Search results for: sodium nitrate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1253

Search results for: sodium nitrate

833 Fabrication of Drug-Loaded Halloysite Nanotubes Containing Sodium Alginate/Gelatin Composite Scaffolds

Authors: Masoumeh Haghbin Nazarpak, Hamidreza Tolabi, Aryan Ekhlasi

Abstract:

Bone defects are mentioned as one of the most challenging clinical conditions, affecting millions of people each year. A fracture, osteoporosis, tumor, or infection usually causes these defects. At present, autologous and allogeneic grafts are used to correct bone defects, but these grafts have some difficulties, such as limited access, infection, disease transmission, and immune rejection. Bone tissue engineering is considered a new strategy for repairing bone defects. However, problems with scaffolds’ design with unique structures limit their clinical applications. In addition, numerous in-vitro studies have been performed on the behavior of bone cells in two-dimensional environments. Still, cells grow in physiological situations in the human body in a three-dimensional environment. As a result, the controlled design of porous structures with high structural complexity and providing the necessary flexibility to meet specific needs in bone tissue repair is beneficial. For this purpose, a three-dimensional composite scaffold based on gelatin and sodium alginate hydrogels is used in this research. In addition, the antibacterial drug-loaded halloysite nanotubes were introduced into the hydrogel scaffold structure to provide a suitable substrate for controlled drug release. The presence of halloysite nanotubes improved hydrogel’s properties, while the drug eliminated infection and disease transmission. Finally, it can be acknowledged that the composite scaffold prepared in this study for bone tissue engineering seems promising.

Keywords: halloysite nanotubes, bone tissue engineering, composite scaffold, controlled drug release

Procedia PDF Downloads 64
832 Acute Severe Hyponatremia in Patient with Psychogenic Polydipsia, Learning Disability and Epilepsy

Authors: Anisa Suraya Ab Razak, Izza Hayat

Abstract:

Introduction: The diagnosis and management of severe hyponatremia in neuropsychiatric patients present a significant challenge to physicians. Several factors contribute, including diagnostic shadowing and attributing abnormal behavior to intellectual disability or psychiatric conditions. Hyponatraemia is the commonest electrolyte abnormality in the inpatient population, ranging from mild/asymptomatic, moderate to severe levels with life-threatening symptoms such as seizures, coma and death. There are several documented fatal case reports in the literature of severe hyponatremia secondary to psychogenic polydipsia, often diagnosed only in autopsy. This paper presents a case study of acute severe hyponatremia in a neuropsychiatric patient with early diagnosis and admission to intensive care. Case study: A 21-year old Caucasian male with known epilepsy and learning disability was admitted from residential living with generalized tonic-clonic self-terminating seizures after refusing medications for several weeks. Evidence of superficial head injury was detected on physical examination. His laboratory data demonstrated mild hyponatremia (125 mmol/L). Computed tomography imaging of his brain demonstrated no acute bleed or space-occupying lesion. He exhibited abnormal behavior - restlessness, drinking water from bathroom taps, inability to engage, paranoia, and hypersexuality. No collateral history was available to establish his baseline behavior. He was loaded with intravenous sodium valproate and leveritircaetam. Three hours later, he developed vomiting and a generalized tonic-clonic seizure lasting forty seconds. He remained drowsy for several hours and regained minimal recovery of consciousness. A repeat set of blood tests demonstrated profound hyponatremia (117 mmol/L). Outcomes: He was referred to intensive care for peripheral intravenous infusion of 2.7% sodium chloride solution with two-hourly laboratory monitoring of sodium concentration. Laboratory monitoring identified dangerously rapid correction of serum sodium concentration, and hypertonic saline was switched to a 5% dextrose solution to reduce the risk of acute large-volume fluid shifts from the cerebral intracellular compartment to the extracellular compartment. He underwent urethral catheterization and produced 8 liters of urine over 24 hours. Serum sodium concentration remained stable after 24 hours of correction fluids. His GCS recovered to baseline after 48 hours with improvement in behavior -he engaged with healthcare professionals, understood the importance of taking medications, admitted to illicit drug use and drinking massive amounts of water. He was transferred from high-dependency care to ward level and was initiated on multiple trials of anti-epileptics before achieving seizure-free days two weeks after resolution of acute hyponatremia. Conclusion: Psychogenic polydipsia is often found in young patients with intellectual disability or psychiatric disorders. Patients drink large volumes of water daily ranging from ten to forty liters, resulting in acute severe hyponatremia with mortality rates as high as 20%. Poor outcomes are due to challenges faced by physicians in making an early diagnosis and treating acute hyponatremia safely. A low index of suspicion of water intoxication is required in this population, including patients with known epilepsy. Monitoring urine output proved to be clinically effective in aiding diagnosis. Early referral and admission to intensive care should be considered for safe correction of sodium concentration while minimizing risk of fatal complications e.g. central pontine myelinolysis.

Keywords: epilepsy, psychogenic polydipsia, seizure, severe hyponatremia

Procedia PDF Downloads 120
831 Obtainment of Systems with Efavirenz and Lamellar Double Hydroxide as an Alternative for Solubility Improvement of the Drug

Authors: Danilo A. F. Fontes, Magaly A. M.Lyra, Maria L. C. Moura, Leslie R. M. Ferraz, Salvana P. M. Costa, Amanda C. Q. M. Vieira, Larissa A. Rolim, Giovanna C. R. M. Schver, Ping I. Lee, Severino Alves-Júnior, José L. Soares-Sobrinho, Pedro J. Rolim-Neto

Abstract:

Efavirenz (EFV) is a first-choice drug in antiretroviral therapy with high efficacy in the treatment of infection by Human Immunodeficiency Virus, which causes Acquired Immune Deficiency Syndrome (AIDS). EFV has low solubility in water resulting in a decrease in the dissolution rate and, consequently, in its bioavailability. Among the technological alternatives to increase solubility, the Lamellar Double Hydroxides (LDH) have been applied in the development of systems with poorly water-soluble drugs. The use of analytical techniques such as X-Ray Diffraction (XRD), Infrared Spectroscopy (IR) and Differential Scanning Calorimetry (DSC) allowed the elucidation of drug interaction with the lamellar compounds. The objective of this work was to characterize and develop the binary systems with EFV and LDH in order to increase the solubility of the drug. The LDH-CaAl was synthesized by the method of co-precipitation from salt solutions of calcium nitrate and aluminum nitrate in basic medium. The systems EFV-LDH and their physical mixtures (PM) were obtained at different concentrations (5-60% of EFV) using the solvent technique described by Takahashi & Yamaguchi (1991). The characterization of the systems and the PM’s was performed by XRD techniques, IR, DSC and dissolution test under non-sink conditions. The results showed improvements in the solubility of EFV when associated with LDH, due to a possible change in its crystal structure and formation of an amorphous material. From the DSC results, one could see that the endothermic peak at 173°C, temperature that correspond to the melting process of EFZ in the crystal form, was present in the PM results. For the EFZ-LDH systems (with 5, 10 and 30% of drug loading), this peak was not observed. XRD profiles of the PM showed well-defined peaks for EFV. Analyzing the XRD patterns of the systems, it was found that the XRD profiles of all the systems showed complete attenuation of the characteristic peaks of the crystalline form of EFZ. The IR technique showed that, in the results of the PM, there was the appearance of one band and overlap of other bands, while the IR results of the systems with 5, 10 and 30% drug loading showed the disappearance of bands and a few others with reduced intensity. The dissolution test under non-sink conditions showed that systems with 5, 10 and 30% drug loading promoted a great increase in the solubility of EFV, but the system with 10% of drug loading was the only one that could keep substantial amount of drug in solution at different pHs.

Keywords: Efavirenz, Lamellar Double Hydroxides, Pharmaceutical Techonology, Solubility

Procedia PDF Downloads 575
830 Soil Quality Status under Dryland Vegetation of Yabello District, Southern Ethiopia

Authors: Mohammed Abaoli, Omer Kara

Abstract:

The current research has investigated the soil quality status under dryland vegetation of Yabello district, Southern Ethiopia in which we should identify the nature and extent of salinity problem of the area for further research bases. About 48 soil samples were taken from 0-30, 31-60, 61-90 and 91-120 cm soil depths by opening 12 representative soil profile pits at 1.5 m depth. Soil color, texture, bulk density, Soil Organic Carbon (SOC), Cation Exchange Capacity (CEC), Na, K, Mg, Ca, CaCO3, gypsum (CaSO4), pH, Sodium Adsorption Ratio (SAR), Exchangeable Sodium Percentage (ESP) were analyzed. The dominant soil texture was silty-clay-loam.  Bulk density varied from 1.1 to 1.31 g/cm3. High SOC content was observed in 0-30 cm. The soil pH ranged from 7.1 to 8.6. The electrical conductivity shows indirect relationship with soil depth while CaCO3 and CaSO4 concentrations were observed in a direct relationship with depth. About 41% are non-saline, 38.31% saline, 15.23% saline-sodic and 5.46% sodic soils. Na concentration in saline soils was greater than Ca and Mg in all the soil depths. Ca and Mg contents were higher above 60 cm soil depth in non-saline soils. The concentrations of SO2-4 and HCO-3 were observed to be higher at the most lower depth than upper. SAR value tends to be higher at lower depths in saline and saline-sodic soils, but decreases at lower depth of the non-saline soils. The distribution of ESP above 60 cm depth was in an increasing order in saline and saline-sodic soils. The result of the research has shown the direction to which extent of salinity we should consider for the Commiphora plant species we want to grow on the area. 

Keywords: commiphora species, dryland vegetation, ecological significance, soil quality, salinity problem

Procedia PDF Downloads 192
829 Preservation of Phenytoin and Sodium Valproate Induced Bone Loss by Raloxifene through Modulating Serum Estradiol and TGF-β3 Content in Bone of Female Mice

Authors: Divya Vohora, Md. Jamir Anwar

Abstract:

Antiepileptic drugs (AEDs)-induced adverse consequences on bone are now well recognized. Despite this, there is limited data on the effect of anti-osteoporotic therapies on AEDs-induced bone loss. Both phenytoin (PHT) and sodium valproate (SVP) inhibit human aromatase enzyme and stimulate microsomal catabolism of oestrogens. Estrogen deficiency states are known to reduce the deposition of transforming growth factor-β (TGF-β3), a bone matrix protein, having anti-osteoclastic property. Thus, an attempt was made to investigate the effect of raloxifene, a selective oestrogen receptor modulator, in comparison with CVD supplementation, on PHT and SVP-induced alterations in bone in mice. Further, the effect of raloxifene on seizures and on the antiepileptic efficacy of AEDs was also investigated. Swiss strains of female mice were treated with PHT (35 mg/kg, p.o.) and SVP (300 mg/kg, p.o.) for 120 days to induce bone loss as evidenced by reduced bone mineral density (BMD) and altered bone turnover markers in lumbar bones (alkaline phosphatase, tartarate resistant acid phosphatase, hydroxyproline) and urine (calcium). The bone loss was accompanied by reduced serum estradiol levels and bone TGF-β3 content. Preventive and curative treatment with raloxifene ameliorated bony alterations and was more effective than CVD. Deprived estrogen levels (that in turn reduced lumbar TGF-β3 content) following PHT and SVP, thus, might represent one of the various mechanisms of AEDs-induced bone loss. Raloxifene preserved the bony changes without interfering with their antiepileptic efficacy, and hence raloxifene could be a potential therapeutic option in the management of PHT and SVP-induced bone disease if clinically approved.

Keywords: antiepileptic drugs, osteoporosis, raloxifene, TGF-β3

Procedia PDF Downloads 336
828 Effect of Sodium Alginate-based Edible Coating with Natural Essential Oils and Modified Atmosphere Packaging on Quality of Fresh-cut Pineapple

Authors: Muhammad Rafi Ullah Khan, Yaodong Guo, Vanee Chonhenchob, Jinjin Pei, Chongxing Huang

Abstract:

The effect of sodium alginate (1%) based edible coating incorporated natural essential oils; thymol, carvone and carvacrol as antimicrobial agents at different concentrations (0.1, 0.5 and 1.0 %) on the quality changes of fresh-cut pineapple were investigated. Pineapple dipped in distilled water was served as control. After coating, fruit were sealed in a modified atmosphere package (MAP) using high permeable film; and stored at 5 °C. Gas composition in package headspace, color values (L*, a*, b*, C*), TSS, pH, ethanol, browning, and microbial decay were monitored during storage. Oxygen concentration continuously decreased while carbon dioxide concentration inside all packages continuously increased over time. Color parameters (L*, b*, c*) decreased and a* values increased during storage. All essential oils significantly (p ≤ 0.05) prevented microbial growth than control. A significantly higher (p ≤ 0.05) ethanol content was found in the control than in all other treatments. Visible microbial growth, high ethanol, and low color values limited the shelf life to 6 days in control as compared to 9 days in all other treatments. Among all essential oils, thymol at all concentrations maintained the overall quality of the pineapple and could potentially be used commercially in fresh fruit industries for longer storage.

Keywords: essential oils, antibrowning agents, antimicrobial agents, modified atmosphere packaging, microbial decay, pineapple

Procedia PDF Downloads 54
827 Effects of Adding Sodium Nitroprusside in Semen Diluents on Motility, Viability and Lipid Peroxidation of Sperm of Holstein Bulls

Authors: Leila Karshenas, Hamid Reza Khodaei, Behnaz Mahdavi

Abstract:

We know that nitric oxide (NO) plays an important role in all sexual activities of animals. It is made in body from NO synthase enzyme and L-arginin molecule. NO can bound with sulfur-iron complexes and because production of steroid sexual hormones is related to enzymes which have this complex, NO can change the activity of these enzymes. NO affects many cells including endothelial cells of veins, macrophages and mast cells. These cells are found in testis leydig cells and therefore are important source of NO in testis tissue. Minimizing damages to sperm at the time of sperm freezing and thawing is really important. The goal of this study was to determine the function of NO before freezing and its effects on quality and viability of sperms after thawing and incubation. 4 Holstein bulls were selected from the age of 4, and artificial insemination was done for 3 weeks (2 times a week). Treatments were 0, 10, 50 and 100 nm of sodium nitroprusside (SNP). Data analysis was performed by SAS98 program. Also, mean comparison was done using Duncan's multiple ranges test (P<0.05). Concentrations used was found to increase motility and viability of spermatozoa at 1, 2 and 3 hours after thawing significantly (P<0.05), but there was no significant difference at zero time. SNP levels reduced the amount of lipid peroxidation in sperm membrane, increased acrosome health and improved sample membranes especially in 50 and 100 nm treatments. According to results, adding SNP to semen diluents increases motility and viability of spermatozoa. Also, it reduces lipid peroxidation in sperm membrane and improves sperm function.

Keywords: sperm motility, nitric oxide, lipid peroxidation, spermatozoa

Procedia PDF Downloads 353
826 Catalytic Synthesis and Characterization of N-(4-(Tert-Butyl) Benzyl)-1-(4-Tert-Butyl) Phenyl)-N-Methyl Methanaminium Chloride from Tert-Butyl Benzyl Derivatives

Authors: Muhammad A. Muhammad

Abstract:

Butenafine (N-4-tert-butyl benzyl-N-methyl-1-naphthylene methylamine hydrochloride) is a benzylamine antimycotic (antifungal) agent that has a broad spectrum of action. The quest for improved antimycotic action brought about many research on the structure-activity properties of butenafine in relation to other antifungal agents. Of all those research, only little or no effort was recorded on the substituents attached to the aromatic systems in butenafine. In this research, N-(4-(tert-butyl) benzyl)-1-(4-tert-butyl) phenyl)-N-methyl methanaminium chloride, which is a butenafine analogue was synthesised from tert-butyl benzyl derivatives, by reductive amination using various solvents through a direct approach, where 1,2-dichloroethane gave the best solvent action at 40 °C (Yield: 75%) and of all the reducing agents used, sodium borohydride was found to give the best reducing action in the presence of silica chloride at room temperature (Yield: 50%). Characterization of the compound by 1H NMR showed a singlet peak of 18 hydrogen atoms with a chemical shift at 1.3-1.5 ppm for the presence of 6 methyl groups in the two tert-butyl substituents, the 13C NMR also indicated the presence of the two tert-butyl substituents by the peak with a chemical shift at 31-32 ppm for the six methyl carbon atoms, the IR indicated the presence of a tertiary ammonium ion by a strong band at 2460 cm-1 and finally the EIS-MS confirmed the molar mass of the compound by a mass to charge ratio of 324.2693. These results suggested that the target molecule was actually synthesised and therefore, 1,2-dichloroethane is a good solvent for this synthesis, and the most suitable reducing agent is sodium borohydride.

Keywords: antimicrobial agents, antimycotic agents, butenafine, chemotherapeutic agents, semisynthetic agents

Procedia PDF Downloads 291
825 Surface Sterilization Retain Postharvest Quality and Shelf Life of Strawberry and Cherry Tomato during Modified Atmosphere Packaging

Authors: Ju Young Kim, Mohammad Zahirul Islam, Mahmuda Akter Mele, Su Jeong Han, Hyuk Sung Yoon, In-Lee Choi, Ho-Min Kang

Abstract:

Strawberry and tomato fruits were harvested at the red ripens maturity stage in the Republic of Korea. The fruits were dipped in fungi solution and afterwards were sterilized with sodium hypochlorite (NaOCl) and chlorine dioxide (ClO2) gas. Some fruits were dipped in 150μL/L NaOCl solution for 10 minutes, and others were treated with 5μL/L ClO2 gas for 12 hours and packed with 20,000 cc OTR (oxygen transmission rate) film, the rest were packed in 10,000 cc OTR film inserted with 5μL/L ClO2 gas. 5μL/L ClO2 gas insert treatment showed the lowest carbon dioxide and ethylene, and the highest oxygen concentration was on the final storage day (15th day) in both strawberry and tomato fruits. Tomato fruits showed the lowest fresh weight loss in 5μL/L ClO2 gas insert treatment. The visual quality as well as shelf life showed the highest in 5μL/L ClO2 gas insert treatment of both strawberry and tomato fruits. In addition, the fungal incidence of strawberry and tomato fruits were the most suppressed in 5μL/L ClO2 gas insert treatment. 5μL/L ClO2 gas insert treatment showed higher firmness and soluble solids in both strawberry and tomato fruits. So, 5μL/L ClO2 gas insert treatment may be useful to prevent the fungal incidence as well as retaining the postharvest quality, and increase the shelf life of strawberry and tomato fruits for long term storage. This study was supported by Export Promotion Technology Development Program (314027-03), IPET, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea.

Keywords: chlorine dioxide, ethylene, fungi, sodium hypochlorite

Procedia PDF Downloads 361
824 Comparing the Effectiveness of the Crushing and Grinding Route of Comminution to That of the Mine to Mill Route in Terms of the Percentage of Middlings Present in Processed Lead-Zinc Ore Samples

Authors: Chinedu F. Anochie

Abstract:

The presence of gangue particles in recovered metal concentrates has been a serious challenge to ore dressing engineers. Middlings lower the quality of concentrates, and in most cases, drastically affect the smelter terms, owing to exorbitant amounts paid by Mineral Processing industries as treatment charge. Models which encourage optimization of liberation operations have been utilized in most ore beneficiation industries to reduce the presence of locked particles in valuable concentrates. Moreover, methods such as incorporation of regrind mills, scavenger, rougher and cleaner cells, to the milling and flotation plants has been widely employed to tackle these concerns, and to optimize the grade–recovery relationship of metal concentrates. This work compared the crushing and grinding method of liberation, to the mine to mill route, by evaluating the proportion of middlings present in selectively processed complex Pb-Zn ore samples. To establish the effect of size reduction operations on the percentage of locked particles present in recovered concentrates, two similar samples of complex Pb- Zn ores were processed. Following blasting operation, the first ore sample was ground directly in a ball mill (Mine to Mill Route of Comminution), while the other sample was manually crushed, and subsequently ground in the ball mill (Crushing and Grinding Route of Comminution). The two samples were separately sieved in a mesh to obtain the desired representative particle sizes. An equal amount of each sample that would be processed in the flotation circuit was then obtained with the aid of a weighing balance. These weighed fine particles were simultaneously processed in the flotation circuit using the selective flotation technique. Sodium cyanide, Methyl isobutyl carbinol, Sodium ethyl xanthate, Copper sulphate, Sodium hydroxide, Lime and Isopropyl xanthate, were the reagents used to effect differential flotation of the two ore samples. Analysis and calculations showed that the degree of liberation obtained for the ore sample which went through the conventional crushing and grinding route of comminution, was higher than that of the directly milled run off mine (ROM) ore. Similarly, the proportion of middlings obtained from the separated galena (PbS) and sphalerite (ZnS) concentrates, were lower for the crushed and ground ore sample. A concise data which proved that the mine to mill method of size reduction is not the most ideal technique for the recovery of quality metal concentrates has been established.

Keywords: comminution, degree of liberation, middlings, mine to mill

Procedia PDF Downloads 130
823 Evaluation of Groundwater and Seawater Intrusion at Tajoura Area, NW, Libya

Authors: Abdalraheem Huwaysh, Khalil Al Samarrai, Yasmin ElAhmar

Abstract:

Water quality is an important factor that determines its usage for domestic, agricultural and industrial uses. This study was carried out through the Tajoura Area, Jifarah Plain, Northwest Libya. Chemical and physical parameters were measured and analyzed for groundwater samples collected in 2021 from twenty-six wells distributed throughout the investigation area. Overexploitation of groundwater caused considerable deterioration in the water quality, especially at Tajoura Town (20 Km east of Tripoli). The aquifer shows an increase in salinization, which has reached an alarming level in many places during the past 25 years as a result of the seawater intrusion. The chemical composition of the water samples was compared with the drinking water standards of WHO and Libyan Standards. Groundwater from this area was not suitable to be a source for direct drinking based on Total Dissolved Solids. The dominant cation is sodium, while the dominant anion is chloride. Based on the Piper trilinear diagram, most of the groundwater samples (90%) were identified as sodium chloride type. The best groundwater quality exists at the southern part of the study area. Serious degradation in the water quality, expressed in salinity increase, occurs as we go towards the coastline. The abundance of NaCl waters is strong evidence to attribute the successive deterioration of the water quality to the seawater intrusion. Considering the values of Cl- concentration and the ratio of Cl-/HCO3-, about 70% of the groundwater samples were strongly affected by the saline water. Car wash stations in the study area as well as the unlined disposal pond used for the collection of untreated wastewater, contribute significantly to the deterioration of water quality. The water quality in this area needs to be monitored regularly and it is crucial to treat the water before consumption.

Keywords: Tajoura, groundwater, seawater intrusion, water quality

Procedia PDF Downloads 100
822 Study on Technological Development for Reducing the Sulfur Dioxide Residue Problem in Fresh Longan for Exporting

Authors: Wittaya Apai, Satippong Rattanakam, Suttinee Likhittragulrung, Nuttanai Tungmunkongvorakul, Sompetch Jaroensuk

Abstract:

The objective of this study was to find some alternative ways to decrease sulfur dioxide (SO₂) residue problem and prolong storage life in fresh longan for export. Office of Agricultural Research and Development Region 1, Chiang Mai province conducted the research and development from 2016-2018. A grade longan cv. Daw fruit with panicle attached was placed in 11.5 kg commercial perforated plastic basket. They had 5 selected treatments comprising of 3 baskets as replication for each treatment, i.e. 1.5% SO₂ fumigation prior to insert SO₂-generated pads (Uvasys®) (1.5% SO₂+SO₂ pad), dipping in 5% hydrochloric acid (HCl) mixed with 1% sodium metabisulfite (SMS) for 5 min (5% HCl +1% SMS), ozone (O₃) fumigation for 1 hours (h) prior to 1.5% SO₂ fumigation (O₃ 1 h+1.5% SO₂), 1.5% SO₂ fumigation prior to O₃ fumigation for 1 h (1.5% SO₂+O₃ 1 h) and 1.5% SO₂ fumigation alone as commercial treatment (1.5% SO₂). They were stored at 5 ˚C, 90% relative humidity (RH) for 40-80 days. The results found that the possible treatments were 1.5% SO₂+O₃ 1 h and 5% HCl +1% SMS respectively and prevented pericarp browning for 80 days at 5 ºC. There were no significant changes in some parameters in any treatments; 1.5% SO₂+O₃ 1 h and 1.5% SO₂ during storage, i.e., pericarp browning, flesh discoloration, disease incidence (%) and sensory evaluation during storage. Application 1.5% SO₂+O₃ 1 h had a tendency less both SO₂ residue in fruit and disease incidence (%) including brighter pericarp color as compared with commercial 1.5% SO₂ alone. Moreover, HCl 5%+SMS 1% showed the least SO₂ residue in whole fruit below codex tolerance at 50 mg/kg throughout period of time. The fruit treated with 1.5% SO₂+O₃ 1 h, 1.5% SO₂, 5% HCl+1% SMS, O₃ 1 h+1.5% SO₂, and 1.5% SO₂+SO₂ pad could prolong storage life for 40, 40, 40, 30 and 30 days respectively at 5°C, 90% RH. Thus, application 1.5% SO₂+O₃ 1 h and/or 5% HCl +1% SMS could be used for extending shelf life fresh longan exported to restricted countries due to less SO₂ residue and fruit quality was maintained as compared with the conventional method.

Keywords: longan, sulfur dioxide, ozone fumigation, sodium metabisulfite

Procedia PDF Downloads 119
821 Pomegranate Peel Based Edible Coating Treatment for Safety and Quality of Chicken Nuggets

Authors: Muhammad Sajid Arshad, Sadaf Bashir

Abstract:

In this study, the effects of pomegranate peel based edible coating were determined on safety and quality of chicken nuggets. Four treatment groups were prepared as control (without coating), coating with sodium alginate (SA) (1.5%), pomegranate peel powder (PPP) (1.5%), and combination of SA and PPP. There was a significant variation observed with respect to coating treatments and storage intervals. The chicken nuggets were subjected to refrigerated storage (40C) and were analyzed at regular intervals of 0, 7, 14 1 and 21 days. The microbiological quality was determined by total aerobic and coliform counts. Total aerobic (5.09±0.05 log CFU/g) and coliforms (3.91±0.06 log CFU/g) counts were higher in uncoated chicken nuggets whereas lower was observed in coated chicken nuggets having combination of SA and PPP. Likewise, antioxidants potential of chicken nuggets was observed by assessing total phenolic contents (TPC) and DPPH activity. Higher TPC (135.66 GAE/100g) and DPPH (64.65%) were found in combination with SA and PPP, whereas minimum TPC (91.38) and DPPH (41.48) was observed in uncoated chicken nuggets. Regarding the stability analysis of chicken nuggets, thiobarbituric acid reactive substances (TBARS) and peroxide value (POV) were determined. Higher TBARS (1.62±0.03 MDA/Kg) and POV (0.92±0.03 meq peroxide/kg) were found in uncoated chicken nuggets. Hunter color values were also observed in both uncoated and coated chicken nuggets. Sensorial attributes were also observed by the trained panelists. The higher sensory score for appearance, color, taste, texture and overall acceptability were observed in control (uncoated) while in coated treatments, it was found within acceptable limits. In nutshell, the combination of SA and PPP enhanced the overall quality, antioxidant potential, and stability of chicken nuggets.

Keywords: chicken nuggets, edible coatings, pomegranate peel powder, sodium alginate

Procedia PDF Downloads 142
820 CFD Simulation of Spacer Effect on Turbulent Mixing Phenomena in Sub Channels of Boiling Nuclear Assemblies

Authors: Shashi Kant Verma, S. L. Sinha, D. K. Chandraker

Abstract:

Numerical simulations of selected subchannel tracer (Potassium Nitrate) based experiments have been performed to study the capabilities of state-of-the-art of Computational Fluid Dynamics (CFD) codes. The Computational Fluid Dynamics (CFD) methodology can be useful for investigating the spacer effect on turbulent mixing to predict turbulent flow behavior such as Dimensionless mixing scalar distributions, radial velocity and vortices in the nuclear fuel assembly. A Gibson and Launder (GL) Reynolds stress model (RSM) has been selected as the primary turbulence model to be applied for the simulation case as it has been previously found reasonably accurate to predict flows inside rod bundles. As a comparison, the case is also simulated using a standard k-ε turbulence model that is widely used in industry. Despite being an isotropic turbulence model, it has also been used in the modeling of flow in rod bundles and to produce lateral velocities after thorough mixing of coolant fairly. Both these models have been solved numerically to find out fully developed isothermal turbulent flow in a 30º segment of a 54-rod bundle. Numerical simulation has been carried out for the study of natural mixing of a Tracer (Passive scalar) to characterize the growth of turbulent diffusion in an injected sub-channel and, afterwards on, cross-mixing between adjacent sub-channels. The mixing with water has been numerically studied by means of steady state CFD simulations with the commercial code STAR-CCM+. Flow enters into the computational domain through the mass inflow at the three subchannel faces. Turbulence intensity and hydraulic diameter of 1% and 5.9 mm respectively were used for the inlet. A passive scalar (Potassium nitrate) is injected through the mass fraction of 5.536 PPM at subchannel 2 (Upstream of the mixing section). Flow exited the domain through the pressure outlet boundary (0 Pa), and the reference pressure was 1 atm. Simulation results have been extracted at different locations of the mixing zone and downstream zone. The local mass fraction shows uniform mixing. The effect of the applied turbulence model is nearly negligible just before the outlet plane because the distributions look like almost identical and the flow is fully developed. On the other hand, quantitatively the dimensionless mixing scalar distributions change noticeably, which is visible in the different scale of the colour bars.

Keywords: single-phase flow, turbulent mixing, tracer, sub channel analysis

Procedia PDF Downloads 203
819 The Hydrotrope-Mediated, Low-Temperature, Aqueous Dissolution of Maize Starch

Authors: Jeroen Vinkx, Jan A. Delcour, Bart Goderis

Abstract:

Complete aqueous dissolution of starch is notoriously difficult. A high-temperature autoclaving process is necessary, followed by cooling the solution below its boiling point. The cooled solution is inherently unstable over time. Gelation and retrogradation processes, along with aggregation-induced by undissolved starch remnants, result in starch precipitation. We recently observed the spontaneous gelatinization of native maize starch (MS) in aqueous sodium salicylate (NaSal) solutions at room temperature. A hydrotropic mode of solubilization is hypothesized. Differential scanning calorimetry (DSC) and polarized optical microscopy (POM) of starch dispersions in NaSal solution were used to demonstrate the room temperature gelatinization of MS at different concentrations of MS and NaSal. The DSC gelatinization peak shifts to lower temperatures, and the gelatinization enthalpy decreases with increasing NaSal concentration. POM images confirm the same trend through the disappearance of the ‘Maltese cross’ interference pattern of starch granules. The minimal NaSal concentration to induce complete room temperature dissolution of MS was found to be around 15-20 wt%. The MS content of the dispersion has little influence on the amount of NaSal needed to dissolve it. The effect of the NaSal solution on the MS molecular weight was checked with HPSEC. It is speculated that, because of its amphiphilic character, NaSal enhances the solubility of MS in water by association with the more hydrophobic MS moieties, much like urea, which has also been used to enhance starch dissolution in alkaline aqueous media. As such small molecules do not tend to form micelles in water, they are called hydrotropes rather than surfactants. A minimal hydrotrope concentration (MHC) is necessary for the hydrotropes to structure themselves in water, resulting in a higher solubility of MS. This is the case for the system MS/NaSal/H₂O. Further investigations into the putative hydrotropic dissolution mechanism are necessary.

Keywords: hydrotrope, dissolution, maize starch, sodium salicylate, gelatinization

Procedia PDF Downloads 178
818 The Effect of Fuel Type on Synthesis of CeO2-MgO Nano-Powder by Combustion Method

Authors: F. Ghafoori-Najafabadi, R. Sarraf-Mamoory, N. Riahi-Noori

Abstract:

In this study, nanocrystalline CeO2-MgO powders were synthesized by combustion reactions using citric acid, ethylene glycol, and glycine as different fuels and nitrate as an oxidant. The powders obtained with different kinds of fuels are characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The size and morphology of the particles and the extent of agglomeration in the powders were studied using SEM analysis. It is observed that the variation of fuel has an intense influence on the particle size and morphology of the resulting powder. X-ray diffraction revealed that any combined phases were observed, and that MgO and CeO2 phases were formed, separately.

Keywords: nanoparticle, combustion synthesis, CeO2-MgO, nano-powder

Procedia PDF Downloads 408
817 Dietary N-6/N-3 PUFA Ratios Affect the Homeostasis of CD4+ T Cells in Mice with Dextran Sulfate Sodium-Induced Colitis

Authors: Cyoung-Huei Huang, Chiu-Li Yeh, Man-Hui Pai, Sung-Ling Yeh

Abstract:

This study evaluated the effect of different dietary n-6/n-3 polyunsaturated fatty acid (PUFA) ratios on modulating helper T (Th) and regulatory T (Treg) lymphocytes in mice with dextran sulfate sodium (DSS)-induced colitis. There were 3 control and 3 colitis groups in this study. Mice were fed for 24 d with an AIN-93G diet either with soybean oil (S), a mixture of soybean oil and low fish oil content (LF) or high fish oil content (HF). The ratio of n-6/n-3 PUFA in the LF diet was 4:1, and that in the HF diet was 2:1. The control groups drank distilled water while colitis groups provided 2% DSS in drinking water during day 15-19. All mice drank distilled water from day 20-24 for recovery and sacrificed on day 25. The results showed that colitis resulted in higher Th1, Th2, and Th17 and lower Treg percentages in the blood. Also, plasma haptoglobin and proinflammatory chemokines were elevated in colon lavage fluid. Colitic groups with fish oil had lower inflammatory mediators in the plasma and colon lavage fluid. Further, the percentages of Th1, Th2, and Th17 cells in the blood were lower, whereas Treg cell percentages were higher than those in the soybean oil group. The colitis group with n-6/n-3 PUFA ratio 2:1 had more pronounce effects than ratio 4:1. These results suggest that diets with an n-6/n-3 PUFA ratio of 2:1 or 4:1 regulate the Th/Treg balance and attenuate inflammatory mediator production in colitis. Compared to the n-6/n-3 PUFA ratio 4:1, the ratio of 2:1 was more effective in reducing inflammatory reactions in DSS-induced colitis.

Keywords: inflammatory bowel disease, n-3 polyunsaturated fatty acids, helper T lymphocyte, regulatory T lymphocyte

Procedia PDF Downloads 294
816 Effect of Coated Sodium Butyrate (CM3000®) On Zootechnical Performance, Immune Status and Necrotic Enteritis After Experimental Infection of Broiler Chickens

Authors: Mohamed Ahmed Tony, Mohamed Hamoud

Abstract:

The present study was conducted to determine the effect of commercially coated slow-release sodium butyrate (CM3000®) as a feed additive on zootechnical performance, immune status and Clostridium perfringens severity after experimental infection. Three hundred 1-d-old broiler chicks (Cobb 500) were randomly distributed into 3 treatment groups (4 replicates each) using 25 chicks per replicate on floor pens. Control (C) birds were offered non-supplemented basal diets. Treatments 1 and 2 (T1 and T2) were fed diets containing CM3000® at 300 and 500 g/ton feed, respectively, during the entire experimental period (35 days). Feed and water were offered ad-libitum. Feed consumption and body weight were recorded weekly to calculate body weight gain and feed conversion. Blood samples were collected to evaluate the immune status of the birds against Newcastle disease vaccines using HI test. At the end of the experimental period, 20 birds were chosen randomly from each group (5 birds from each pen) to compare carcass yield. At day 16 of age 20 birds from each group (5 birds/replicate) were bacteriologically examined and proved to be free from Clostridium perfringens. The isolated birds were challenged orally with 1 ml buffer containing 106 CFU/ml Clostridium perfringens local isolate and prepared from necrotic enteritis (NE) diseased farms. Birds were observed on a regular basis daily for any signs of NE. Birds that died in the challenged group were necropsied to determine the cause of death. On day 28 of age, the surviving chickens were killed by cervical dislocation and necropsied immediately. Intestinal tracts were removed and intestinal lesions were scored. Tissue samples of the duodenum, jejunum, ileum and cecum for histopathological examination were collected. All collected data were statistically analyzed using IBM SPSS® version 19 software for personal computers. Means were compared by one-way ANOVA (P<0.05) followed by the Duncan Post Hoc test. The results revealed that body weight gain was significantly (P<0.05) improved in chicks fed on both doses of CM3000® compared to the control one. Final body weight gain in T1 and T2 were 2064.94 and 2141.37 g/bird, respectively, while in the control group, the weight gain showed 1952.78 g/bird. In addition, supplementation of diets with CM3000® increased significantly feed intake (P<0.05). Total feed intake in T1 and T2 were 3186.32 and 3273.29 g/bird, respectively; however, feed intake in the control group recorded 3081.95 g/bird. The best feed conversion was recorded in T2 group (1.53). Feed conversion in the control and T1 groups were 1.58 and 1.54, respectively. Dressing percentage, liver weights and the other carcasses yields were not different between treatments. The butyrate significantly enhanced immune responses measured against Newcastle disease vaccines. Sodium butyrate significantly reduced NE lesions and healthy improved the intestinal tissues in the samples collected from T1 and T2-challenged chickens versus those collected from the control group. In conclusion, exogenous administration of slow-release butyrate (CM3000®) is capable of improving performance, enhancing immunity and NE disease resistance in broiler chickens.

Keywords: sodium butyrate, broiler chicken, zootechnical performance, immunity, necrotic enteritis

Procedia PDF Downloads 79
815 Preparation of Nanocrystalline Mesoporous ThO2 Via Surfactant Assisted Sol-gel Procedure

Authors: N. Mohseni, S. Janitabar, S.J. Ahmadi, M. Roshanzamir, M. Thaghizadeh

Abstract:

There has been proposed a technique for getting thorium dioxide mesoporous nanocrystalline. In this paper thorium dioxide powder was synthesized through the sol-gel method using hydrated thorium nitrate and ammonium hydroxide as starting materials and Triton X100 as surfactant. ThO2 gel was characterized by thermogravimetric (TG), and prepared ThO2 powder was subjected to scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emett-Teller (BET) analyses studies. Detailed analyses show that prepared powder consisted of phase with the space group Fm3m of thoria and its crystalline size was 27 nm. The thoria possesses 16.7 m2/g surface area and the pore volume and size calculated to be 0.0423 cc/g and 1.947 nm, respectively.

Keywords: mesoporous, nanocrystalline, sol-gel, thoria

Procedia PDF Downloads 276
814 Green Synthesis, Characterization and Application of Zinc Oxide and Silver Oxide Nonparticipants

Authors: Nassima Khanfri, Ali Boucenna

Abstract:

As metallic nanoparticles are increasingly used in many economic sectors, there is interest in the biological and environmental safety of their production. The main methods of synthesizing nanoparticales are chemical and physical approaches that are often expensive and potentially harmful to the environment. The present study is devoted to the possibility of the synthesis of silver nanoparticales and zinc oxide from silver nitrate and zinc acetate using basilica plant extracts. The products obtained are characterized by various analysis techniques, such as UV/V, XRD, MEB-EDX, FTIR, and RAMAN. These analyzes confirm the crystalline nature of AgNps and ZnONps. These crystalline powders having effective biological activities regarding the antioxidant and antibacterial, which could be used in several biological applications.

Keywords: green synthesis, bio-reduction, metals nan Oparticales, Plants extracts

Procedia PDF Downloads 195
813 Studies of Carbohydrate, Antioxidant, Nutrient and Genomic DNA Characterization of Fresh Olive Treated with Alkaline and Acidic Solvent: An Innovation

Authors: A. B. M. S. Hossain, A. Abdelgadir, N. A. Ibrahim

Abstract:

Fresh ripen olive cannot be consumed immediately after harvest due to the excessive bitterness having polyphenol as antioxidant. Industrial processing needs to be edible the fruit. The laboratory processing technique has been used to make it edible by using acid (vinegar, 5% acetic acid) and alkaline solvent (NaOH). Based on the treatment and consequence, innovative data have been found in this regard. The experiment was conducted to investigate biochemical content, nutritional and DNA characterization of olive fruit treated with alkaline (Sodium chloride anhydrous) and acidic solvent (5% acetic acid, vinegar). The treatments were used as control (no water), water control, 10% sodium chloride anhydrous (NaOH), vinegar (5% acetic acid), vinegar + NaOH and vinegar + NaOH + hot water treatment. Our results showed that inverted sugar and glucose content were higher in the vinegar and NaOH treated olive than in other treatments. Fructose content was the highest in vinegar + NaOH treated fruit. Nutrient contents NO3 K, Ca and Na were found higher in the treated fruit than the control fruit. Moreover, maximum K content was observed in the case of all treatments compared to the other nutrient content. The highest acidic (lower pH) condition (sour) was found in treated fruit. DNA yield was found higher in water control than acid and alkaline treated olives. DNA band was wider in the olive treated water control compared to the NaOH, vinegar, vinegar + NaOH and vinegar + NaOH + Hot water treatment. Finally, results suggest that vinegar + NaOH treated olive fruit was the best for fresh olive homemade processing after harvesting for edible purpose.

Keywords: olive, vinegar, sugars, DNA band, bioprocess biotechnology

Procedia PDF Downloads 181
812 Biosynthesis of Silver Nanoparticles Using Zataria multiflora Extract, and Study of Their Antibacterial Effects on Negative Bacillus Bacteria Causing Urinary Tract Infection

Authors: F. Madani, M. Doudi, L. Rahimzadeh Torabi

Abstract:

The irregular consumption of current antibiotics contributes to an escalation in antibiotic resistance among urinary pathogens on a global scale. The objective of this research was to investigate the process of biologically synthesized silver nanoparticles through the utilization of Zataria multiflora extract. Additionally, the study aimed to evaluate the efficacy of these synthesized nanoparticles in inhibiting the growth of multi-drug resistant negative bacillus bacteria, which commonly contribute to urinary tract infections. The botanical specimen utilized in the current research investigation was Z. multiflora, and its extract was produced employing the Soxhlet extraction technique. The study examined the green synthesis conditions of silver nanoparticles by considering three key parameters: the quantity of extract used, the concentration of silver nitrate salt, and the temperature. The particle dimensions were ascertained using the Zetasizer technique. In order to identify synthesized Silver nanoparticles TEM, XRD, and FTIR methods were used. For evaluating the antibacterial effects of nanoparticles synthesized through a biological method, different concentrations of silver nanoparticles were studied on 140 cases of Multiple drug resistance (MDR) bacteria strains Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus vulgaris,Citrobacter freundii, Acinetobacter bumanii and Pseudomonas aeruginosa, (each genus of bacteria, 20 samples), which all were MDR and cause urinary tract infections, for identification of bacteria were used of PCR test and laboratory methods (Agar well diffusion and Microdilution methods) to assess their sensitivity to Nanoparticles. The data were subjected to analysis using the statistical software SPSS, specifically employing nonparametric Kruskal-Wallis and Mann-Whitney tests. This study yielded noteworthy findings regarding the impacts of varying concentrations of silver nitrate, different quantities of Z. multiflora extract, and levels of temperature on nanoparticles. Specifically, it was observed that an increase in the concentration of silver nitrate, extract amount, and temperature resulted in a reduction in the size of the nanoparticles synthesized. However, the impact of the aforementioned factors on the index of particle diffusion was found to be statistically non-significant. According to the transmission electron microscopy (TEM) findings, the particles exhibited predominantly spherical morphology, with a diameter spanning from 25 to 50 nanometers. Nanoparticles in the examined sample. Nanocrystals of silver. FTIR method illustrated that the spectrums of Z. multiflora and synthesized nanoparticles had clear peaks in the ranges of 1500-2000, and 3500 - 4000. The obtained results of antibacterial effects of different concentrations of silver nanoparticles on according to agar well diffusion and microdilution method, biologically synthesized nanoparticles showed 1000 mg /ml highest and lowest mean inhibition zone diameter in E. coli, A. bumanii 23 and 15mm, respectively. MIC was observed for all of bacteria 125 mg/ml and for A. bumanii 250 mg/ml. Comparing the growth inhibitory effect of chemically synthesized the results obtained from the experiment indicated that both nanoparticles and biologically synthesized nanoparticles exhibit a notable growth inhibition effect. Specifically, the chemical method of synthesizing nanoparticles demonstrated the highest level of growth inhibition at a concentration of 62.5 mg/mL The present study demonstrated an inhibitory effect on bacterial growth, facilitating the causative factors of urine infection and multidrug resistance (MDR).

Keywords: multiple drug resistance, negative bacillus bacteria, urine infection, Zataria multiflora

Procedia PDF Downloads 93
811 The Effect of the Flow Pipe Diameter on the Rheological Behavior of a Polymeric Solution (CMC)

Authors: H. Abchiche, M. Mellal

Abstract:

The aim of this work is to study the parameters that influence the rheological behavior of a complex fluid (sodium Carboxyméthylcellulose solution), on a capillary rheometer. An installation has been made to be able to vary the diameter of trial conducts. The obtained results allowed us to deduce that: the diameter of trial conducts have a remarkable effect on the rheological responds.

Keywords: bingham’s fluid, CMC, cylindrical conduit, rheological behavior

Procedia PDF Downloads 327
810 Effect of Sodium Hydroxide Treatment on the Mechanical Properties of Crushed and Uncrushed Luffa cylindrica Fibre Reinforced rLDPE Composites

Authors: Paschal A. Ubi, Salawu Abdul Rahman Asipita

Abstract:

The use of suitable engineering materials which poses less harm to ,an and the environment is sort for in recent times, thus giving rise to polymer composites filled with natural organic reinforcement which are biodegradable. Treatment of natural fibres is essential in improving matrix to filler adhesion, hence improving its mechanical properties. In this study, investigations were carried out to determine the effect of sodium hydroxide treatment on the tensile, flexural, impact and hardness properties of crushed and uncrushed luffa cylindrica fibre reinforced recycled low density polyethylene composites. The LC (Luffa Cylindrica) fibres were treated with 0%, 2%, 4%, 6%, 8%, and 10% wt. NaOH concentrations for a period of 24 hours under room temperature conditions. The compounding of the waste LDPE was done using a two roll mill at a temperature of 150 oC and cured in a hydraulic press at a temperature of 150oC for 3 minutes at 3 metric tonnes. A formulation of 20/80g (reinforcement to matrix ratio in grams) was maintained for all fabricated samples. Analysis of the results showed that the uncrushed luffa fibre samples gave better mechanical properties compared with the crushed luffa fibre samples. The uncrushed luffa fibre composites had optimum tensile and flexural strengths of 7.65MPa and 17.08Mpa respectively corresponding to a young modulus and flexural modulus of 21.08MPa and 232.22MPa for the 8% and 4%wt. NaOH concentration respectively. Results obtained in the research showed that NaOH treatment with the 8% NaOH concentration improves the mechanical properties of the LC fibre reinforced composites when compared with other NaOH treatment concentration values.

Keywords: LC fibres, NaOH concentration, LC/rLDPE composite, tensile strength, flexural strength

Procedia PDF Downloads 274
809 Measurements of Scattering Cross Sections for 5.895 keV Photons in Various Polymers

Authors: H. Duggal, G. Singh, G. Singh, A. Bhalla, S. Kumar, J. S. Shahi, D. Mehta

Abstract:

The total differential cross section for scattering of the 5.895 keV photons by various polymers has been measured at scattering angle of 135o. The experimental measurements were carried out using the energy dispersive setup involving annular source of the 55Fe radioisotope and a low energy germanium (LEGe) detector. The cross section values are measured for 20 polymer targets namely, Paraffin Wax, Polytetrafluoro ethylene (PTFE), Cellulose, Silicone oil, Polyvinyl alcohol (PVA), Polyvinyl purrolidone (PVP), Polymethyl methacrylate (PMMA), Kapton, Mylar, Chitosan, Polyvinyl chloride (PVC), Bakelite, Carbopol, Chlorobutyl rubber (CBR), Polyetylene glycol (PEG), Polysorbate-20, Nylon-6, Cetyl alcohol, Carboxyl methyl sodium cellulose and Sodium starch glucolate. The measurements were performed in vacuum so as to avoid scattering contribution due to air and strong absorption of low energy photons in the air column. In the present investigations, the geometrical factor and efficiency of the detector were determined by measuring the K x-rays emitted from the 22Ti and 23V targets excited by the Mn K x-rays in the same experimental set up. The measured scattering cross sections have been compared with the sum of theoretically calculated elastic and inelastic scattering cross sections. The theoretical elastic (Rayleigh) scattering cross sections based on the various form factor approximations, namely, non-relativistic form factor (NF), relativistic form factor (RF), modified form factor (MF), and MF with anomalous scattering factor (ASF) as well as the second order S-matrix formalisms, and the inelastic scattering differential cross sections based on the Klein-Nishina formula after including the inelastic scattering function (KN+ISF) have been calculated. The experimental results show fairly good agreement with theoretical cross sections.

Keywords: photon, polymers, elastic and inelastic, scattering cross sections

Procedia PDF Downloads 684
808 Conservation Agriculture under Mediterranean Climate: Effects on below and Above-Ground Processes during Wheat Cultivation

Authors: Vasiliki Kolake, Christos Kavalaris, Sofia Megoudi, Maria Maxouri, Panagiotis A. Karas, Aris Kyparissis, Efi Levizou

Abstract:

Conservation agriculture (CA), is a production system approach that can tackle the challenges of climate change mainly through facilitating carbon storage into the soil and increasing crop resilience. This is extremely important for the vulnerable Mediterranean agroecosystems, which already face adverse environmental conditions. The agronomic practices used in CA, i.e. permanent soil cover and no-tillage, result in reduced soil erosion and increased soil organic matter, preservation of water and improvement of quality and fertility of the soil in the long-term. Thus the functional characteristics and processes of the soil are considerably affected by the implementation of CA. The aim of the present work was to assess the effects of CA on soil nitrification potential and mycorrhizal colonization about the above-ground production in a wheat field. Two adjacent but independent field sites of 1.5ha each were used (Thessaly plain, Central Greece), comprising the no-till and conventional tillage treatments. The no-tillage site was covered by residues of the previous crop (cotton). Potential nitrification and the nitrate and ammonium content of the soil were measured at two different soil depths (3 and 15cm) at 20-days intervals throughout the growth period. Additionally, the leaf area index (LAI) was monitored at the same time-course. The mycorrhizal colonization was measured at the commencement and end of the experiment. At the final harvest, total yield and plant biomass were also recorded. The results indicate that wheat yield was considerably favored by CA practices, exhibiting a 42% increase compared to the conventional tillage treatment. The superior performance of the CA crop was also depicted in the above-ground plant biomass, where a 26% increase was recorded. LAI, which is considered a reliable growth index, did not show statistically significant differences between treatments throughout the growth period. On the contrary, significant differences were recorded in endomycorrhizal colonization one day before the final harvest, with CA plants exhibiting 20% colonization, while the conventional tillage plants hardly reached 1%. The on-going analyses of potential nitrification measurements, as well as nitrate and ammonium determination, will shed light on the effects of CA on key processes in the soil. These results will integrate the assessment of CA impact on certain below and above-ground processes during wheat cultivation under the Mediterranean climate.

Keywords: conservation agriculture, LAI, mycorrhizal colonization, potential nitrification, wheat, yield

Procedia PDF Downloads 121
807 Potentiometric Determination of Moxifloxacin in Some Pharmaceutical Formulation Using PVC Membrane Sensors

Authors: M. M. Hefnawy, A. M. A. Homoda, M. A. Abounassif, A. M. Alanazia, A. Al-Majed, Gamal A. E. Mostafa

Abstract:

PVC membrane sensors using different approach e.g. ion-pair, ionophore, and Schiff-base has been used as testing membrane sensor. Analytical applications of membrane sensors for direct measurement of variety of different ions in complex biological and environmental sample are reported. The most important step of such PVC membrane sensor is the sensing active material. The potentiometric sensors have some outstanding advantages including simple design, operation, wide linear dynamic range, relative fast response time, and rotational selectivity. The analytical applications of these techniques to pharmaceutical compounds in dosage forms are also discussed. The construction and electrochemical response characteristics of Poly (vinyl chloride) membrane sensors for moxifloxacin HCl (MOX) are described. The sensing membranes incorporate ion association complexes of moxifloxacin cation and sodium tetraphenyl borate (NaTPB) (sensor 1), phosphomolybdic acid (PMA) (sensor 2) or phosphotungstic acid (PTA) (sensor 3) as electroactive materials. The sensors display a fast, stable and near-Nernstian response over a relative wide moxifloxacin concentration range (1 ×10-2-4.0×10-6, 1 × 10-2-5.0×10-6, 1 × 10-2-5.0×10-6 M), with detection limits of 3×10-6, 4×10-6 and 4.0×10-6 M for sensor 1, 2 and 3, respectively over a pH range of 6.0-9.0. The sensors show good discrimination of moxifloxacin from several inorganic and organic compounds. The direct determination of 400 µg/ml of moxifloxacin show an average recovery of 98.5, 99.1 and 98.6 % and a mean relative standard deviation of 1.8, 1.6 and 1.8% for sensors 1, 2, and 3 respectively. The proposed sensors have been applied for direct determination of moxifloxacin in some pharmaceutical preparations. The results obtained by determination of moxifloxacin in tablets using the proposed sensors are comparable favorably with those obtained using the US Pharmacopeia method. The sensors have been used as indicator electrodes for potentiometric titration of moxifloxacin.

Keywords: potentiometry, PVC, membrane sensors, ion-pair, ionophore, schiff-base, moxifloxacin HCl, sodium tetraphenyl borate, phosphomolybdic acid, phosphotungstic acid

Procedia PDF Downloads 433
806 Study on the Use of Manganese-Containing Materials as a Micro Fertilizer Based on the Local Mineral Resources and Industrial Wastes in Hydroponic Systems

Authors: Marine Shavlakadze

Abstract:

Hydroponic greenhouses systems (production of the artificial substrate without soil) are becoming popular in the world. Mostly the system is used to grow vegetables and berries. Different countries are taking action to participate in the development of hydroponic technology and solutions such as EU members, Turkey, Australia, New Zealand, Israel, Scandinavian countries, etc. Many vegetables and berries are grown by hydroponics in Europe. As a result of our research, we have obtained material containing manganese and nitrogen. It became possible to produce this fertilizer by means of one-stage thermal processing, using industrial waste containing manganese (ores and sludges) and mineral substance (ammonium nitrate) that exist in Georgia. The received material is usable as a micro-fertilizer with economic efficiency. It became possible to turn practically water-insoluble manganese dioxide substance into the soluble condition from industrial waste in an indirect way. The ability to use the material as a fertilizer is predetermined by its chemical and phase composition, as the amount of the active component of the material in relation to manganese is 30%. At the same time, the active component elements presented non-ballast sustained action compounds. The studies implemented in Poland and in Georgia by us have shown that the manganese-containing micro-fertilizer- Mn(NO3)2 can provide the plant with nitrate nitrogen, which is a form that can be used for plants, providing the economy and simplicity of the application of fertilizers. Given the fact that the application of the manganese-containing micro-fertilizers significantly increases the productivity and improves the quality of the big number of agricultural products, it is necessary to mention that it is recommended to introduce the manganese containing fertilizers into the following cultures: sugar beet, corn, potato, vegetables, vine grape, fruit, berries, and other cultures. Also, as a result of the study, it was established that the material obtained is the predominant fertilizer for vegetable cultures in the soil. Based on the positive results of the research, we consider it expedient to conduct research in hydroponic systems, which will enable us to provide plants the required amount of manganese; we also introduce nitrogen in solution and regulate the solution of pH, which is one of the main problems in hydroponic production. The findings of our research will be used in hydroponic greenhouse farms to increase the fertility of vegetable crops and, consequently, to get bountiful and high-quality harvests, which will promote the development of hydroponic greenhouses in Georgia as well as abroad.

Keywords: hydroponics, micro-fertilizers, manganese-containing materials, industrial wastes

Procedia PDF Downloads 122
805 Cellular Targeting to Dual Gaseous Microenvironments by Polydimethylsiloxane Microchip

Authors: Samineh Barmaki, Ville Jokinen, Esko Kankuri

Abstract:

We report a microfluidic chip that can be used to modify the gaseous microenvironment of a cell-culture in ambient atmospheric conditions. The aim of the study is to show the cellular response to nitric oxide (NO) under hypoxic (oxygen < 5%) condition. Simultaneously targeting to hypoxic and nitric oxide will provide an opportunity for NO‑based therapeutics. Studies on cellular responses to lowered oxygen concentration or to gaseous mediators are usually carried out under a specific macro environment, such as hypoxia chambers, or with specific NO donor molecules that may have additional toxic effects. In our study, the chip consists of a microfluidic layer and a cell culture well, separated by a thin gas permeable polydimethylsiloxane (PDMS) membrane. The main design goal is to separate the gas oxygen scavenger and NO donor solutions, which are often toxic, from the cell media. Two different types of gas exchangers, titled 'pool' and 'meander' were tested. We find that the pool design allows us to reach a higher level of oxygen depletion than meander (24.32 ± 19.82 %vs -3.21 ± 8.81). Our microchip design can make the cells culture more simple and makes it easy to adapt existing cell culture protocols. Our first application is utilizing the chip to create hypoxic conditions on targeted areas of cell culture. In this study, oxygen scavenger sodium sulfite generates hypoxia and its effect on human embryonic kidney cells (HEK-293). The PDMS membrane was coated with fibronectin before initiating cell cultures, and the cells were grown for 48h on the chips before initiating the gas control experiments. The hypoxia experiments were performed by pumping of O₂-depleted H₂O into the microfluidic channel with a flow-rate of 0.5 ml/h. Image-iT® reagent as an oxygen level responser was mixed with HEK-293 cells. The fluorescent signal appears on cells stained with Image-iT® hypoxia reagent (after 6h of pumping oxygen-depleted H₂O through the microfluidic channel in pool area). The exposure to different levels of O₂ can be controlled by varying the thickness of the PDMS membrane. Recently, we improved the design of the microfluidic chip, which can control the microenvironment of two different gases at the same time. The hypoxic response was also improved from the new design of microchip. The cells were grown on the thin PDMS membrane for 30 hours, and with a flowrate of 0.1 ml/h; the oxygen scavenger was pumped into the microfluidic channel. We also show that by pumping sodium nitroprusside (SNP) as a nitric oxide donor activated under light and can generate nitric oxide on top of PDMS membrane. We are aiming to show cellular microenvironment response of HEK-293 cells to both nitric oxide (by pumping SNP) and hypoxia (by pumping oxygen scavenger solution) in separated channels in one microfluidic chip.

Keywords: hypoxia, nitric oxide, microenvironment, microfluidic chip, sodium nitroprusside, SNP

Procedia PDF Downloads 127
804 Effect of Chemical Mutagen on Seeds Germination of Lima Bean

Authors: G. Ultanbekova, Zh. Suleimenova, Zh. Rakhmetova, G. Mombekova, S. Mantieva

Abstract:

Plant Growth Promoting Rhizobacteria (PGPR) are a group of free-living bacteria that colonize the rhizosphere, enhance plant growth of many cereals and other important agricultural crops and protect plants from disease and abiotic stresses through a wide variety of mechanisms. The use of PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth. In the present study, strain improvement of PGPR isolates were carried out by chemical mutagenesis for the improvement of growth and yield of lima bean. Induced mutagenesis is widely used for the selection of microorganisms producing biologically active substances and further improving their activities. Strain improvement is usually done by classical mutagenesis which involves exposing the microbes to chemical or physical mutagens. The strains of Pseudomonas putida 4/1, Azotobacter chroococcum Р-29 and Bacillus subtilis were subjected to mutation process for strain improvement by treatment with a chemical agent (sodium nitrite) to cause mutation and were observed for its consequent action on the seeds germination and plant growth of lima bean (Phaseolus lunatus). Bacterial mutant strains of Pseudomonas putida M-1, Azotobacter chroococcum M-1 and Bacillus subtilis M-1, treated with sodium nitrite in the concentration of 5 mg/ml for 120 min, were found effective to enhance the germination of lima bean seeds compared to parent strains. Moreover, treatment of the lima bean seeds with a mutant strain of Bacillus subtilis M-1 had a significant stimulation effect on plant growth. The length of the stems and roots of lima bean treated with Bacillus subtilis M-1 increased significantly in comparison with parent strain in 1.6 and 1.3 times, respectively.

Keywords: chemical mutagenesis, germination, kidney bean, plant growth promoting rhizobacteria (PGPR)

Procedia PDF Downloads 193