Search results for: speech recognition performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14737

Search results for: speech recognition performance

14317 On the Weightlessness of Vowel Lengthening: Insights from Arabic Dialect of Yemen and Contribution to Psychoneurolinguistics

Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Montaha Al Yaari, Ayman Al Yaari, Aayah Al Yaari, Adham Al Yaari, Sajedah Al Yaari, Fatehi Eissa

Abstract:

Introduction: It is well established that lengthening (longer duration) is considered one of the correlates of lexical and phrasal prominence. However, it is unexplored whether the scope of vowel lengthening in the Arabic dialect of Yemen (ADY) is differently affected by educated and/or uneducated speakers from different dialectal backgrounds. Specifically, the research aims to examine whether or not linguistic background acquired through different educational channels makes a difference in the speech of the speaker and how that is reflected in related psychoneurolinguistic impairments. Methods: For the above mentioned purpose, we conducted an articulatory experiment wherein a set of words from ADY were examined in the dialectal speech of thousand and seven hundred Yemeni educated and uneducated speakers aged 19-61 years growing up in five regions of the country: Northern, southern, eastern, western and central and were, accordingly, assigned into five dialectal groups. A seven-minute video clip was shown to the participants, who have been asked to spontaneously describe the scene they had just watched before the researchers linguistically and statistically analyzed recordings to weigh vowel lengthening in the speech of the participants. Results: The results show that vowels (monophthongs and diphthongs) are lengthened by all participants. Unexpectedly, educated and uneducated speakers from northern and central dialects lengthen vowels. Compared with uneducated speakers from the same dialect, educated speakers lengthen fewer vowels in their dialectal speech. Conclusions: These findings support the notion that extensive exposure to dialects on account of standard language can cause changes to the patterns of dialects themselves, and this can be seen in the speech of educated and uneducated speakers of these dialects. Further research is needed to clarify the phonemic distinctive features and frequency of lengthening in other open class systems (i.e., nouns, adjectives, and adverbs). Phonetic and phonological report measures are needed as well as validation of existing measures for assessing phonemic vowel length in the Arabic population in general and Arabic individuals with voice, speech, and language impairments in particular.

Keywords: vowel lengthening, Arabic dialect of Yemen, phonetics, phonology, impairment, distinctive features

Procedia PDF Downloads 40
14316 Logistic Model Tree and Expectation-Maximization for Pollen Recognition and Grouping

Authors: Endrick Barnacin, Jean-Luc Henry, Jack Molinié, Jimmy Nagau, Hélène Delatte, Gérard Lebreton

Abstract:

Palynology is a field of interest for many disciplines. It has multiple applications such as chronological dating, climatology, allergy treatment, and even honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time-consuming task that requires the intervention of experts in the field, which is becoming increasingly rare due to economic and social conditions. So, the automation of this task is a necessity. Pollen slides analysis is mainly a visual process as it is carried out with the naked eye. That is the reason why a primary method to automate palynology is the use of digital image processing. This method presents the lowest cost and has relatively good accuracy in pollen retrieval. In this work, we propose a system combining recognition and grouping of pollen. It consists of using a Logistic Model Tree to classify pollen already known by the proposed system while detecting any unknown species. Then, the unknown pollen species are divided using a cluster-based approach. Success rates for the recognition of known species have been achieved, and automated clustering seems to be a promising approach.

Keywords: pollen recognition, logistic model tree, expectation-maximization, local binary pattern

Procedia PDF Downloads 182
14315 Arabic Light Word Analyser: Roles with Deep Learning Approach

Authors: Mohammed Abu Shquier

Abstract:

This paper introduces a word segmentation method using the novel BP-LSTM-CRF architecture for processing semantic output training. The objective of web morphological analysis tools is to link a formal morpho-syntactic description to a lemma, along with morpho-syntactic information, a vocalized form, a vocalized analysis with morpho-syntactic information, and a list of paradigms. A key objective is to continuously enhance the proposed system through an inductive learning approach that considers semantic influences. The system is currently under construction and development based on data-driven learning. To evaluate the tool, an experiment on homograph analysis was conducted. The tool also encompasses the assumption of deep binary segmentation hypotheses, the arbitrary choice of trigram or n-gram continuation probabilities, language limitations, and morphology for both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), which provide justification for updating this system. Most Arabic word analysis systems are based on the phonotactic morpho-syntactic analysis of a word transmitted using lexical rules, which are mainly used in MENA language technology tools, without taking into account contextual or semantic morphological implications. Therefore, it is necessary to have an automatic analysis tool taking into account the word sense and not only the morpho-syntactic category. Moreover, they are also based on statistical/stochastic models. These stochastic models, such as HMMs, have shown their effectiveness in different NLP applications: part-of-speech tagging, machine translation, speech recognition, etc. As an extension, we focus on language modeling using Recurrent Neural Network (RNN); given that morphological analysis coverage was very low in dialectal Arabic, it is significantly important to investigate deeply how the dialect data influence the accuracy of these approaches by developing dialectal morphological processing tools to show that dialectal variability can support to improve analysis.

Keywords: NLP, DL, ML, analyser, MSA, RNN, CNN

Procedia PDF Downloads 42
14314 Features of Normative and Pathological Realizations of Sibilant Sounds for Computer-Aided Pronunciation Evaluation in Children

Authors: Zuzanna Miodonska, Michal Krecichwost, Pawel Badura

Abstract:

Sigmatism (lisping) is a speech disorder in which sibilant consonants are mispronounced. The diagnosis of this phenomenon is usually based on the auditory assessment. However, the progress in speech analysis techniques creates a possibility of developing computer-aided sigmatism diagnosis tools. The aim of the study is to statistically verify whether specific acoustic features of sibilant sounds may be related to pronunciation correctness. Such knowledge can be of great importance while implementing classifiers and designing novel tools for automatic sibilants pronunciation evaluation. The study covers analysis of various speech signal measures, including features proposed in the literature for the description of normative sibilants realization. Amplitudes and frequencies of three fricative formants (FF) are extracted based on local spectral maxima of the friction noise. Skewness, kurtosis, four normalized spectral moments (SM) and 13 mel-frequency cepstral coefficients (MFCC) with their 1st and 2nd derivatives (13 Delta and 13 Delta-Delta MFCC) are included in the analysis as well. The resulting feature vector contains 51 measures. The experiments are performed on the speech corpus containing words with selected sibilant sounds (/ʃ, ʒ/) pronounced by 60 preschool children with proper pronunciation or with natural pathologies. In total, 224 /ʃ/ segments and 191 /ʒ/ segments are employed in the study. The Mann-Whitney U test is employed for the analysis of stigmatism and normative pronunciation. Statistically, significant differences are obtained in most of the proposed features in children divided into these two groups at p < 0.05. All spectral moments and fricative formants appear to be distinctive between pathology and proper pronunciation. These metrics describe the friction noise characteristic for sibilants, which makes them particularly promising for the use in sibilants evaluation tools. Correspondences found between phoneme feature values and an expert evaluation of the pronunciation correctness encourage to involve speech analysis tools in diagnosis and therapy of sigmatism. Proposed feature extraction methods could be used in a computer-assisted stigmatism diagnosis or therapy systems.

Keywords: computer-aided pronunciation evaluation, sigmatism diagnosis, speech signal analysis, statistical verification

Procedia PDF Downloads 301
14313 Evaluation of Robust Feature Descriptors for Texture Classification

Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo

Abstract:

Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.

Keywords: texture classification, texture descriptor, SIFT, SURF, ORB

Procedia PDF Downloads 369
14312 Using Audio-Visual Aids and Computer-Assisted Language Instruction to Overcome Learning Difficulties of Vocabulary in Students of Special Needs

Authors: Sadeq Al Yaari, Ayman Al Yaari, Adham Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Sajedah Al Yaar

Abstract:

Objectives: To assess the effect of using audio-visual aids and computer-assisted/ aided language instruction (CALI) in the performance of students of special needs studying vocabulary course. Methods: The performance of forty students of special needs (males and females) who used audiovisual aids and CALI in their vocabulary course at al-Malādh school for students of special needs was compared to that of another group (control group) of the same number and age (8-18). Again, subjects in the experimental group were given lessons using audio-visual aids and CALI, while those in the control group were given lessons using ordinary educational aids only, although both groups almost shared the same features (class environment, speech language therapist (SLT), etc.). Pre-andposttest was given at the beginning and end of the semester and a qualitative and quantitative analysis followed. Results & conclusions: Results of the present experimental study's pre-and-posttests indicated that the performance of the students in the first group was higher than that of those of the second group (34.27%, 73.82% vs. 33.57%, 34.92%, respectively). Compared with females, males’ performance was higher (1515 scores vs. 1438 scores). Such findings suggest that the presence of these audiovisual aids and CALI in the classes of students of special needs, especially if they are studying vocabulary building course is very important due to their usefulness in the improvement of performance of the students of special needs.

Keywords: language components, vocabulary, audio-visual aids, CALI, special needs, students, SLTs

Procedia PDF Downloads 50
14311 Impact of Integrated Signals for Doing Human Activity Recognition Using Deep Learning Models

Authors: Milagros Jaén-Vargas, Javier García Martínez, Karla Miriam Reyes Leiva, María Fernanda Trujillo-Guerrero, Francisco Fernandes, Sérgio Barroso Gonçalves, Miguel Tavares Silva, Daniel Simões Lopes, José Javier Serrano Olmedo

Abstract:

Human Activity Recognition (HAR) is having a growing impact in creating new applications and is responsible for emerging new technologies. Also, the use of wearable sensors is an important key to exploring the human body's behavior when performing activities. Hence, the use of these dispositive is less invasive and the person is more comfortable. In this study, a database that includes three activities is used. The activities were acquired from inertial measurement unit sensors (IMU) and motion capture systems (MOCAP). The main objective is differentiating the performance from four Deep Learning (DL) models: Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and hybrid model Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), when considering acceleration, velocity and position and evaluate if integrating the IMU acceleration to obtain velocity and position represent an increment in performance when it works as input to the DL models. Moreover, compared with the same type of data provided by the MOCAP system. Despite the acceleration data is cleaned when integrating, results show a minimal increase in accuracy for the integrated signals.

Keywords: HAR, IMU, MOCAP, acceleration, velocity, position, feature maps

Procedia PDF Downloads 98
14310 Tetracycline as Chemosensor for Simultaneous Recognition of Al³⁺: Application to Bio-Imaging for Living Cells

Authors: Jesus Alfredo Ortega Granados, Pandiyan Thangarasu

Abstract:

Antibiotic tetracycline presents as a micro-contaminant in fresh water, wastewater and soils, causing environmental and health problems. In this work, tetracycline (TC) has been employed as chemo-sensor for the recognition of Al³⁺ without interring other ions, and the results show that it enhances the fluorescence intensity for Al³⁺ and there is no interference from other coexisting cation ions (Cd²⁺, Ni²⁺, Co²⁺, Sr²⁺, Mg²⁺, Fe³⁺, K⁺, Sm³⁺, Ag⁺, Na⁺, Ba²⁺, Zn²⁺, and Mn²⁺). For the addition of Cu²⁺ to [TET-Al³⁺], it appears that the intensity of fluorescence has been quenched. Other combinations of metal ions in addition to TC do not change the fluorescence behavior. The stoichiometry determined by Job´s plot for the interaction of TC with Al³⁺ was found to be 1:1. Importantly, the detection of Al³⁺⁺ successfully employed in the real samples like living cells, and it was found that TC efficiently performs as a fluorescent probe for Al³⁺ ion in living systems, especially in Saccharomyces cerevisiae; this is confirmed by confocal laser scanning microscopy.

Keywords: chemo-sensor, recognition of Al³⁺ ion, Saccharomyces cerevisiae, tetracycline,

Procedia PDF Downloads 188
14309 Recognition of Objects in a Maritime Environment Using a Combination of Pre- and Post-Processing of the Polynomial Fit Method

Authors: R. R. Hordijk, O. J. G. Somsen

Abstract:

Traditionally, radar systems are the eyes and ears of a ship. However, these systems have their drawbacks and nowadays they are extended with systems that work with video and photos. Processing of data from these videos and photos is however very labour-intensive and efforts are being made to automate this process. A major problem when trying to recognize objects in water is that the 'background' is not homogeneous so that traditional image recognition technics do not work well. Main question is, can a method be developed which automate this recognition process. There are a large number of parameters involved to facilitate the identification of objects on such images. One is varying the resolution. In this research, the resolution of some images has been reduced to the extreme value of 1% of the original to reduce clutter before the polynomial fit (pre-processing). It turned out that the searched object was clearly recognizable as its grey value was well above the average. Another approach is to take two images of the same scene shortly after each other and compare the result. Because the water (waves) fluctuates much faster than an object floating in the water one can expect that the object is the only stable item in the two images. Both these methods (pre-processing and comparing two images of the same scene) delivered useful results. Though it is too early to conclude that with these methods all image problems can be solved they are certainly worthwhile for further research.

Keywords: image processing, image recognition, polynomial fit, water

Procedia PDF Downloads 534
14308 Part of Speech Tagging Using Statistical Approach for Nepali Text

Authors: Archit Yajnik

Abstract:

Part of Speech Tagging has always been a challenging task in the era of Natural Language Processing. This article presents POS tagging for Nepali text using Hidden Markov Model and Viterbi algorithm. From the Nepali text, annotated corpus training and testing data set are randomly separated. Both methods are employed on the data sets. Viterbi algorithm is found to be computationally faster and accurate as compared to HMM. The accuracy of 95.43% is achieved using Viterbi algorithm. Error analysis where the mismatches took place is elaborately discussed.

Keywords: hidden markov model, natural language processing, POS tagging, viterbi algorithm

Procedia PDF Downloads 327
14307 The Influence of Neural Synchrony on Auditory Middle Latency and Late Latency Responses and Its Correlation with Audiological Profile in Individuals with Auditory Neuropathy

Authors: P. Renjitha, P. Hari Prakash

Abstract:

Auditory neuropathy spectrum disorder (ANSD) is an auditory disorder with normal cochlear outer hair cell function and disrupted auditory nerve function. It results in unique clinical characteristic with absent auditory brainstem response (ABR), absent acoustic reflex and the presence of otoacoustic emissions (OAE) and cochlear microphonics. The lesion site could be at cochlear inner hair cells, the synapse between the inner hair cells and type I auditory nerve fibers, and/or the auditory nerve itself. But the literatures on synchrony at higher auditory system are sporadic and are less understood. It might be interesting to see if there is a recovery of neural synchrony at higher auditory centers. Also, does the level at which the auditory system recovers with adequate synchrony to the extent of observable evoke response potentials (ERPs) can predict speech perception? In the current study, eight ANSD participants and healthy controls underwent detailed audiological assessment including ABR, auditory middle latency response (AMLR), and auditory late latency response (ALLR). AMLR was recorded for clicks and ALLR was evoked using 500Hz and 2 kHz tone bursts. Analysis revealed that the participant could be categorized into three groups. Group I (2/8) where ALLR was present only for 2kHz tone burst. Group II (4/8), where AMLR was absent and ALLR was seen for both the stimuli. Group III (2/8) consisted individuals with identifiable AMLR and ALLR for all the stimuli. The highest speech identification sore observed in ANSD group was 30% and hence considered having poor speech perception. Overall test result indicates that the site of neural synchrony recovery could be varying across individuals with ANSD. Some individuals show recovery of neural synchrony at the thalamocortical level while others show the same only at the cortical level. Within ALLR itself there could be variation across stimuli again could be related to neural synchrony. Nevertheless, none of these patterns could possible explain the speech perception ability of the individuals. Hence, it could be concluded that neural synchrony as measured by evoked potentials could not be a good clinical predictor speech perception.

Keywords: auditory late latency response, auditory middle latency response, auditory neuropathy spectrum disorder, correlation with speech identification score

Procedia PDF Downloads 149
14306 Stereotypical Motor Movement Recognition Using Microsoft Kinect with Artificial Neural Network

Authors: M. Jazouli, S. Elhoufi, A. Majda, A. Zarghili, R. Aalouane

Abstract:

Autism spectrum disorder is a complex developmental disability. It is defined by a certain set of behaviors. Persons with Autism Spectrum Disorders (ASD) frequently engage in stereotyped and repetitive motor movements. The objective of this article is to propose a method to automatically detect this unusual behavior. Our study provides a clinical tool which facilitates for doctors the diagnosis of ASD. We focus on automatic identification of five repetitive gestures among autistic children in real time: body rocking, hand flapping, fingers flapping, hand on the face and hands behind back. In this paper, we present a gesture recognition system for children with autism, which consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using artificial neural network (ANN). The first one uses the Microsoft Kinect sensor, the second one chooses points of interest from the 3D skeleton to characterize the gestures, and the last one proposes a neural connectionist model to perform the supervised classification of data. The experimental results show that our system can achieve above 93.3% recognition rate.

Keywords: ASD, artificial neural network, kinect, stereotypical motor movements

Procedia PDF Downloads 306
14305 Accuracy Improvement of Traffic Participant Classification Using Millimeter-Wave Radar by Leveraging Simulator Based on Domain Adaptation

Authors: Tokihiko Akita, Seiichi Mita

Abstract:

A millimeter-wave radar is the most robust against adverse environments, making it an essential environment recognition sensor for automated driving. However, the reflection signal is sparse and unstable, so it is difficult to obtain the high recognition accuracy. Deep learning provides high accuracy even for them in recognition, but requires large scale datasets with ground truth. Specially, it takes a lot of cost to annotate for a millimeter-wave radar. For the solution, utilizing a simulator that can generate an annotated huge dataset is effective. Simulation of the radar is more difficult to match with real world data than camera image, and recognition by deep learning with higher-order features using the simulator causes further deviation. We have challenged to improve the accuracy of traffic participant classification by fusing simulator and real-world data with domain adaptation technique. Experimental results with the domain adaptation network created by us show that classification accuracy can be improved even with a few real-world data.

Keywords: millimeter-wave radar, object classification, deep learning, simulation, domain adaptation

Procedia PDF Downloads 93
14304 Second Language Perception of Japanese /Cju/ and /Cjo/ Sequences by Mandarin-Speaking Learners of Japanese

Authors: Yili Liu, Honghao Ren, Mariko Kondo

Abstract:

In the field of second language (L2) speech learning, it is well-known that that learner’s first language (L1) phonetic and phonological characteristics will be transferred into their L2 production and perception, which lead to foreign accent. For L1 Mandarin learners of Japanese, the confusion of /u/ and /o/ in /CjV/ sequences has been observed in their utterance frequently. L1 transfer is considered to be the cause of this issue, however, other factors which influence the identification of /Cju/ and /Cjo/ sequences still under investigation. This study investigates the perception of Japanese /Cju/ and /Cjo/ units by L1 Mandarin learners of Japanese. It further examined whether learners’ proficiency, syllable position, phonetic features of preceding consonants and background noise affect learners’ performance in perception. Fifty-two Mandarin-speaking learners of Japanese and nine native Japanese speakers were recruited to participate in an identification task. Learners were divided into beginner, intermediate and advanced level according to their Japanese proficiency. The average correct rate was used to evaluate learners’ perceptual performance. Furthermore, the comparison of the correct rate between learners’ groups and the control group was conducted as well to examine learners’ nativelikeness. Results showed that background noise tends to pose an adverse effect on distinguishing /u/ and /o/ in /CjV/ sequences. Secondly, Japanese proficiency has no influence on learners’ perceptual performance in the quiet and in background noise. Then all learners did not reach a native-like level without the distraction of noise. Beginner level learners performed less native-like, although higher level learners appeared to have achieved nativelikeness in the multi-talker babble noise. Finally, syllable position tends to affect distinguishing /Cju/ and /Cjo/ only under the noisy condition. Phonetic features of preceding consonants did not impact learners’ perception in any listening conditions. Findings in this study can give an insight into a further understanding of Japanese vowel acquisition by L1 Mandarin learners of Japanese. In addition, this study indicates that L1 transfer is not the only explanation for the confusion of /u/ and /o/ in /CjV/ sequences, factors such as listening condition and syllable position are also needed to take into consideration in future research. It also suggests the importance of perceiving speech in a noisy environment, which is close to the actual conversation required more attention to pedagogy.

Keywords: background noise, Chinese learners of Japanese, /Cju/ and /Cjo/ sequences, second language perception

Procedia PDF Downloads 160
14303 Keyframe Extraction Using Face Quality Assessment and Convolution Neural Network

Authors: Rahma Abed, Sahbi Bahroun, Ezzeddine Zagrouba

Abstract:

Due to the huge amount of data in videos, extracting the relevant frames became a necessity and an essential step prior to performing face recognition. In this context, we propose a method for extracting keyframes from videos based on face quality and deep learning for a face recognition task. This method has two steps. We start by generating face quality scores for each face image based on the use of three face feature extractors, including Gabor, LBP, and HOG. The second step consists in training a Deep Convolutional Neural Network in a supervised manner in order to select the frames that have the best face quality. The obtained results show the effectiveness of the proposed method compared to the methods of the state of the art.

Keywords: keyframe extraction, face quality assessment, face in video recognition, convolution neural network

Procedia PDF Downloads 233
14302 A Similar Image Retrieval System for Auroral All-Sky Images Based on Local Features and Color Filtering

Authors: Takanori Tanaka, Daisuke Kitao, Daisuke Ikeda

Abstract:

The aurora is an attractive phenomenon but it is difficult to understand the whole mechanism of it. An approach of data-intensive science might be an effective approach to elucidate such a difficult phenomenon. To do that we need labeled data, which shows when and what types of auroras, have appeared. In this paper, we propose an image retrieval system for auroral all-sky images, some of which include discrete and diffuse aurora, and the other do not any aurora. The proposed system retrieves images which are similar to the query image by using a popular image recognition method. Using 300 all-sky images obtained at Tromso Norway, we evaluate two methods of image recognition methods with or without our original color filtering method. The best performance is achieved when SIFT with the color filtering is used and its accuracy is 81.7% for discrete auroras and 86.7% for diffuse auroras.

Keywords: data-intensive science, image classification, content-based image retrieval, aurora

Procedia PDF Downloads 449
14301 Role of Organizational Culture in Building Sustainable Employee’s Performance in Organizations: A Case Study of Zenith Bank PLC Jalingo Taraba State Nigeria

Authors: Jerome Nyameh

Abstract:

The most valuable asset in the existence of organization is the employees and their ability in maintain appreciable level of performance which support the goal of the organization and the ability to do that depend largely on the organizational culture and culture has been considered most currently as the factor that relate positively to organizational excellence and sustainable employee’s performance over the period of time An employee engagement program will not go far without first establishing the organizational culture that is required to support sustainability. This means integrating sustainability into the overall employee’s performance, with clear vision, goals and metrics. It means having strong culture and a collaborative governance structure that has been develop as a ways of doing things in the organization for decision making and resource allocation. It requires a rewards and recognition program to support and reinforce sustainability behaviors. With such a culture in place, organization will be able to develop a strategy that fully engages employees, while fully realizing the benefits of their contributions. The study investigated empirically the role of organizational culture building sustainable employee’s performance using Zenith bank PLC a model where organizational culture will build sustainable employees performance strategy for a lasting actualization of organizational was developed. In order to achieve the research objectives of (i) to assess how organizational culture can build sustainable employee’s performance (ii) to analyze the gap that exists between organizational culture and sustainable employee’s performance in the organization, a survey questionnaires of 20 items was administered to sixty respondents. The findings of this study have practical implications for organizational leaders, managers and employees, and their organizations, particularly commercial banks in Nigeria, besides offering scope for further research in the area of organizational culture and sustainable employee’s performance. It will also show a significance and positive relationship that exist between organizational culture and sustainable employee’s performance, as means of building viable organization with cultural uniqueness and excellence performance in the world of competition.

Keywords: organizational culture, sustainable employee’s performance, organizations, Zenith Bank PLC Nigeria

Procedia PDF Downloads 514
14300 Automatic Number Plate Recognition System Based on Deep Learning

Authors: T. Damak, O. Kriaa, A. Baccar, M. A. Ben Ayed, N. Masmoudi

Abstract:

In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.

Keywords: ANPR, CS, CNN, deep learning, NPL

Procedia PDF Downloads 306
14299 New Formula for Revenue Recognition Likely to Change the Prescription for Pharma Industry

Authors: Shruti Hajirnis

Abstract:

In May 2014, FASB issued Accounting Standards Update (ASU) 2014-09, Revenue from Contracts with Customers (Topic 606), and the International Accounting Standards Board (IASB) issued International Financial Reporting Standards (IFRS) 15, Revenue from Contracts with Customers that will supersede virtually all revenue recognition requirements in IFRS and US GAAP. FASB and the IASB have basically achieved convergence with these standards, with only some minor differences such as collectability threshold, interim disclosure requirements, early application and effective date, impairment loss reversal and nonpublic entity requirements. This paper discusses the impact of five-step model prescribed in new revenue standard on the entities operating in Pharma industry. It also outlines the considerations for these entities while implementing the new standard.

Keywords: revenue recognition, pharma industry, standard, requirements

Procedia PDF Downloads 444
14298 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line

Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez

Abstract:

Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.

Keywords: deep-learning, image classification, image identification, industrial engineering.

Procedia PDF Downloads 160
14297 Development and Application of the Proctoring System with Face Recognition for User Registration on the Educational Information Portal

Authors: Meruyert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova, Madina Ermaganbetova

Abstract:

This research paper explores the process of creating a proctoring system by evaluating the implementation of practical face recognition algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As an outcome, a proctoring system will be created, enabling the conduction of tests and ensuring academic integrity checks within the system. Due to the correct operation of the system, test works are carried out. The result of the creation of the proctoring system will be the basis for the automation of the informational, educational portal developed by machine learning.

Keywords: artificial intelligence, education portal, face recognition, machine learning, proctoring

Procedia PDF Downloads 125
14296 Unsupervised Learning with Self-Organizing Maps for Named Entity Recognition in the CONLL2003 Dataset

Authors: Assel Jaxylykova, Alexnder Pak

Abstract:

This study utilized a Self-Organizing Map (SOM) for unsupervised learning on the CONLL-2003 dataset for Named Entity Recognition (NER). The process involved encoding words into 300-dimensional vectors using FastText. These vectors were input into a SOM grid, where training adjusted node weights to minimize distances. The SOM provided a topological representation for identifying and clustering named entities, demonstrating its efficacy without labeled examples. Results showed an F1-measure of 0.86, highlighting SOM's viability. Although some methods achieve higher F1 measures, SOM eliminates the need for labeled data, offering a scalable and efficient alternative. The SOM's ability to uncover hidden patterns provides insights that could enhance existing supervised methods. Further investigation into potential limitations and optimization strategies is suggested to maximize benefits.

Keywords: named entity recognition, natural language processing, self-organizing map, CONLL-2003, semantics

Procedia PDF Downloads 45
14295 Segmentation of Arabic Handwritten Numeral Strings Based on Watershed Approach

Authors: Nidal F. Shilbayeh, Remah W. Al-Khatib, Sameer A. Nooh

Abstract:

Arabic offline handwriting recognition systems are considered as one of the most challenging topics. Arabic Handwritten Numeral Strings are used to automate systems that deal with numbers such as postal code, banking account numbers and numbers on car plates. Segmentation of connected numerals is the main bottleneck in the handwritten numeral recognition system.  This is in turn can increase the speed and efficiency of the recognition system. In this paper, we proposed algorithms for automatic segmentation and feature extraction of Arabic handwritten numeral strings based on Watershed approach. The algorithms have been designed and implemented to achieve the main goal of segmenting and extracting the string of numeral digits written by hand especially in a courtesy amount of bank checks. The segmentation algorithm partitions the string into multiple regions that can be associated with the properties of one or more criteria. The numeral extraction algorithm extracts the numeral string digits into separated individual digit. Both algorithms for segmentation and feature extraction have been tested successfully and efficiently for all types of numerals.

Keywords: handwritten numerals, segmentation, courtesy amount, feature extraction, numeral recognition

Procedia PDF Downloads 381
14294 A Stylistic Analysis of the Short Story ‘The Escape’ by Qaisra Shahraz

Authors: Huma Javed

Abstract:

Stylistics is a broad term that is concerned with both literature and linguistics, due to which the significance of the stylistics increases. This research aims to analyze Qaisra Shahraz's short story ‘The Escape’ from the stylistic analysis viewpoint. The focus of this study is on three aspects grammar category, lexical category, and figure of speech of the short story. The research designs for this article are both explorative and descriptive. The analysis of the data shows that the writer has used more nouns in the story as compared to other lexical items, which suggests that story has a descriptive style rather than narrative.

Keywords: The Escape, stylistics, grammatical category, lexical category, figure of speech

Procedia PDF Downloads 237
14293 Imprecise Vowel Articulation in Down Syndrome: An Acoustic Study

Authors: Anitha Naittee Abraham, N. Sreedevi

Abstract:

Individuals with Down syndrome (DS) have relatively better expressive language compared to other individuals with intellectual disabilities. Reduced speech intelligibility is one of the major concerns of this group of individuals due to their anatomical and physiological differences. The study investigated the vowel articulation of Malayalam speaking children with DS in the age range of 5-10 years. The vowel production of 10 children with DS was compared with typically developing children in the same age range. Vowels were extracted from 3 words with the corner vowels /a/, /i/ and /u/ in the word-initial position, using Praat (version 5.3.23) software. Acoustic analysis was based on vowel space area (VSA), Formant centralization ration (FCR) and F2i/F2u. The findings revealed increased formant values for the control group except for F2a and F2u. Also, the experimental group had higher FCR, lower VSA, and F2i/F2u values suggestive of imprecise vowel articulation due to restricted tongue movements. The results of the independent t-test revealed a significant difference in F1a, F2i, F2u, VSA, FCR and F2i/F2u values between the experimental and control group. These findings support the fact that children with DS have imprecise vowel articulation that interferes with the overall speech intelligibility. Hence it is essential to target the oromotor skills to enhance the speech intelligibility which in turn benefit in the social and vocational domains of these individuals.

Keywords: Down syndrome, FCR, vowel articulation, vowel space

Procedia PDF Downloads 185
14292 Automatic Landmark Selection Based on Feature Clustering for Visual Autonomous Unmanned Aerial Vehicle Navigation

Authors: Paulo Fernando Silva Filho, Elcio Hideiti Shiguemori

Abstract:

The selection of specific landmarks for an Unmanned Aerial Vehicles’ Visual Navigation systems based on Automatic Landmark Recognition has significant influence on the precision of the system’s estimated position. At the same time, manual selection of the landmarks does not guarantee a high recognition rate, which would also result on a poor precision. This work aims to develop an automatic landmark selection that will take the image of the flight area and identify the best landmarks to be recognized by the Visual Navigation Landmark Recognition System. The criterion to select a landmark is based on features detected by ORB or AKAZE and edges information on each possible landmark. Results have shown that disposition of possible landmarks is quite different from the human perception.

Keywords: clustering, edges, feature points, landmark selection, X-means

Procedia PDF Downloads 279
14291 Sports Fans and Non-Interested Public Recognition of the Problems of Sports in Egypt through Caricature

Authors: Alaaeldin Hamdy Ahmed Mohammed

Abstract:

Introduction: This study examines sports’ fans and non-interested public perception and recognition of the problems that have negative impacts upon the Egyptian sports, particularly football, through caricatures. Eight caricature paintings were designed to express eight problems affecting the Egyptian sports and its development. These paintings were distributed on two groups of the fans and the non-interested public. Methods: The study was limited to eight caricatures representing the eight issues which are: the impact of stopping the sports activity on athletes, the effect of clubs’ disagreement, fanaticism between the members of the ultras of different clubs, the negative impact of the mingling of politics into sports, the negative role of the clubs affects the professionalism of the promising players, the conflict between the national organization responsible for sports, the breaking in of the fans to the playgrounds, the impact of the lack of planning on the national team. The Results: The results showed that both sports fans and those who are not interested in sports recognized the problems that the caricatures refer to and criticizes exaggeration although the rate was higher for the fans. These caricatures contributed also in their recognition of the danger of the negative impact of these problems on the Egyptian sports, particularly football which is the most common at the Egyptian sports fans. Discussion: This finding echoes the conclusion that caricatures are distinctive in the adults’ facial stimuli that are either systematically exaggerated recognition of them.

Keywords: caricature, fans, football, sports

Procedia PDF Downloads 317
14290 Human Computer Interaction Using Computer Vision and Speech Processing

Authors: Shreyansh Jain Jeetmal, Shobith P. Chadaga, Shreyas H. Srinivas

Abstract:

Internet of Things (IoT) is seen as the next major step in the ongoing revolution in the Information Age. It is predicted that in the near future billions of embedded devices will be communicating with each other to perform a plethora of tasks with or without human intervention. One of the major ongoing hotbed of research activity in IoT is Human Computer Interaction (HCI). HCI is used to facilitate communication between an intelligent system and a user. An intelligent system typically comprises of a system consisting of various sensors, actuators and embedded controllers which communicate with each other to monitor data collected from the environment. Communication by the user to the system is typically done using voice. One of the major ongoing applications of HCI is in home automation as a personal assistant. The prime objective of our project is to implement a use case of HCI for home automation. Our system is designed to detect and recognize the users and personalize the appliances in the house according to their individual preferences. Our HCI system is also capable of speaking with the user when certain commands are spoken such as searching on the web for information and controlling appliances. Our system can also monitor the environment in the house such as air quality and gas leakages for added safety.

Keywords: human computer interaction, internet of things, computer vision, sensor networks, speech to text, text to speech, android

Procedia PDF Downloads 362
14289 A Speeded up Robust Scale-Invariant Feature Transform Currency Recognition Algorithm

Authors: Daliyah S. Aljutaili, Redna A. Almutlaq, Suha A. Alharbi, Dina M. Ibrahim

Abstract:

All currencies around the world look very different from each other. For instance, the size, color, and pattern of the paper are different. With the development of modern banking services, automatic methods for paper currency recognition become important in many applications like vending machines. One of the currency recognition architecture’s phases is Feature detection and description. There are many algorithms that are used for this phase, but they still have some disadvantages. This paper proposes a feature detection algorithm, which merges the advantages given in the current SIFT and SURF algorithms, which we call, Speeded up Robust Scale-Invariant Feature Transform (SR-SIFT) algorithm. Our proposed SR-SIFT algorithm overcomes the problems of both the SIFT and SURF algorithms. The proposed algorithm aims to speed up the SIFT feature detection algorithm and keep it robust. Simulation results demonstrate that the proposed SR-SIFT algorithm decreases the average response time, especially in small and minimum number of best key points, increases the distribution of the number of best key points on the surface of the currency. Furthermore, the proposed algorithm increases the accuracy of the true best point distribution inside the currency edge than the other two algorithms.

Keywords: currency recognition, feature detection and description, SIFT algorithm, SURF algorithm, speeded up and robust features

Procedia PDF Downloads 235
14288 An Ensemble-based Method for Vehicle Color Recognition

Authors: Saeedeh Barzegar Khalilsaraei, Manoocheher Kelarestaghi, Farshad Eshghi

Abstract:

The vehicle color, as a prominent and stable feature, helps to identify a vehicle more accurately. As a result, vehicle color recognition is of great importance in intelligent transportation systems. Unlike conventional methods which use only a single Convolutional Neural Network (CNN) for feature extraction or classification, in this paper, four CNNs, with different architectures well-performing in different classes, are trained to extract various features from the input image. To take advantage of the distinct capability of each network, the multiple outputs are combined using a stack generalization algorithm as an ensemble technique. As a result, the final model performs better than each CNN individually in vehicle color identification. The evaluation results in terms of overall average accuracy and accuracy variance show the proposed method’s outperformance compared to the state-of-the-art rivals.

Keywords: Vehicle Color Recognition, Ensemble Algorithm, Stack Generalization, Convolutional Neural Network

Procedia PDF Downloads 85