is a sense-making activity so that it requires meaningful learning. Hence based on this idea, meaningful mathematical connections are necessary to learn mathematics. At that point, the major question has become that which educational methods can provide opportunities to provide mathematical connections and to understand mathematics. The amalgam of reasoning and proof can be the one of the methods that creates opportunities to learn mathematics in a meaningful way. However, even if reasoning and proof should be included from prekindergarten to grade 12, studies in literature generally include secondary school students and pre-service mathematics teachers. With the light of the idea that the amalgam of reasoning and proof has significant effect on middle school students' mathematical learning, this study aims to investigate middle grade students' tendencies while reasoning the correctness of statements related to numbers. The sample included 272 middle grade students, specifically 69 of them were sixth grade students (25.4%), 101 of them were seventh grade students (37.1%) and 102 of them were eighth grade students (37.5%). Data was gathered through an achievement test including 2 essay types of problems about algebra. The answers of two items were analyzed both quantitatively and qualitatively in terms of students' solutions strategies while reasoning the correctness of the statements. Similar on the findings in the literature, most of the students, in all grade levels, used numerical examples to judge the statements. Moreover the results also showed that the majority of these students appear to believe that providing one or more selected examples is sufficient to show the correctness of the statement. Hence based on the findings of the study, even students in earlier ages have proving and reasoning abilities their reasoning's generally based on the empirical evidences. Therefore, it is suggested that examples and example-based reasoning can be a fundamental role on to generate systematical reasoning and proof insight in earlier ages.Keywords: reasoning, mathematics learning, middle grade students
Procedia PDF Downloads 4266817 Practices Supporting the Wellbeing of Healthcare Staff: Findings From a Narrative Inquiry
Authors: Julaine Allan, Katarzyna Olcon, Padmini Pai, Lynne Keevers, Mim Fox, Maria Mackay, Ruth Everingham, Sue Cutmore, Chris Degeling, Kristine Falzon, Summer Finlay
Abstract:
Effective local responses to community needs are grounded in contextual knowledge and built on existing resources. The SEED Wellbeing Program was created in 2020 in response to cumulative disasters, bushfires, floods and COVID experienced by healthcare staff in the Illawarra Shoalhaven Local Health District, NSW, Australia. SEED used a participatory action methodology to bring healthcare staff teams together to engage in restorative activities in the workplace. Guided by Practice Theory, this study identified the practices that supported the recovery of healthcare staff.Keywords: mental health and wellbeing, workplace wellness, healthcare providers, natural disasters, COVID-19, burnout, occupational trauma
Procedia PDF Downloads 1486816 The Output Fallacy: An Investigation into Input, Noticing, and Learners’ Mechanisms
Authors: Samantha Rix
Abstract:
The purpose of this research paper is to investigate the cognitive processing of learners who receive input but produce very little or no output, and who, when they do produce output, exhibit a similar language proficiency as do those learners who produced output more regularly in the language classroom. Previous studies have investigated the benefits of output (with somewhat differing results); therefore, the presentation will begin with an investigation of what may underlie gains in proficiency without output. Consequently, a pilot study was designed and conducted to gain insight into the cognitive processing of low-output language learners looking, for example, at quantity and quality of noticing. This will be carried out within the paradigm of action classroom research, observing and interviewing low-output language learners in an intensive English program at a small Midwest university. The results of the pilot study indicated that autonomy in language learning, specifically utilizing strategies such self-monitoring, self-talk, and thinking 'out-loud', were crucial in the development of language proficiency for academic-level performance. The presentation concludes with an examination of pedagogical implication for classroom use in order to aide students in their language development.Keywords: cognitive processing, language learners, language proficiency, learning strategies
Procedia PDF Downloads 4806815 Creating Bridges: The Importance of Intergenerational Experiences in the Educational Context
Authors: A. Eiguren-Munitis, N. Berasategi, J. M. Correa
Abstract:
Changes in family structures, immigration, economic crisis, among others, hinder the connection between different generations. This situation gives rise to a greater lack of social protection of the groups in vulnerable situations, such as the elderly and children. There is a growing need to search for shared spaces where different generations manage to break negative stereotypes and interact with each other. The school environment provides a favourable context in which the approach of different generations can be worked on. The intergenerational experiences that take place within the school context help to introduce the educational ideology for a lifetime. This induces bilateral learning, which encourages citizen participation. For this reason, the general objective of this research is to deepen the impact that intergenerational experiences have on participating students. The research is carried out based on mixed methods. The qualitative and quantitative evaluation included pre-test and post-test questionnaires (n=148) and group interviews (n=43). The results indicate that the intergenerational experiences influence different levels, on the one hand, help to promote school motivation and on the other hand, help to reduce negative stereotypes towards older people thus contributing to greater social cohesion.Keywords: intergenerational learning, school, stereotypes, social cohesion
Procedia PDF Downloads 1456814 Analysing Stem Student Interests in Developing Critical Thinking Skills in Pakistan
Authors: Muhammad Ramzan
Abstract:
STEM Education and Critical Thinking Skills are important 21st-century skills. STEM Education is necessary to promote secondary school students’ critical thinking skills. These skills are critical for teachers to respond to students. Pakistan is in the preliminary stages of integrating STEM Education in institutions like other developing countries. Unfortunately, most secondary school students in Pakistan are unaware of STEM Education and teachers are not applying critical thinking skills in classrooms. The study's objectives mainly deal with; to identify the importance of STEM Education in the teaching-learning process; to find out the factors affecting critical thinking skills that can develop interest in students in STEM Education and suggestions on how to improve critical thinking skills in students regarding STEM Education. This study was descriptive. The population of the study was secondary school students. Data was collected from 200 secondary school students through a questionnaire. The research results show that critical thinking skills develop interest in students towards STEM Education.Keywords: STEM education, teachers, students, critical thinking skills, teaching and learning process
Procedia PDF Downloads 506813 3D Object Detection for Autonomous Driving: A Comprehensive Review
Authors: Ahmed Soliman Nagiub, Mahmoud Fayez, Heba Khaled, Said Ghoniemy
Abstract:
Accurate perception is a critical component in enabling autonomous vehicles to understand their driving environment. The acquisition of 3D information about objects, including their location and pose, is essential for achieving this understanding. This survey paper presents a comprehensive review of 3D object detection techniques specifically tailored for autonomous vehicles. The survey begins with an introduction to 3D object detection, elucidating the significance of the third dimension in perceiving the driving environment. It explores the types of sensors utilized in this context and the corresponding data extracted from these sensors. Additionally, the survey investigates the different types of datasets employed, including their formats, sizes, and provides a comparative analysis. Furthermore, the paper categorizes and thoroughly examines the perception methods employed for 3D object detection based on the diverse range of sensors utilized. Each method is evaluated based on its effectiveness in accurately detecting objects in a three-dimensional space. Additionally, the evaluation metrics used to assess the performance of these methods are discussed. By offering a comprehensive overview of 3D object detection techniques for autonomous vehicles, this survey aims to advance the field of perception systems. It serves as a valuable resource for researchers and practitioners, providing insights into the techniques, sensors, and evaluation metrics employed in 3D object detection for autonomous vehicles.Keywords: computer vision, 3D object detection, autonomous vehicles, deep learning
Procedia PDF Downloads 676812 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities
Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun
Abstract:
The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids
Procedia PDF Downloads 746811 Domain-Specific Deep Neural Network Model for Classification of Abnormalities on Chest Radiographs
Authors: Nkechinyere Joy Olawuyi, Babajide Samuel Afolabi, Bola Ibitoye
Abstract:
This study collected a preprocessed dataset of chest radiographs and formulated a deep neural network model for detecting abnormalities. It also evaluated the performance of the formulated model and implemented a prototype of the formulated model. This was with the view to developing a deep neural network model to automatically classify abnormalities in chest radiographs. In order to achieve the overall purpose of this research, a large set of chest x-ray images were sourced for and collected from the CheXpert dataset, which is an online repository of annotated chest radiographs compiled by the Machine Learning Research Group, Stanford University. The chest radiographs were preprocessed into a format that can be fed into a deep neural network. The preprocessing techniques used were standardization and normalization. The classification problem was formulated as a multi-label binary classification model, which used convolutional neural network architecture to make a decision on whether an abnormality was present or not in the chest radiographs. The classification model was evaluated using specificity, sensitivity, and Area Under Curve (AUC) score as the parameter. A prototype of the classification model was implemented using Keras Open source deep learning framework in Python Programming Language. The AUC ROC curve of the model was able to classify Atelestasis, Support devices, Pleural effusion, Pneumonia, A normal CXR (no finding), Pneumothorax, and Consolidation. However, Lung opacity and Cardiomegaly had a probability of less than 0.5 and thus were classified as absent. Precision, recall, and F1 score values were 0.78; this implies that the number of False Positive and False Negative is the same, revealing some measure of label imbalance in the dataset. The study concluded that the developed model is sufficient to classify abnormalities present in chest radiographs into present or absent.Keywords: transfer learning, convolutional neural network, radiograph, classification, multi-label
Procedia PDF Downloads 1356810 Evaluation: Developing An Appropriate Survey Instrument For E-Learning
Authors: Brenda Ravenscroft, Ulemu Luhanga, Bev King
Abstract:
A comprehensive evaluation of online learning needs to include a blend of educational design, technology use, and online instructional practices that integrate technology appropriately for developing and delivering quality online courses. Research shows that classroom-based evaluation tools do not adequately capture the dynamic relationships between content, pedagogy, and technology in online courses. Furthermore, studies suggest that using classroom evaluations for online courses yields lower than normal scores for instructors, and may affect faculty negatively in terms of administrative decisions. In 2014, the Faculty of Arts and Science at Queen’s University responded to this evidence by seeking an alternative to the university-mandated evaluation tool, which is designed for classroom learning. The Faculty is deeply engaged in e-learning, offering large variety of online courses and programs in the sciences, social sciences, humanities and arts. This paper describes the process by which a new student survey instrument for online courses was developed and piloted, the methods used to analyze the data, and the ways in which the instrument was subsequently adapted based on the results. It concludes with a critical reflection on the challenges of evaluating e-learning. The Student Evaluation of Online Teaching Effectiveness (SEOTE), developed by Arthur W. Bangert in 2004 to assess constructivist-compatible online teaching practices, provided the starting point. Modifications were made in order to allow the instrument to serve the two functions required by the university: student survey results provide the instructor with feedback to enhance their teaching, and also provide the institution with evidence of teaching quality in personnel processes. Changes were therefore made to the SEOTE to distinguish more clearly between evaluation of the instructor’s teaching and evaluation of the course design, since, in the online environment, the instructor is not necessarily the course designer. After the first pilot phase, involving 35 courses, the results were analyzed using Stobart's validity framework as a guide. This process included statistical analyses of the data to test for reliability and validity, student and instructor focus groups to ascertain the tool’s usefulness in terms of the feedback it provided, and an assessment of the utility of the results by the Faculty’s e-learning unit responsible for supporting online course design. A set of recommendations led to further modifications to the survey instrument prior to a second pilot phase involving 19 courses. Following the second pilot, statistical analyses were repeated, and more focus groups were used, this time involving deans and other decision makers to determine the usefulness of the survey results in personnel processes. As a result of this inclusive process and robust analysis, the modified SEOTE instrument is currently being considered for adoption as the standard evaluation tool for all online courses at the university. Audience members at this presentation will be stimulated to consider factors that differentiate effective evaluation of online courses from classroom-based teaching. They will gain insight into strategies for introducing a new evaluation tool in a unionized institutional environment, and methodologies for evaluating the tool itself.Keywords: evaluation, online courses, student survey, teaching effectiveness
Procedia PDF Downloads 2686809 The Dynamic Metadata Schema in Neutron and Photon Communities: A Case Study of X-Ray Photon Correlation Spectroscopy
Authors: Amir Tosson, Mohammad Reza, Christian Gutt
Abstract:
Metadata stands at the forefront of advancing data management practices within research communities, with particular significance in the realms of neutron and photon scattering. This paper introduces a groundbreaking approach—dynamic metadata schema—within the context of X-ray Photon Correlation Spectroscopy (XPCS). XPCS, a potent technique unravelling nanoscale dynamic processes, serves as an illustrative use case to demonstrate how dynamic metadata can revolutionize data acquisition, sharing, and analysis workflows. This paper explores the challenges encountered by the neutron and photon communities in navigating intricate data landscapes and highlights the prowess of dynamic metadata in addressing these hurdles. Our proposed approach empowers researchers to tailor metadata definitions to the evolving demands of experiments, thereby facilitating streamlined data integration, traceability, and collaborative exploration. Through tangible examples from the XPCS domain, we showcase how embracing dynamic metadata standards bestows advantages, enhancing data reproducibility, interoperability, and the diffusion of knowledge. Ultimately, this paper underscores the transformative potential of dynamic metadata, heralding a paradigm shift in data management within the neutron and photon research communities.Keywords: metadata, FAIR, data analysis, XPCS, IoT
Procedia PDF Downloads 676808 Motivating EFL Students to Speak English through Flipped Classroom Implantation
Authors: Mohamad Abdullah
Abstract:
Recent Advancements in technology have stimulated deep change in the language learning classroom. Flipped classroom as a new pedagogical method is at the center of this change. It turns the classroom into a student-centered environment and promotes interactive and autonomous learning. The present study is an attempt to examine the effectiveness of the Flipped Classroom Model (FCM) on students’ motivation level in English speaking performance. This study was carried out with 27 undergraduate female English majors who enrolled in the course of Advanced Communication Skills (ENGL 154) at Buraimi University College (BUC). Data was collected through Motivation in English Speaking Performance Questionnaire (MESPQ) which has been distributed among the participants of this study pre and post the implementation of FCM. SPSS was used for analyzing data. The Paired T-Test which was carried out on the pre-post of (MESPQ) showed a significant difference between them (p < .009) that revealed participants’ tendency to increase their motivation level in English speaking performance after the application of FCM. In addition, respondents of the current study reported positive views about the implementation of FCM.Keywords: english speaking performance, motivation, flipped classroom model, learner-contentedness
Procedia PDF Downloads 1376807 Challenges Encountered by English Language Teachers in Same-Ability Classrooms: Evidence from United Arab Emirates High Schools
Authors: Eman Mohamed Abdelwahab, Badreyya Alkhanbooli
Abstract:
This study focuses on exploring the challenges encountered by English language teachers in same-ability English language classrooms in the United Arab Emirates public schools. This qualitative study uses open-ended questions for data collection from teacher participants. The study sample includes the participation of 60 English language teachers from 8 public schools across 4 emirates/cities in the United Arab Emirates. The study results highlight a number of challenges that are mostly encountered by English language teachers in their classrooms while teaching in same-ability classrooms, including lack of diversity in abilities, class-time limitation, difficulty in engaging all students (especially lower-achieving students), limited opportunities for peer learning and limited linguistic diversity. A set of suggestions is to be provided by participating teachers and researchers to improve the same-ability teaching and learning experience in English language classrooms.Keywords: English language teaching, same ability grouping, ESL, English language learners
Procedia PDF Downloads 666806 A Recognition Method of Ancient Yi Script Based on Deep Learning
Authors: Shanxiong Chen, Xu Han, Xiaolong Wang, Hui Ma
Abstract:
Yi is an ethnic group mainly living in mainland China, with its own spoken and written language systems, after development of thousands of years. Ancient Yi is one of the six ancient languages in the world, which keeps a record of the history of the Yi people and offers documents valuable for research into human civilization. Recognition of the characters in ancient Yi helps to transform the documents into an electronic form, making their storage and spreading convenient. Due to historical and regional limitations, research on recognition of ancient characters is still inadequate. Thus, deep learning technology was applied to the recognition of such characters. Five models were developed on the basis of the four-layer convolutional neural network (CNN). Alpha-Beta divergence was taken as a penalty term to re-encode output neurons of the five models. Two fully connected layers fulfilled the compression of the features. Finally, at the softmax layer, the orthographic features of ancient Yi characters were re-evaluated, their probability distributions were obtained, and characters with features of the highest probability were recognized. Tests conducted show that the method has achieved higher precision compared with the traditional CNN model for handwriting recognition of the ancient Yi.Keywords: recognition, CNN, Yi character, divergence
Procedia PDF Downloads 1686805 Football Smart Coach: Analyzing Corner Kicks Using Computer Vision
Authors: Arth Bohra, Marwa Mahmoud
Abstract:
In this paper, we utilize computer vision to develop a tool for youth coaches to formulate set-piece tactics for their players. We used the Soccernet database to extract the ResNet features and camera calibration data for over 3000 corner kick across 500 professional matches in the top 6 European leagues (English Premier League, UEFA Champions League, Ligue 1, La Liga, Serie A, Bundesliga). Leveraging the provided homography matrix, we construct a feature vector representing the formation of players on these corner kicks. Additionally, labeling the videos manually, we obtained the pass-trajectory of each of the 3000+ corner kicks by segmenting the field into four zones. Next, after determining the localization of the players and ball, we used event data to give the corner kicks a rating on a 1-4 scale. By employing a Convolutional Neural Network, our model managed to predict the success of a corner kick given the formations of players. This suggests that with the right formations, teams can optimize the way they approach corner kicks. By understanding this, we can help coaches formulate set-piece tactics for their own teams in order to maximize the success of their play. The proposed model can be easily extended; our method could be applied to even more game situations, from free kicks to counterattacks. This research project also gives insight into the myriad of possibilities that artificial intelligence possesses in transforming the domain of sports.Keywords: soccer, corner kicks, AI, computer vision
Procedia PDF Downloads 1796804 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.Keywords: Levy flight, distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence
Procedia PDF Downloads 1486803 Preventing the Drought of Lakes by Using Deep Reinforcement Learning in France
Authors: Farzaneh Sarbandi Farahani
Abstract:
Drought and decrease in the level of lakes in recent years due to global warming and excessive use of water resources feeding lakes are of great importance, and this research has provided a structure to investigate this issue. First, the information required for simulating lake drought is provided with strong references and necessary assumptions. Entity-Component-System (ECS) structure has been used for simulation, which can consider assumptions flexibly in simulation. Three major users (i.e., Industry, agriculture, and Domestic users) consume water from groundwater and surface water (i.e., streams, rivers and lakes). Lake Mead has been considered for simulation, and the information necessary to investigate its drought has also been provided. The results are presented in the form of a scenario-based design and optimal strategy selection. For optimal strategy selection, a deep reinforcement algorithm is developed to select the best set of strategies among all possible projects. These results can provide a better view of how to plan to prevent lake drought.Keywords: drought simulation, Mead lake, entity component system programming, deep reinforcement learning
Procedia PDF Downloads 956802 Biometric Recognition Techniques: A Survey
Authors: Shabir Ahmad Sofi, Shubham Aggarwal, Sanyam Singhal, Roohie Naaz
Abstract:
Biometric recognition refers to an automatic recognition of individuals based on a feature vector(s) derived from their physiological and/or behavioral characteristic. Biometric recognition systems should provide a reliable personal recognition schemes to either confirm or determine the identity of an individual. These features are used to provide an authentication for computer based security systems. Applications of such a system include computer systems security, secure electronic banking, mobile phones, credit cards, secure access to buildings, health and social services. By using biometrics a person could be identified based on 'who she/he is' rather than 'what she/he has' (card, token, key) or 'what she/he knows' (password, PIN). In this paper, a brief overview of biometric methods, both unimodal and multimodal and their advantages and disadvantages, will be presented.Keywords: biometric, DNA, fingerprint, ear, face, retina scan, gait, iris, voice recognition, unimodal biometric, multimodal biometric
Procedia PDF Downloads 7606801 An Exploration of the Effects of Individual and Interpersonal Factors on Saudi Learners' Motivation to Learn English as a Foreign Language
Authors: Fakieh Alrabai
Abstract:
This paper presents an experimental study designed to explore some of the learner’s individual and interpersonal factors (e.g. persistence, interest, regulation, satisfaction, appreciation, etc.) that Saudi learners experience when learning English as a Foreign Language and how learners’ perceptions of these factors influence various aspects of their motivation to learn English language. As part of the study, a 27-item structured survey was administered to a randomly selected sample of 105 Saudi learners from public schools and universities. Data collected through the survey were subjected to some basic statistical analyses, such as "mean" and "standard deviation". Based on the results from the analysis, a number of generalizations and conclusions are made in relation to how these inherent factors affect Saudi learners’ motivation to learn English as a foreign language. In addition, some recommendations are offered to Saudi academics on how to effectively make use of such factors, which may enable Saudi teachers and learners of English as a foreign language to achieve better learning outcomes in an area widely associated by Saudis with lack of success.Keywords: persistence, interest, appreciation, satisfaction, SL/FL motivation
Procedia PDF Downloads 4206800 Assessment of Interior Environmental Quality and Airborne Infectious Risk in a Commuter Bus Cabin by Using Computational Fluid Dynamics with Computer Simulated Person
Authors: Yutaro Kyuma, Sung-Jun Yoo, Kazuhide Ito
Abstract:
A commuter bus remains important as a means to network public transportation between railway stations and terminals within cities. In some cases, the boarding time becomes longer, and the boarding rate tends to be higher corresponding to the development of urban cities. The interior environmental quality, e.g. temperature and air quality, in a commuter bus is relatively heterogeneous and complex compared to that of an indoor environment in buildings due to several factors: solar radiative heat – which comes from large-area windows –, inadequate ventilation rate caused by high density of commuters, and metabolic heat generation from travelers themselves. In addition to this, under conditions where many passengers ride in the enclosed space, contact and airborne infectious risk have attracted considerable attention in terms of public health. From this point of view, it is essential to develop the prediction method for assessment of interior environmental quality and infection risk in commuter bus cabins. In this study, we developed a numerical commuter bus model integrated with computer simulated persons to reproduce realistic indoor environment conditions with high occupancy during commuting. Here, computer simulated persons were newly designed considering different types of geometries, e.g., standing position, seating position, and individual differences. Here we conducted coupled computational fluid dynamics (CFD) analysis with radiative heat transfer analysis under steady state condition. Distributions of heterogeneous air flow patterns, temperature, and moisture surrounding the human body under some different ventilation system were analyzed by using CFD technique, and skin surface temperature distributions were analyzed using thermoregulation model that integrated into computer simulated person. Through these analyses, we discussed the interior environmental quality in specific commuter bus cabins. Further, inhaled air quality of each passenger was also analyzed. This study may have possibility to design the ventilation system in bus for improving thermal comfort of occupants.Keywords: computational fluid dynamics, CFD, computer simulated person, CSP, contaminant, indoor environment, public health, ventilation
Procedia PDF Downloads 2536799 Fracking the UK's Shale Gas Regulatory Regime
Authors: Yanal Abul Failat
Abstract:
The production of oil and natural gas from shale formations is becoming a trend, and many countries with technically and economically recoverable unconventional resources are endeavoring to explore how shale formations may benefit the economy and achieve energy security. The trajectory of shale gas development in the UK is highly supported by the government; in the Gas Generation Strategy Paper published by the UK government on 5 December 2013, it is recognized that the shale gas production would decrease reliance on imports and thus enhance the UK’s energy security. Moreover, the UK Institute of Directors report on UK Shale Gas Potential explains that in the UK there is a potential of production peaking at around 1.13 trillion cubic feet (“tcf”) and a sector that could support around 70,000 jobs and secure net benefit to the Treasury in tax revenues. On this basis, there has been a growing interest in the benefits of exploring the UK’s shale gas but a combination of technical challenges faced in shale gas operations, a stern opposition by environmentalists and concerns on the adequacy of the legal framework have slowed the progress of the emerging UK shale industry.Keywords: shale gas, UK, legal, oil and gas, energy
Procedia PDF Downloads 7146798 Pedagogical Practices of a Teacher in Students' Experience Tellings: A Conversation Analytic Study
Authors: Derya Duran, Christine Jacknick
Abstract:
This study explores post-task reflections in an English as a Medium of Instruction (EMI) setting, and it specifically focuses on how a teacher performs pedagogical practices such as reformulating, extending and evaluating following students’ spontaneous experience tellings in EMI classrooms. The data consist of 30 hours of video recordings from two EMI content classes, which were recorded for an academic term at a university in Turkey. The course, Guidance, is offered to fourth year undergraduate students as a compulsory course in the Department of Educational Sciences. The participants (n=78) study at the Faculty of Education, majoring in different educational departments (i.e., Computer Education and Instructional Technology, Elementary Education, Foreign Language Education). Using conversation analysis, we demonstrate that the teacher employs a variety of interactional resources to elicit (i.e., asking specific questions) and also provides (i.e., giving scientific information) as much content as possible, which also sheds light on the institutional fingerprints of the current research context. The study contributes to the existing research by unpacking articulation of personal experiences and cultivation of collaborativeness in classroom interaction. Moreover, describing the dialogic nature of these specific occasions, the study demonstrates how teacher and students address learning tasks together (collectivity), how they orient to each other turns interactionally (reciprocity), and how they keep the pedagogical focus in mind (purposefulness).Keywords: conversation analysis, English as a medium of instruction, higher education, post-task reflections
Procedia PDF Downloads 1556797 Transient Analysis of Laminated Rubber Bearing Bridge during High Intensity Earthquake
Authors: N. M. Amin, W. N. A. W. Sulaiman
Abstract:
The effectiveness of the seismic response between 3D solid elements model and simplified beam elements model has been investigated. At present, the studies of the numerical modelling using 3D solid element are minimal due to numerical software constraint. The finite element analysis using 3D solid element was chosen to study displacement response of laminated rubber bearing (LRB) during high intensity Kobe earthquake. In this research a simply supported bridge (single span), fixed at support was analysed by using transient analysis subjected to real time history loading of Kobe earthquake.Keywords: laminated rubber bearing, solid element, simplified beam element, transient analysis
Procedia PDF Downloads 4326796 Copper Complexe Derivative of Chalcone: Synthesis, Characterization, Electrochemical Properties and XRD/Hirschfeld Surface
Authors: Salima Tabti, Amel Djedouani., Djouhra Aggoun, Ismail Warad
Abstract:
The reaction of copper (II) with 4-hydroxy-3-[(2E)-3-(1H-indol-3-yl)prop-2-enoyl]-6-methyl-2H-pyran-2-one (HL) lead to a new complexe: Cu(L)₂(DMF)₂. The crystal structure of the Cu(L)₂(DMF)₂ complex have been determined by X-ray diffraction methods. The Cu(II) lying on an inversion centre is coordinated to six oxygen atoms forming an octahedral elongated. Additionally, the electrochemical behavior of the metal complexe was investigated by cyclic voltammetry at a glassy carbon electrode (GC) in CH₃CN solution, showing the quasi-reversible redox process ascribed to the reduction of the MII/MI couple. The X-ray single crystal structure data of the complex was matched excellently with the optimized monomer structure of the desired compound; Hirschfeld surface analysis supported the packed crystal lattice 3D network intermolecular forces.Keywords: chalcones, cyclic voltametry, X-ray, Hirschfeld surface
Procedia PDF Downloads 676795 Application of GIS-Based Construction Engineering: An Electronic Document Management System
Authors: Mansour N. Jadid
Abstract:
This paper describes the implementation of a GIS to provide decision support for successfully monitoring the movements and storage of materials, hence ensuring that finished products travel from the point of origin to the destination construction site through the supply-chain management (SCM) system. This system ensures the efficient operation of suppliers, manufacturers, and distributors by determining the shortest path from the point of origin to the final destination to reduce construction costs, minimize time, and enhance productivity. These systems are essential to the construction industry because they reduce costs and save time, thereby improve productivity and effectiveness. This study describes a typical supply-chain model and a geographical information system (GIS)-based SCM that focuses on implementing an electronic document management system, which maps the application framework to integrate geodetic support with the supply-chain system. This process provides guidance for locating the nearest suppliers to fill the information needs of project members in different locations. Moreover, this study illustrates the use of a GIS-based SCM as a collaborative tool in innovative methods for implementing Web mapping services, as well as aspects of their integration by generating an interactive GIS for the construction industry platform.Keywords: construction, coordinate, engineering, GIS, management, map
Procedia PDF Downloads 3066794 Life Stories of Adult Amateur Cellists That Inspire Them to Take Individual Lessons: A Narrative Inquiry
Authors: A. Marais
Abstract:
A challenging aspect of teaching cello to novice adult learners is finding adequate lesson material and applying relevant teaching methodologies. It could play a crucial role in adult learners' decision to commence or stop taking music lessons. This study contributes to the theory and practises of continuing education. This study is important to lifelong learning, especially with the focus on adult teaching and learning and the difficulties concerning these themes. The research problem identified for this study is we are not aware of adults' life stories; thus, cello lesson material is not always relevant for adult's specific needs for motivation and goals for starting cello lessons. In my experience, an adult does not necessarily want to play children songs when they learn a new instrument. They want material and lessons fitted to adult learners. Adults also learn differently from younger beginners. Adults ask questions such as how and why, while children more readily accept what is being taught. This research creates awareness of adults' musical needs and learning methods. If every adult shares their own story for commencing and continuing with cello lessons, material should be created, revised, or adapted for more individually appropriate lessons. A number of studies show that adults taking music lessons experience a decrease in feelings of loneliness and isolation. It gives adults a sense of wellbeing and can help improve immune systems. The purpose of this research study will be to discover the life stories of adult amateur cellists. At this stage in the research, the life stories of amateur cellists can generally be defined as personal reflections of their motivations for and experiences of commencing and continuing with individual lessons. The findings of this study will contribute to the development of cello lesson material for adult beginners based on their stories. This research could also encourage adults to commence with music lessons and could, in that way, contribute to their quality of life. Music learners become aware of deep spiritual, emotional, and social values incorporated or experienced through musical learning. This will be a qualitative study with a narrative approach making use of oral history. The chosen method will encapsulate the stories of amateur individual adults starting and continuing with cello lessons. The narrative method entails experiences as expressed in lived and told stories of individuals. Oral history is used as part of the narrative method and entails gathering of personal reflections of events and their cause and effects from an individual or several individuals. These findings from this study will contribute to adult amateur cellists' motivations to continue with music lessons and inspire others to commence. The inspiring life stories of the amateur cellists would provide insight into finding and creating new cello lesson material and enhance existing teaching methodologies for adult amateur cellists.Keywords: adult, amateur, cello, education, learning, music, stories
Procedia PDF Downloads 1376793 The Forensic Swing of Things: The Current Legal and Technical Challenges of IoT Forensics
Authors: Pantaleon Lutta, Mohamed Sedky, Mohamed Hassan
Abstract:
The inability of organizations to put in place management control measures for Internet of Things (IoT) complexities persists to be a risk concern. Policy makers have been left to scamper in finding measures to combat these security and privacy concerns. IoT forensics is a cumbersome process as there is no standardization of the IoT products, no or limited historical data are stored on the devices. This paper highlights why IoT forensics is a unique adventure and brought out the legal challenges encountered in the investigation process. A quadrant model is presented to study the conflicting aspects in IoT forensics. The model analyses the effectiveness of forensic investigation process versus the admissibility of the evidence integrity; taking into account the user privacy and the providers’ compliance with the laws and regulations. Our analysis concludes that a semi-automated forensic process using machine learning, could eliminate the human factor from the profiling and surveillance processes, and hence resolves the issues of data protection (privacy and confidentiality).Keywords: cloud forensics, data protection Laws, GDPR, IoT forensics, machine Learning
Procedia PDF Downloads 1546792 Transdisciplinary Pedagogy: An Arts-Integrated Approach to Promote Authentic Science, Technology, Engineering, Arts, and Mathematics Education in Initial Teacher Education
Authors: Anne Marie Morrin
Abstract:
This paper will focus on the design, delivery and assessment of a transdisciplinary STEAM (Science, Technology, Engineering, Arts, and Mathematics) education initiative in a college of education in Ireland. The project explores a transdisciplinary approach to supporting STEAM education where the concepts, methodologies and assessments employed derive from visual art sessions within initial teacher education. The research will demonstrate that the STEAM Education approach is effective when visual art concepts and methods are placed at the core of the teaching and learning experience. Within this study, emphasis is placed on authentic collaboration and transdisciplinary pedagogical approaches with the STEAM subjects. The partners included a combination of teaching expertise in STEM and Visual Arts education, artists, in-service and pre-service teachers and children. The inclusion of all stakeholders mentioned moves towards a more authentic approach where transdisciplinary practice is at the core of the teaching and learning. Qualitative data was collected using a combination of questionnaires (focused and open-ended questions) and focus groups. In addition, the data was collected through video diaries where students reflected on their visual journals and transdisciplinary practice, which gave rich insight into participants' experiences and opinions on their learning. It was found that an effective program of STEAM education integration was informed by co-teaching (continuous professional development), which involved a commitment to adaptable and flexible approaches to teaching, learning, and assessment, as well as the importance of continuous reflection-in-action by all participants. The delivery of a transdisciplinary model of STEAM education was devised to reconceptualizatise how individual subject areas can develop essential skills and tackle critical issues (such as self-care and climate change) through data visualisation and technology. The success of the project can be attributed to the collaboration, which was inclusive, flexible and a willingness between various stakeholders to be involved in the design and implementation of the project from conception to completion. The case study approach taken is particularistic (focusing on the STEAM-ED project), descriptive (providing in-depth descriptions from varied and multiple perspectives), and heuristic (interpreting the participants’ experiences and what meaning they attributed to their experiences).Keywords: collaboration, transdisciplinary, STEAM, visual arts education
Procedia PDF Downloads 536791 Introducing Data-Driven Learning into Chinese Higher Education English for Academic Purposes Writing Instructional Settings
Authors: Jingwen Ou
Abstract:
Writing for academic purposes in a second or foreign language is one of the most important and the most demanding skills to be mastered by non-native speakers. Traditionally, the EAP writing instruction at the tertiary level encompasses the teaching of academic genre knowledge, more specifically, the disciplinary writing conventions, the rhetorical functions, and specific linguistic features. However, one of the main sources of challenges in English academic writing for L2 students at the tertiary level can still be found in proficiency in academic discourse, especially vocabulary, academic register, and organization. Data-Driven Learning (DDL) is defined as “a pedagogical approach featuring direct learner engagement with corpus data”. In the past two decades, the rising popularity of the application of the data-driven learning (DDL) approach in the field of EAP writing teaching has been noticed. Such a combination has not only transformed traditional pedagogy aided by published DDL guidebooks in classroom use but also triggered global research on corpus use in EAP classrooms. This study endeavors to delineate a systematic review of research in the intersection of DDL and EAP writing instruction by conducting a systematic literature review on both indirect and direct DDL practice in EAP writing instructional settings in China. Furthermore, the review provides a synthesis of significant discoveries emanating from prior research investigations concerning Chinese university students’ perception of Data-Driven Learning (DDL) and the subsequent impact on their academic writing performance following corpus-based training. Research papers were selected from Scopus-indexed journals and core journals from two main Chinese academic databases (CNKI and Wanfang) published in both English and Chinese over the last ten years based on keyword searches. Results indicated an insufficiency of empirical DDL research despite a noticeable upward trend in corpus research on discourse analysis and indirect corpus applications for material design by language teachers. Research on the direct use of corpora and corpus tools in DDL, particularly in combination with genre-based EAP teaching, remains a relatively small fraction of the whole body of research in Chinese higher education settings. Such scarcity is highly related to the prevailing absence of systematic training in English academic writing registers within most Chinese universities' EAP syllabi due to the Chinese English Medium Instruction policy, where only English major students are mandated to submit English dissertations. Findings also revealed that Chinese learners still held mixed attitudes towards corpus tools influenced by learner differences, limited access to language corpora, and insufficient pre-training on corpus theoretical concepts, despite their improvements in final academic writing performance.Keywords: corpus linguistics, data-driven learning, EAP, tertiary education in China
Procedia PDF Downloads 70