Search results for: vector network analyzer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5908

Search results for: vector network analyzer

5488 Secure Network Coding against Content Pollution Attacks in Named Data Network

Authors: Tao Feng, Xiaomei Ma, Xian Guo, Jing Wang

Abstract:

Named Data Network (NDN) is one of the future Internet architecture, all nodes (i.e., hosts, routers) are allowed to have a local cache, used to satisfy incoming requests for content. However, depending on caching allows an adversary to perform attacks that are very effective and relatively easy to implement, such as content pollution attack. In this paper, we use a method of secure network coding based on homomorphic signature system to solve this problem. Firstly ,we use a dynamic public key technique, our scheme for each generation authentication without updating the initial secret key used. Secondly, employing the homomorphism of hash function, intermediate node and destination node verify the signature of the received message. In addition, when the network topology of NDN is simple and fixed, the code coefficients in our scheme are generated in a pseudorandom number generator in each node, so the distribution of the coefficients is also avoided. In short, our scheme not only can efficiently prevent against Intra/Inter-GPAs, but also can against the content poisoning attack in NDN.

Keywords: named data networking, content polloution attack, network coding signature, internet architecture

Procedia PDF Downloads 333
5487 An Integrated Approach to Find the Effect of Strain Rate on Ultimate Tensile Strength of Randomly Oriented Short Glass Fiber Composite in Combination with Artificial Neural Network

Authors: Sharad Shrivastava, Arun Jalan

Abstract:

In this study tensile testing was performed on randomly oriented short glass fiber/epoxy resin composite specimens which were prepared using hand lay-up method. Samples were tested over a wide range of strain rate/loading rate from 2mm/min to 40mm/min to see the effect on ultimate tensile strength of the composite. A multi layered 'back propagation artificial neural network of supervised learning type' was used to analyze and predict the tensile properties with strain rate and temperature as given input and output as UTS to predict. Various network structures were designed and investigated with varying parameters and network sizes, and an optimized network structure was proposed to predict the UTS of short glass fiber/epoxy resin composite specimens with reasonably good accuracy.

Keywords: glass fiber composite, mechanical properties, strain rate, artificial neural network

Procedia PDF Downloads 436
5486 A Comparative Analysis of Multicarrier SPWM Strategies for Five-Level Flying Capacitor Inverter

Authors: Bachir Belmadani, Rachid Taleb, Zinelaabidine Boudjema, Adil Yahdou

Abstract:

Carrier-based methods have been used widely for switching of multilevel inverters due to their simplicity, flexibility and reduced computational requirements compared to space vector modulation (SVM). This paper focuses on Multicarrier Sinusoidal Pulse Width Modulation (MCSPWM) strategy for the three phase Five-Level Flying Capacitor Inverter (5LFCI). The inverter is simulated for Induction Motor (IM) load and Total Harmonic Distortion (THD) for output waveforms is observed for different controlling schemes.

Keywords: flying capacitor inverter, multicarrier sinusoidal pulse width modulation, space vector modulation, total harmonic distortion, induction motor

Procedia PDF Downloads 405
5485 Addressing Scheme for IOT Network Using IPV6

Authors: H. Zormati, J. Chebil, J. Bel Hadj Taher

Abstract:

The goal of this paper is to present an addressing scheme that allows for assigning a unique IPv6 address to each node in the Internet of Things (IoT) network. This scheme guarantees uniqueness by extracting the clock skew of each communication device and converting it into an IPv6 address. Simulation analysis confirms that the presented scheme provides reductions in terms of energy consumption, communication overhead and response time as compared to four studied addressing schemes Strong DAD, LEADS, SIPA and CLOSA.

Keywords: addressing, IoT, IPv6, network, nodes

Procedia PDF Downloads 285
5484 Clustering Using Cooperative Multihop Mini-Groups in Wireless Sensor Network: A Novel Approach

Authors: Virender Ranga, Mayank Dave, Anil Kumar Verma

Abstract:

Recently wireless sensor networks (WSNs) are used in many real life applications like environmental monitoring, habitat monitoring, health monitoring etc. Due to power constraint cheaper devices used in these applications, the energy consumption of each device should be kept as low as possible such that network operates for longer period of time. One of the techniques to prolong the network lifetime is an intelligent grouping of sensor nodes such that they can perform their operation in cooperative and energy efficient manner. With this motivation, we propose a novel approach by organize the sensor nodes in cooperative multihop mini-groups so that the total global energy consumption of the network can be reduced and network lifetime can be improved. Our proposed approach also reduces the number of transmitted messages inside the WSNs, which further minimizes the energy consumption of the whole network. The experimental simulations show that our proposed approach outperforms over the state-of-the-art approach in terms of stability period and aggregated data.

Keywords: clustering, cluster-head, mini-group, stability period

Procedia PDF Downloads 352
5483 Facial Emotion Recognition with Convolutional Neural Network Based Architecture

Authors: Koray U. Erbas

Abstract:

Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.

Keywords: convolutional neural network, deep learning, deep learning based FER, facial emotion recognition

Procedia PDF Downloads 267
5482 A Survey on Intelligent Techniques Based Modelling of Size Enlargement Process for Fine Materials

Authors: Mohammad Nadeem, Haider Banka, R. Venugopal

Abstract:

Granulation or agglomeration is a size enlargement process to transform the fine particulates into larger aggregates since the fine size of available materials and minerals poses difficulty in their utilization. Though a long list of methods is available in the literature for the modeling of granulation process to facilitate the in-depth understanding and interpretation of the system, there is still scope of improvements using novel tools and techniques. Intelligent techniques, such as artificial neural network, fuzzy logic, self-organizing map, support vector machine and others, have emerged as compelling alternatives for dealing with imprecision and complex non-linearity of the systems. The present study tries to review the applications of intelligent techniques in the modeling of size enlargement process for fine materials.

Keywords: fine material, granulation, intelligent technique, modelling

Procedia PDF Downloads 370
5481 The Asymmetric Proximal Support Vector Machine Based on Multitask Learning for Classification

Authors: Qing Wu, Fei-Yan Li, Heng-Chang Zhang

Abstract:

Multitask learning support vector machines (SVMs) have recently attracted increasing research attention. Given several related tasks, the single-task learning methods trains each task separately and ignore the inner cross-relationship among tasks. However, multitask learning can capture the correlation information among tasks and achieve better performance by training all tasks simultaneously. In addition, the asymmetric squared loss function can better improve the generalization ability of the models on the most asymmetric distributed data. In this paper, we first make two assumptions on the relatedness among tasks and propose two multitask learning proximal support vector machine algorithms, named MTL-a-PSVM and EMTL-a-PSVM, respectively. MTL-a-PSVM seeks a trade-off between the maximum expectile distance for each task model and the closeness of each task model to the general model. As an extension of the MTL-a-PSVM, EMTL-a-PSVM can select appropriate kernel functions for shared information and private information. Besides, two corresponding special cases named MTL-PSVM and EMTLPSVM are proposed by analyzing the asymmetric squared loss function, which can be easily implemented by solving linear systems. Experimental analysis of three classification datasets demonstrates the effectiveness and superiority of our proposed multitask learning algorithms.

Keywords: multitask learning, asymmetric squared loss, EMTL-a-PSVM, classification

Procedia PDF Downloads 117
5480 A Video Surveillance System Using an Ensemble of Simple Neural Network Classifiers

Authors: Rodrigo S. Moreira, Nelson F. F. Ebecken

Abstract:

This paper proposes a maritime vessel tracker composed of an ensemble of WiSARD weightless neural network classifiers. A failure detector analyzes vessel movement with a Kalman filter and corrects the tracking, if necessary, using FFT matching. The use of the WiSARD neural network to track objects is uncommon. The additional contributions of the present study include a performance comparison with four state-of-art trackers, an experimental study of the features that improve maritime vessel tracking, the first use of an ensemble of classifiers to track maritime vessels and a new quantization algorithm that compares the values of pixel pairs.

Keywords: ram memory, WiSARD weightless neural network, object tracking, quantization

Procedia PDF Downloads 306
5479 Using Deep Learning Neural Networks and Candlestick Chart Representation to Predict Stock Market

Authors: Rosdyana Mangir Irawan Kusuma, Wei-Chun Kao, Ho-Thi Trang, Yu-Yen Ou, Kai-Lung Hua

Abstract:

Stock market prediction is still a challenging problem because there are many factors that affect the stock market price such as company news and performance, industry performance, investor sentiment, social media sentiment, and economic factors. This work explores the predictability in the stock market using deep convolutional network and candlestick charts. The outcome is utilized to design a decision support framework that can be used by traders to provide suggested indications of future stock price direction. We perform this work using various types of neural networks like convolutional neural network, residual network and visual geometry group network. From stock market historical data, we converted it to candlestick charts. Finally, these candlestick charts will be feed as input for training a convolutional neural network model. This convolutional neural network model will help us to analyze the patterns inside the candlestick chart and predict the future movements of the stock market. The effectiveness of our method is evaluated in stock market prediction with promising results; 92.2% and 92.1 % accuracy for Taiwan and Indonesian stock market dataset respectively.

Keywords: candlestick chart, deep learning, neural network, stock market prediction

Procedia PDF Downloads 439
5478 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition

Authors: Yalong Jiang, Zheru Chi

Abstract:

In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.

Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation

Procedia PDF Downloads 148
5477 Analysis of Spatiotemporal Efficiency and Fairness of Railway Passenger Transport Network Based on Space Syntax: Taking Yangtze River Delta as an Example

Authors: Lin Dong, Fei Shi

Abstract:

Based on the railway network and the principles of space syntax, the study attempts to reconstruct the spatial relationship of the passenger network connections from space and time perspective. According to the travel time data of main stations in the Yangtze River Delta urban agglomeration obtained by the Internet, the topological drawing of railway network under different time sections is constructed. With the comprehensive index composed of connection and integration, the accessibility and network operation efficiency of the railway network in different time periods is calculated, while the fairness of the network is analyzed by the fairness indicators constructed with the integration and location entropy from the perspective of horizontal and vertical fairness respectively. From the analysis of the efficiency and fairness of the railway passenger transport network, the study finds: (1) There is a strong regularity in regional system accessibility change; (2) The problems of efficiency and fairness are different in different time periods; (3) The improvement of efficiency will lead to the decline of horizontal fairness to a certain extent, while from the perspective of vertical fairness, the supply-demand situation has changed smoothly with time; (4) The network connection efficiency of Shanghai, Jiangsu and Zhejiang regions is higher than that of the western regions such as Anqing and Chizhou; (5) The marginalization of Nantong, Yancheng, Yangzhou, Taizhou is obvious. The study explores the application of spatial syntactic theory in regional traffic analysis, in order to provide a reference for the development of urban agglomeration transportation network.

Keywords: spatial syntax, the Yangtze River Delta, railway passenger time, efficiency and fairness

Procedia PDF Downloads 135
5476 Space Vector Pulse Width Modulation Based Design and Simulation of a Three-Phase Voltage Source Converter Systems

Authors: Farhan Beg

Abstract:

A space vector based pulse width modulation control technique for the three-phase PWM converter is proposed in this paper. The proposed control scheme is based on a synchronous reference frame model. High performance and efficiency is obtained with regards to the DC bus voltage and the power factor considerations of the PWM rectifier thus leading to low losses. MATLAB/SIMULINK are used as a platform for the simulations and a SIMULINK model is presented in the paper. The results show that the proposed model demonstrates better performance and properties compared to the traditional SPWM method and the method improves the dynamic performance of the closed loop drastically. For the space vector based pulse width modulation, sine signal is the reference waveform and triangle waveform is the carrier waveform. When the value of sine signal is larger than triangle signal, the pulse will start producing to high; and then when the triangular signals higher than sine signal, the pulse will come to low. SPWM output will change by changing the value of the modulation index and frequency used in this system to produce more pulse width. When more pulse width is produced, the output voltage will have lower harmonics contents and the resolution will increase.

Keywords: power factor, SVPWM, PWM rectifier, SPWM

Procedia PDF Downloads 330
5475 An Enhanced Distributed Weighted Clustering Algorithm for Intra and Inter Cluster Routing in MANET

Authors: K. Gomathi

Abstract:

Mobile Ad hoc Networks (MANET) is defined as collection of routable wireless mobile nodes with no centralized administration and communicate each other using radio signals. Especially MANETs deployed in hostile environments where hackers will try to disturb the secure data transfer and drain the valuable network resources. Since MANET is battery operated network, preserving the network resource is essential one. For resource constrained computation, efficient routing and to increase the network stability, the network is divided into smaller groups called clusters. The clustering architecture consists of Cluster Head(CH), ordinary node and gateway. The CH is responsible for inter and intra cluster routing. CH election is a prominent research area and many more algorithms are developed using many different metrics. The CH with longer life sustains network lifetime, for this purpose Secondary Cluster Head(SCH) also elected and it is more economical. To nominate efficient CH, a Enhanced Distributed Weighted Clustering Algorithm (EDWCA) has been proposed. This approach considers metrics like battery power, degree difference and speed of the node for CH election. The proficiency of proposed one is evaluated and compared with existing algorithm using Network Simulator(NS-2).

Keywords: MANET, EDWCA, clustering, cluster head

Procedia PDF Downloads 394
5474 Multicenter Evaluation of the ACCESS Anti-HCV Assay on the DxI 9000 ACCESS Immunoassay Analyzer, for the Detection of Hepatitis C Virus Antibody

Authors: Dan W. Rhodes, Juliane Hey, Magali Karagueuzian, Florianne Martinez, Yael Sandowski, Vanessa Roulet, Mahmoud Badawi, Mohammed-Amine Chakir, Valérie Simon, Jérémie Gautier, Françoise Le Boulaire, Catherine Coignard, Claire Vincent, Sandrine Greaume, Isabelle Voisin

Abstract:

Background: Beckman Coulter, Inc. (BEC) has recently developed a fully automated second-generation anti-HCV test on a new immunoassay platform. The objective of this multicenter study conducted in Europe was to evaluate the performance of the ACCESS anti-HCV assay on the recently CE-marked DxI 9000 ACCESS Immunoassay Analyzer as an aid in the diagnosis of HCV (Hepatitis C Virus) infection and as a screening test for blood and plasma donors. Methods: The clinical specificity of the ACCESS anti-HCV assay was determined using HCV antibody-negative samples from blood donors and hospitalized patients. Sample antibody status was determined by a CE-marked anti-HCV assay (Abbott ARCHITECTTM anti-HCV assay or Abbott PRISM HCV assay) with an additional confirmation method (Immunoblot testing with INNO-LIATM HCV Score - Fujirebio), if necessary, according to pre-determined testing algorithms. The clinical sensitivity was determined using known HCV antibody-positive samples, identified positive by Immunoblot testing with INNO-LIATM HCV Score - Fujirebio. HCV RNA PCR or genotyping was available on all Immunoblot positive samples for further characterization. The false initial reactive rate was determined on fresh samples from blood donors and hospitalized patients. Thirty (30) commercially available seroconversion panels were tested to assess the sensitivity for early detection of HCV infection. The study was conducted from November 2019 to March 2022. Three (3) external sites and one (1) internal site participated. Results: Clinical specificity (95% CI) was 99.7% (99.6 – 99.8%) on 5852 blood donors and 99.0% (98.4 – 99.4%) on 1527 hospitalized patient samples. There were 15 discrepant samples (positive on ACCESS anti-HCV assay and negative on both ARCHITECT and Immunoblot) observed with hospitalized patient samples, and of note, additional HCV RNA PCR results showed five (5) samples had positive HCV RNA PCR results despite the absence of HCV antibody detection by ARCHITECT and Immunoblot, suggesting a better sensitivity of the ACCESS anti-HCV assay with these five samples compared to the ARCHITECT and Immunoblot anti-HCV assays. Clinical sensitivity (95% CI) on 510 well-characterized, known HCV antibody-positive samples was 100.0% (99.3 – 100.0%), including 353 samples with known HCV genotypes (1 to 6). The overall false initial reactive rate (95% CI) on 6630 patient samples was 0.02% (0.00 – 0.09%). Results obtained on 30 seroconversion panels demonstrated that the ACCESS anti-HCV assay had equivalent sensitivity performances, with an average bleed difference since the first reactive bleed below one (1), compared to the ARCHITECTTM anti-HCV assay. Conclusion: The newly developed ACCESS anti-HCV assay from BEC for use on the DxI 9000 ACCESS Immunoassay Analyzer demonstrated high clinical sensitivity and specificity, equivalent to currently marketed anti-HCV assays, as well as a low false initial reactive rate.

Keywords: DxI 9000 ACCESS Immunoassay Analyzer, HCV, HCV antibody, Hepatitis C virus, immunoassay

Procedia PDF Downloads 95
5473 A User Interface for Easiest Way Image Encryption with Chaos

Authors: D. López-Mancilla, J. M. Roblero-Villa

Abstract:

Since 1990, the research on chaotic dynamics has received considerable attention, particularly in light of potential applications of this phenomenon in secure communications. Data encryption using chaotic systems was reported in the 90's as a new approach for signal encoding that differs from the conventional methods that use numerical algorithms as the encryption key. The algorithms for image encryption have received a lot of attention because of the need to find security on image transmission in real time over the internet and wireless networks. Known algorithms for image encryption, like the standard of data encryption (DES), have the drawback of low level of efficiency when the image is large. The encrypting based on chaos proposes a new and efficient way to get a fast and highly secure image encryption. In this work, a user interface for image encryption and a novel and easiest way to encrypt images using chaos are presented. The main idea is to reshape any image into a n-dimensional vector and combine it with vector extracted from a chaotic system, in such a way that the vector image can be hidden within the chaotic vector. Once this is done, an array is formed with the original dimensions of the image and turns again. An analysis of the security of encryption from the images using statistical analysis is made and is used a stage of optimization for image encryption security and, at the same time, the image can be accurately recovered. The user interface uses the algorithms designed for the encryption of images, allowing you to read an image from the hard drive or another external device. The user interface, encrypt the image allowing three modes of encryption. These modes are given by three different chaotic systems that the user can choose. Once encrypted image, is possible to observe the safety analysis and save it on the hard disk. The main results of this study show that this simple method of encryption, using the optimization stage, allows an encryption security, competitive with complicated encryption methods used in other works. In addition, the user interface allows encrypting image with chaos, and to submit it through any public communication channel, including internet.

Keywords: image encryption, chaos, secure communications, user interface

Procedia PDF Downloads 482
5472 SOM Map vs Hopfield Neural Network: A Comparative Study in Microscopic Evacuation Application

Authors: Zouhour Neji Ben Salem

Abstract:

Microscopic evacuation focuses on the evacuee behavior and way of search of safety place in an egress situation. In recent years, several models handled microscopic evacuation problem. Among them, we have proposed Artificial Neural Network (ANN) as an alternative to mathematical models that can deal with such problem. In this paper, we present two ANN models: SOM map and Hopfield Network used to predict the evacuee behavior in a disaster situation. These models are tested in a real case, the second floor of Tunisian children hospital evacuation in case of fire. The two models are studied and compared in order to evaluate their performance.

Keywords: artificial neural networks, self-organization map, hopfield network, microscopic evacuation, fire building evacuation

Procedia PDF Downloads 401
5471 Impact of the Photovoltaic Integration in Power Distribution Network: Case Study in Badak Liquefied Natural Gas (LNG)

Authors: David Hasurungan

Abstract:

This paper objective is to analyze the impact from photovoltaic system integration to power distribution network. The case study in Badak Liquefied Natural Gas (LNG) plant is presented in this paper. Badak LNG electricity network is operated in islanded mode. The total power generation in Badak LNG plant is significantly affected to feed gas supply. Meanwhile, to support the Government regulation, Badak LNG continuously implemented the grid-connected photovoltaic system in existing power distribution network. The impact between train operational mode change in Badak LNG plant and the growth of photovoltaic system is also encompassed in analysis. The analysis and calculation are performed using software Power Factory 15.1.

Keywords: power quality, distribution network, grid-connected photovoltaic system, power management system

Procedia PDF Downloads 356
5470 Nest-Building Using Place Cells for Spatial Navigation in an Artificial Neural Network

Authors: Thomas E. Portegys

Abstract:

An animal behavior problem is presented in the form of a nest-building task that involves two cooperating virtual birds, a male and female. The female builds a nest into which she lays an egg. The male's job is to forage in a forest for food for both himself and the female. In addition, the male must fetch stones from a nearby desert for the female to use as nesting material. The task is completed when the nest is built, and an egg is laid in it. A goal-seeking neural network and a recurrent neural network were trained and tested with little success. The goal-seeking network was then enhanced with “place cells”, allowing the birds to spatially navigate the world, building the nest while keeping themselves fed. Place cells are neurons in the hippocampus that map space.

Keywords: artificial animal intelligence, artificial life, goal-seeking neural network, nest-building, place cells, spatial navigation

Procedia PDF Downloads 53
5469 A Model for Diagnosis and Prediction of Coronavirus Using Neural Network

Authors: Sajjad Baghernezhad

Abstract:

Meta-heuristic and hybrid algorithms have high adeer in modeling medical problems. In this study, a neural network was used to predict covid-19 among high-risk and low-risk patients. This study was conducted to collect the applied method and its target population consisting of 550 high-risk and low-risk patients from the Kerman University of medical sciences medical center to predict the coronavirus. In this study, the memetic algorithm, which is a combination of a genetic algorithm and a local search algorithm, has been used to update the weights of the neural network and develop the accuracy of the neural network. The initial study showed that the accuracy of the neural network was 88%. After updating the weights, the memetic algorithm increased by 93%. For the proposed model, sensitivity, specificity, positive predictivity value, value/accuracy to 97.4, 92.3, 95.8, 96.2, and 0.918, respectively; for the genetic algorithm model, 87.05, 9.20 7, 89.45, 97.30 and 0.967 and for logistic regression model were 87.40, 95.20, 93.79, 0.87 and 0.916. Based on the findings of this study, neural network models have a lower error rate in the diagnosis of patients based on individual variables and vital signs compared to the regression model. The findings of this study can help planners and health care providers in signing programs and early diagnosis of COVID-19 or Corona.

Keywords: COVID-19, decision support technique, neural network, genetic algorithm, memetic algorithm

Procedia PDF Downloads 65
5468 Sampling Effects on Secondary Voltage Control of Microgrids Based on Network of Multiagent

Authors: M. J. Park, S. H. Lee, C. H. Lee, O. M. Kwon

Abstract:

This paper studies a secondary voltage control framework of the microgrids based on the consensus for a communication network of multiagent. The proposed control is designed by the communication network with one-way links. The communication network is modeled by a directed graph. At this time, the concept of sampling is considered as the communication constraint among each distributed generator in the microgrids. To analyze the sampling effects on the secondary voltage control of the microgrids, by using Lyapunov theory and some mathematical techniques, the sufficient condition for such problem will be established regarding linear matrix inequality (LMI). Finally, some simulation results are given to illustrate the necessity of the consideration of the sampling effects on the secondary voltage control of the microgrids.

Keywords: microgrids, secondary control, multiagent, sampling, LMI

Procedia PDF Downloads 329
5467 Numerical Simulation of Plasma Actuator Using OpenFOAM

Authors: H. Yazdani, K. Ghorbanian

Abstract:

This paper deals with modeling and simulation of the plasma actuator with OpenFOAM. Plasma actuator is one of the newest devices in flow control techniques which can delay separation by inducing external momentum to the boundary layer of the flow. The effects of the plasma actuators on the external flow are incorporated into Navier-Stokes computations as a body force vector which is obtained as a product of the net charge density and the electric field. In order to compute this body force vector, the model solves two equations: One for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The simulation result is compared to the experimental and typical values which confirms the validity of the modeling.

Keywords: active flow control, flow-field, OpenFOAM, plasma actuator

Procedia PDF Downloads 302
5466 Process Modeling of Electric Discharge Machining of Inconel 825 Using Artificial Neural Network

Authors: Himanshu Payal, Sachin Maheshwari, Pushpendra S. Bharti

Abstract:

Electrical discharge machining (EDM), a non-conventional machining process, finds wide applications for shaping difficult-to-cut alloys. Process modeling of EDM is required to exploit the process to the fullest. Process modeling of EDM is a challenging task owing to involvement of so many electrical and non-electrical parameters. This work is an attempt to model the EDM process using artificial neural network (ANN). Experiments were carried out on die-sinking EDM taking Inconel 825 as work material. ANN modeling has been performed using experimental data. The prediction ability of trained network has been verified experimentally. Results indicate that ANN can predict the values of performance measures of EDM satisfactorily.

Keywords: artificial neural network, EDM, metal removal rate, modeling, surface roughness

Procedia PDF Downloads 408
5465 Comparing Community Detection Algorithms in Bipartite Networks

Authors: Ehsan Khademi, Mahdi Jalili

Abstract:

Despite the special features of bipartite networks, they are common in many systems. Real-world bipartite networks may show community structure, similar to what one can find in one-mode networks. However, the interpretation of the community structure in bipartite networks is different as compared to one-mode networks. In this manuscript, we compare a number of available methods that are frequently used to discover community structure of bipartite networks. These networks are categorized into two broad classes. One class is the methods that, first, transfer the network into a one-mode network, and then apply community detection algorithms. The other class is the algorithms that have been developed specifically for bipartite networks. These algorithms are applied on a model network with prescribed community structure.

Keywords: community detection, bipartite networks, co-clustering, modularity, network projection, complex networks

Procedia PDF Downloads 621
5464 A Blockchain-Based Protection Strategy against Social Network Phishing

Authors: Francesco Buccafurri, Celeste Romolo

Abstract:

Nowadays phishing is the most frequent starting point of cyber-attack vectors. Phishing is implemented both via email and social network messages. While a wide scientific literature exists which addresses the problem of contrasting email spam-phishing, no specific countermeasure has been so far proposed for phishing included into private messages of social network platforms. Unfortunately, the problem is severe. This paper proposes an approach against social network phishing, based on a non invasive collaborative information-sharing approach which leverages blockchain. The detection method works by filtering candidate messages, by distilling them by means of a distance-preserving hash function, and by publishing hashes over a public blockchain through a trusted smart contract (thus avoiding denial of service attacks). Phishing detection exploits social information embedded into social network profiles to identify similar messages belonging to disjoint contexts. The main contribution of the paper is to introduce a new approach to contrasting the problem of social network phishing, which, despite its severity, received little attention by both research and industry.

Keywords: phishing, social networks, information sharing, blockchain

Procedia PDF Downloads 325
5463 A Topological Study of an Urban Street Network and Its Use in Heritage Areas

Authors: Jose L. Oliver, Taras Agryzkov, Leandro Tortosa, Jose F. Vicent, Javier Santacruz

Abstract:

This paper aims to demonstrate how a topological study of an urban street network can be used as a tool to be applied to some heritage conservation areas in a city. In the last decades, we find different kinds of approaches in the discipline of Architecture and Urbanism based in the so-called Sciences of Complexity. In this context, this paper uses mathematics from the Network Theory. Hence, it proposes a methodology based in obtaining information from a graph, which is created from a network of urban streets. Then, it is used an algorithm that establishes a ranking of importance of the nodes of that network, from its topological point of view. The results are applied to a heritage area in a particular city, confronting the data obtained from the mathematical model, with the ones from the field work in the case study. As a result of this process, we may conclude the necessity of implementing some actions in the area, and where those actions would be more effective for the whole heritage site.

Keywords: graphs, heritage cities, spatial analysis, urban networks

Procedia PDF Downloads 392
5462 Membership Surface and Arithmetic Operations of Imprecise Matrix

Authors: Dhruba Das

Abstract:

In this paper, a method has been developed to construct the membership surfaces of row and column vectors and arithmetic operations of imprecise matrix. A matrix with imprecise elements would be called an imprecise matrix. The membership surface of imprecise vector has been already shown based on Randomness-Impreciseness Consistency Principle. The Randomness- Impreciseness Consistency Principle leads to defining a normal law of impreciseness using two different laws of randomness. In this paper, the author has shown row and column membership surfaces and arithmetic operations of imprecise matrix and demonstrated with the help of numerical example.

Keywords: imprecise number, imprecise vector, membership surface, imprecise matrix

Procedia PDF Downloads 383
5461 Automated Detection of Related Software Changes by Probabilistic Neural Networks Model

Authors: Yuan Huang, Xiangping Chen, Xiaonan Luo

Abstract:

Current software are continuously updating. The change between two versions usually involves multiple program entities (e.g., packages, classes, methods, attributes) with multiple purposes (e.g., changed requirements, bug fixing). It is hard for developers to understand which changes are made for the same purpose. Whether two changes are related is not decided by the relationship between this two entities in the program. In this paper, we summarized 4 coupling rules(16 instances) and 4 state-combination types at the class, method and attribute levels for software change. Related Change Vector (RCV) are defined based on coupling rules and state-combination types, and applied to classify related software changes by using Probabilistic Neural Network during a software updating.

Keywords: PNN, related change, state-combination, logical coupling, software entity

Procedia PDF Downloads 433
5460 Machine Learning Techniques for Estimating Ground Motion Parameters

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.

Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine

Procedia PDF Downloads 121
5459 The Effect of Online Analyzer Malfunction on the Performance of Sulfur Recovery Unit and Providing a Temporary Solution to Reduce the Emission Rate

Authors: Hamid Reza Mahdipoor, Mehdi Bahrami, Mohammad Bodaghi, Seyed Ali Akbar Mansoori

Abstract:

Nowadays, with stricter limitations to reduce emissions, considerable penalties are imposed if pollution limits are exceeded. Therefore, refineries, along with focusing on improving the quality of their products, are also focused on producing products with the least environmental impact. The duty of the sulfur recovery unit (SRU) is to convert H₂S gas coming from the upstream units to elemental sulfur and minimize the burning of sulfur compounds to SO₂. The Claus process is a common process for converting H₂S to sulfur, including a reaction furnace followed by catalytic reactors and sulfur condensers. In addition to a Claus section, SRUs usually consist of a tail gas treatment (TGT) section to decrease the concentration of SO₂ in the flue gas below the emission limits. To operate an SRU properly, the flow rate of combustion air to the reaction furnace must be adjusted so that the Claus reaction is performed according to stoichiometry. Accurate control of the air demand leads to an optimum recovery of sulfur during the flow and composition fluctuations in the acid gas feed. Therefore, the major control system in the SRU is the air demand control loop, which includes a feed-forward control system based on predetermined feed flow rates and a feed-back control system based on the signal from the tail gas online analyzer. The use of online analyzers requires compliance with the installation and operation instructions. Unfortunately, most of these analyzers in Iran are out of service for different reasons, like the low importance of environmental issues and a lack of access to after-sales services due to sanctions. In this paper, an SRU in Iran was simulated and calibrated using industrial experimental data. Afterward, the effect of the malfunction of the online analyzer on the performance of SRU was investigated using the calibrated simulation. The results showed that an increase in the SO₂ concentration in the tail gas led to an increase in the temperature of the reduction reactor in the TGT section. This increase in temperature caused the failure of TGT and increased the concentration of SO₂ from 750 ppm to 35,000 ppm. In addition, the lack of a control system for the adjustment of the combustion air caused further increases in SO₂ emissions. In some processes, the major variable cannot be controlled directly due to difficulty in measurement or a long delay in the sampling system. In these cases, a secondary variable, which can be measured more easily, is considered to be controlled. With the correct selection of this variable, the main variable is also controlled along with the secondary variable. This strategy for controlling a process system is referred to as inferential control" and is considered in this paper. Therefore, a sensitivity analysis was performed to investigate the sensitivity of other measurable parameters to input disturbances. The results revealed that the output temperature of the first Claus reactor could be used for inferential control of the combustion air. Applying this method to the operation led to maximizing the sulfur recovery in the Claus section.

Keywords: sulfur recovery, online analyzer, inferential control, SO₂ emission

Procedia PDF Downloads 71