Search results for: recession forecasting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 615

Search results for: recession forecasting

195 Combination of Artificial Neural Network Model and Geographic Information System for Prediction Water Quality

Authors: Sirilak Areerachakul

Abstract:

Water quality has initiated serious management efforts in many countries. Artificial Neural Network (ANN) models are developed as forecasting tools in predicting water quality trend based on historical data. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (T-Coliform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 94.23% in classifying the water quality of Saen Saep canal in Bangkok. Subsequently, this encouraging result could be combined with GIS data improves the classification accuracy significantly.

Keywords: artificial neural network, geographic information system, water quality, computer science

Procedia PDF Downloads 343
194 Application of Decline Curve Analysis to Depleted Wells in a Cluster and then Predicting the Performance of Currently Flowing Wells

Authors: Satish Kumar Pappu

Abstract:

The most common questions which are frequently asked in oil and gas industry are how much is the current production rate from a particular well and what is the approximate predicted life of that well. These questions can be answered through forecasting of important realistic data like flowing tubing hole pressures FTHP, Production decline curves which are used predict the future performance of a well in a reservoir. With the advent of directional drilling, cluster well drilling has gained much importance and in-fact has even revolutionized the whole world of oil and gas industry. An oil or gas reservoir can generally be described as a collection of several overlying, producing and potentially producing sands in to which a number of wells are drilled depending upon the in-place volume and several other important factors both technical and economical in nature, in some sands only one well is drilled and in some, more than one. The aim of this study is to derive important information from the data collected over a period of time at regular intervals on a depleted well in a reservoir sand and apply this information to predict the performance of other wells in that reservoir sand. The depleted wells are the most common observations when an oil or gas field is being visited, w the application of this study more realistic in nature.

Keywords: decline curve analysis, estimation of future gas reserves, reservoir sands, reservoir risk profile

Procedia PDF Downloads 437
193 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction

Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh

Abstract:

Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.

Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction

Procedia PDF Downloads 171
192 Methods of Interpolating Temperature and Rainfall Distribution in Northern Vietnam

Authors: Thanh Van Hoang, Tien Yin Chou, Yao Min Fang, Yi Min Huang, Xuan Linh Nguyen

Abstract:

Reliable information on the spatial distribution of annual rainfall and temperature is essential in research projects relating to urban and regional planning. This research presents results of a classification of temperature and rainfall in the Red River Delta of northern Vietnam based on measurements from seven meteorological stations (Ha Nam, Hung Yen, Lang, Nam Dinh, Ninh Binh, Phu Lien, Thai Binh) in the river basin over a thirty-years period from 1982-2011. The average accumulated rainfall trends in the delta are analysed and form the basis of research essential to weather and climate forecasting. This study employs interpolation based on the Kriging Method for daily rainfall (min and max) and daily temperature (min and max) in order to improve the understanding of sources of variation and uncertainly in these important meteorological parameters. To the Kriging method, the results will show the different models and the different parameters based on the various precipitation series. The results provide a useful reference to assist decision makers in developing smart agriculture strategies for the Red River Delta in Vietnam.

Keywords: spatial interpolation method, ArcGIS, temperature variability, rainfall variability, Red River Delta, Vietnam

Procedia PDF Downloads 329
191 Empirical Investigation of Bullwhip Effect with Sensitivity Analysis in Supply Chain

Authors: Shoaib Yousaf

Abstract:

The main purpose of this research is to the empirical investigation of the bullwhip effect under sensitivity analysis in the two-tier supply chain. The simulation modeling technique has been applied in this research as a research methodology to see the sensitivity analysis of the bullwhip effect in the rice industry of Pakistan. The research comprises two case studies that have been chosen as a sample. The results of this research have confirmed that reduction in production delay reduces the bullwhip effect, which conforms to the time compressing paradigm and the significance of the reduction in production delay to lessen demand amplification. The result of this research also indicates that by increasing the value of time to adjust inventory decreases the bullwhip effect. Furthermore, by decreasing the value of alpha increases the damping effect of the exponential smoother, it is not surprising that it also reduces the bullwhip effect. Moreover, by reducing the value of time to work in progress also reduces the bullwhip effect. This research will help practitioners and operation managers to reduces the major costs of their products in three ways. They can reduce their i) inventory levels, ii) better utilize their capacity and iii) improve their forecasting techniques. However, this study is based on two tier supply chain, while in reality the supply chain has got many tiers. Hence, future work will be extended across more than two-tier supply chains.

Keywords: bullwhip effect, rice industry, supply chain dynamics, simulation, sensitivity analysis

Procedia PDF Downloads 144
190 Development of a Risk Disclosure Index and Examination of Its Determinants: An Empirical Study in Indian Context

Authors: M. V. Shivaani, P. K. Jain, Surendra S. Yadav

Abstract:

Worldwide regulators, practitioners and researchers view risk-disclosure as one of the most important steps that will promote corporate accountability and transparency. Recognizing this growing significance of risk disclosures, the paper first develops a risk disclosure index. Covering 69 risk items/themes, this index is developed by employing thematic content analysis and encompasses three attributes of disclosure: namely, nature (qualitative or quantitative), time horizon (backward-looking or forward-looking) and tone (no impact, positive impact or negative impact). As the focus of study is on substantive rather than symbolic disclosure, content analysis has been carried out manually. The study is based on non-financial companies of Nifty500 index and covers a ten year period from April 1, 2005 to March 31, 2015, thus yielding 3,872 annual reports for analysis. The analysis reveals that (on an average) only about 14% of risk items (i.e. about 10 out 69 risk items studied) are being disclosed by Indian companies. Risk items that are frequently disclosed are mostly macroeconomic in nature and their disclosures tend to be qualitative, forward-looking and conveying both positive and negative aspects of the concerned risk. The second objective of the paper is to gauge the factors that affect the level of disclosures in annual reports. Given the panel nature of data, and possible endogeneity amongst variables, Diff-GMM regression has been applied. The results indicate that age and size of firms have a significant positive impact on disclosure quality, whereas growth rate does not have a significant impact. Further, post-recession period (2009-2015) has witnessed significant improvement in quality of disclosures. In terms of corporate governance variables, board size, board independence, CEO duality, presence of CRO and constitution of risk management committee appear to be significant factors in determining the quality of risk disclosures. It is noteworthy that the study contributes to literature by putting forth a variant to existing disclosure indices that not only captures the quantity but also the quality of disclosures (in terms of semantic attributes). Also, the study is a first of its kind attempt in a prominent emerging market i.e. India. Therefore, this study is expected to facilitate regulators in mandating and regulating risk disclosures and companies in their endeavor to reduce information asymmetry.

Keywords: risk disclosure, voluntary disclosures, corporate governance, Diff-GMM

Procedia PDF Downloads 162
189 Seismic Hazard Prediction Using Seismic Bumps: Artificial Neural Network Technique

Authors: Belkacem Selma, Boumediene Selma, Tourkia Guerzou, Abbes Labdelli

Abstract:

Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. The Earthquakes prediction to prevent the loss of human lives and even property damage is an important factor; that is why it is crucial to develop techniques for predicting this natural disaster. This present study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 10^4J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines has been analyzed. The results obtained show that the ANN with high accuracy was able to predict earthquake parameters; the classification accuracy through neural networks is more than 94%, and that the models developed are efficient and robust and depend only weakly on the initial database.

Keywords: earthquake prediction, ANN, seismic bumps

Procedia PDF Downloads 127
188 Vine Copula Structure among Yield, Price and Weather Variables for Rating Crop Insurance Premium

Authors: Jiemiao Chen, Shuoxun Xu

Abstract:

The main goal of our research is to apply the Vine copula measuring dependency between price, temperature, and precipitation indices to calculate a fair crop insurance premium. This research is focused on Worth, Iowa, United States, over the period from 2000 to 2020, where the farmers are dependent on precipitation and average temperature during the growth period of corn. Our proposed insurance considers both the natural risk and the price risk in agricultural production. We first estimate the distributions of crops using parametric methods based on Goodness of Fit tests, and then Vine Copula is applied to model dependence between yield price, crop yield, and weather indices. Once the vine structure and its parameters are determined based on AIC/BIC criteria and forecasting price and yield are obtained from the ARIMA model, we calculate this crop insurance premium using the simulation data generated from the vine copula by the Monte Carlo Simulation method. It is shown that, compared with traditional crop insurance, our proposed insurance is more fair and thus less costly for the farmers and government.

Keywords: vine copula, weather index, crop insurance premium, insurance risk management, Monte Carlo simulation

Procedia PDF Downloads 201
187 Floodplain Modeling of River Jhelum Using HEC-RAS: A Case Study

Authors: Kashif Hassan, M.A. Ahanger

Abstract:

Floods have become more frequent and severe due to effects of global climate change and human alterations of the natural environment. Flood prediction/ forecasting and control is one of the greatest challenges facing the world today. The forecast of floods is achieved by the use of hydraulic models such as HEC-RAS, which are designed to simulate flow processes of the surface water. Extreme flood events in river Jhelum , lasting from a day to few are a major disaster in the State of Jammu and Kashmir, India. In the present study HEC-RAS model was applied to two different reaches of river Jhelum in order to estimate the flood levels corresponding to 25, 50 and 100 year return period flood events at important locations and to deduce flood vulnerability of important areas and structures. The flow rates for the two reaches were derived from flood-frequency analysis of 50 years of historic peak flow data. Manning's roughness coefficient n was selected using detailed analysis. Rating Curves were also generated to serve as base for determining the boundary conditions. Calibration and Validation procedures were applied in order to ensure the reliability of the model. Sensitivity analysis was also performed in order to ensure the accuracy of Manning's n in generating water surface profiles.

Keywords: flood plain, HEC-RAS, Jhelum, return period

Procedia PDF Downloads 426
186 Solar Radiation Time Series Prediction

Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs

Abstract:

A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled DNI field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.

Keywords: artificial neural networks, resilient propagation, solar radiation, time series forecasting

Procedia PDF Downloads 384
185 Flood Predicting in Karkheh River Basin Using Stochastic ARIMA Model

Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh

Abstract:

Floods have huge environmental and economic impact. Therefore, flood prediction is given a lot of attention due to its importance. This study analysed the annual maximum streamflow (discharge) (AMS or AMD) of Karkheh River in Karkheh River Basin for flood predicting using ARIMA model. For this purpose, we use the Box-Jenkins approach, which contains four-stage method model identification, parameter estimation, diagnostic checking and forecasting (predicting). The main tool used in ARIMA modelling was the SAS and SPSS software. Model identification was done by visual inspection on the ACF and PACF. SAS software computed the model parameters using the ML, CLS and ULS methods. The diagnostic checking tests, AIC criterion, RACF graph and RPACF graphs, were used for selected model verification. In this study, the best ARIMA models for Annual Maximum Discharge (AMD) time series was (4,1,1) with their AIC value of 88.87. The RACF and RPACF showed residuals’ independence. To forecast AMD for 10 future years, this model showed the ability of the model to predict floods of the river under study in the Karkheh River Basin. Model accuracy was checked by comparing the predicted and observation series by using coefficient of determination (R2).

Keywords: time series modelling, stochastic processes, ARIMA model, Karkheh river

Procedia PDF Downloads 287
184 Forecast of Polyethylene Properties in the Gas Phase Polymerization Aided by Neural Network

Authors: Nasrin Bakhshizadeh, Ashkan Forootan

Abstract:

A major problem that affects the quality control of polymer in the industrial polymerization is the lack of suitable on-line measurement tools to evaluate the properties of the polymer such as melt and density indices. Controlling the polymerization in ordinary method is performed manually by taking samples, measuring the quality of polymer in the lab and registry of results. This method is highly time consuming and leads to producing large number of incompatible products. An online application for estimating melt index and density proposed in this study is a neural network based on the input-output data of the polyethylene production plant. Temperature, the level of reactors' bed, the intensity of ethylene mass flow, hydrogen and butene-1, the molar concentration of ethylene, hydrogen and butene-1 are used for the process to establish the neural model. The neural network is taught based on the actual operational data and back-propagation and Levenberg-Marquart techniques. The simulated results indicate that the neural network process model established with three layers (one hidden layer) for forecasting the density and the four layers for the melt index is able to successfully predict those quality properties.

Keywords: polyethylene, polymerization, density, melt index, neural network

Procedia PDF Downloads 144
183 Adaptive Swarm Balancing Algorithms for Rare-Event Prediction in Imbalanced Healthcare Data

Authors: Jinyan Li, Simon Fong, Raymond Wong, Mohammed Sabah, Fiaidhi Jinan

Abstract:

Clinical data analysis and forecasting have make great contributions to disease control, prevention and detection. However, such data usually suffer from highly unbalanced samples in class distributions. In this paper, we target at the binary imbalanced dataset, where the positive samples take up only the minority. We investigate two different meta-heuristic algorithms, particle swarm optimization and bat-inspired algorithm, and combine both of them with the synthetic minority over-sampling technique (SMOTE) for processing the datasets. One approach is to process the full dataset as a whole. The other is to split up the dataset and adaptively process it one segment at a time. The experimental results reveal that while the performance improvements obtained by the former methods are not scalable to larger data scales, the later one, which we call Adaptive Swarm Balancing Algorithms, leads to significant efficiency and effectiveness improvements on large datasets. We also find it more consistent with the practice of the typical large imbalanced medical datasets. We further use the meta-heuristic algorithms to optimize two key parameters of SMOTE. Leading to more credible performances of the classifier, and shortening the running time compared with the brute-force method.

Keywords: Imbalanced dataset, meta-heuristic algorithm, SMOTE, big data

Procedia PDF Downloads 441
182 Poverty: The Risk to Children’s Mental Health

Authors: Steven Walker

Abstract:

This paper assesses recent data on the prevalence of poverty among children and young people diagnosed with mental health problems. The paper will demonstrate that the current hierarchy of risk factors for developing mental health problems needs adjusting to place poverty among the highest risk factors. Globally poverty is calculated to keep rising especially among less developed countries, and the post-Covid 19 economic recession in developed countries is set to rise. The experience of young people enduring Pandemic isolation is already being quantified and is expected to increase referrals for specialist intervention. Searches on several medical/psychological/social databases using keywords: poverty, children, mental illness were undertaken between 2018 and 2021. Worldwide, 700 million people still live in extreme poverty, half of whom are children. Children are physically and mentally disproportionately affected. Children who grow up impoverished lack the basic necessities they need to survive and thrive. 150 million children have been plunged into multidimensional poverty due to COVID-19. The poorest children are twice as likely to die in childhood than their wealthier peers. For those growing up in humanitarian crises such as Ukraine, the risks of deprivation and exclusion are magnified. In the world’s richest countries, one in seven children still live in poverty. Currently, one in four children in the European Union are at risk of falling into poverty. In Europe the impact of Brexit on the UK economy is predicted to reduce GDP by 5% in 2021 with a corresponding rise in poverty. According to the global charity Oxfam wealth inequality impacts levels of child abuse and affects women and girls worse and is a contributory factor in the risk of developing childhood mental illness. In the UK 2000 Foodbanks have opened since 2010, handing out 2 million food parcels annually, where there are currently 4 million children officially living in poverty. This research demonstrates that there is a strong association between families’ socio-economic circumstances and the chances that their children will experience mental illness. Evidence of this association is found repeatedly across developed countries. The paper will conclude by arguing that psychologists, psychiatrists, psychotherapists, social workers and CAMHS specialists need to place more importance on this critical socio-economic variable when assessing referred children and also advocate for political priorities in governments to reduce poverty and lower the risk of childhood mental illness.

Keywords: poverty, resilience, risk factor, socio economic, susceptibility

Procedia PDF Downloads 118
181 Performance Evaluation of Construction Projects by Earned Value Management Method, Using Primavera P6 – A Case Study in Istanbul, Turkey

Authors: Mohammad Lemar Zalmai, Osman Hurol Turkakin, Cemil Akcay, Ekrem Manisali

Abstract:

Most of the construction projects are exposed to time and cost overruns due to various factors and this is a major problem. As a solution to this, the Earned Value Management (EVM) method is considered. EVM is a powerful and well-known method used in monitoring and controlling the project. EVM is a technique that project managers use to track the performance of their project against project baselines. EVM gives an early indication that either project is delayed or not, and the project is either over budget or under budget at any particular day by tracking it. Thus, it helps to improve the management control system of a construction project, to detect and control the problems in potential risk areas and to suggest the importance and purpose of monitoring the construction work. This paper explains the main parameters of the EVM system involved in the calculation of time and cost for construction projects. In this study, the project management software Primavera P6 is used to deals with the project monitoring process of a seven-storeyed (G+6) faculty building whose construction is in progress at Istanbul, Turkey. A comparison between the planned progress of construction activities and actual progress is performed, and the analysis results are interpreted. This case study justifies the benefits of using EVM for project cash flow analysis and forecasting.

Keywords: earned value management (EVM), construction cost management, construction planning, primavera P6, project management, project scheduling

Procedia PDF Downloads 243
180 The Impact Of Environmental Management System ISO 14001 Adoption on Firm Performance

Authors: Raymond Treacy, Paul Humphreys, Ronan McIvor, Trevor Cadden, Alan McKittrick

Abstract:

This study employed event study methodology to examine the role of institutions, resources and dynamic capabilities in the relationship between the Environmental Management System ISO 14001 adoption and firm performance. Utilising financial data from 140 ISO 14001 certified firms and 320 non-certified firms, the results of the study suggested that the UK and Irish manufacturers were not implementing ISO 14001 solely to gain legitimacy. In contrast, the results demonstrated that firms were fully integrating the ISO 14001 standard within their operations as certified firms were able to improve both financial and operating performance when compared to non-certified firms. However, while there were significant and long lasting improvements for employee productivity, manufacturing cost efficiency, return on assets and sales turnover, the sample firms operating cycle and fixed asset efficiency displayed evidence of diminishing returns in the long-run, underlying the observation that no operating advantage based on incremental improvements can be everlasting. Hence, there is an argument for investing in dynamic capabilities which help renew and refresh the resource base and help the firm adapt to changing environments. Indeed, the results of the regression analysis suggest that dynamic capabilities for innovation acted as a moderator in the relationship between ISO 14001 certification and firm performance. This, in turn, will have a significant and symbiotic influence on sustainability practices within the participating organisations. The study not only provides new and original insights, but demonstrates pragmatically how firms can take advantage of environmental management systems as a moderator to significantly enhance firm performance. However, while it was shown that firm innovation aided both short term and long term ROA performance, adaptive market capabilities only aided firms in the short-term at the marketing strategy deployment stage. Finally, the results have important implications for firms operating in an economic recession as the results suggest that firms should scale back investment in R&D while operating in an economic downturn. Conversely, under normal trading conditions, consistent and long term investments in R&D was found to moderate the relationship between ISO 14001 certification and firm performance. Hence, the results of the study have important implications for academics and management alike.

Keywords: supply chain management, environmental management systems, quality management, sustainability, firm performance

Procedia PDF Downloads 308
179 Artificial Neural Network for Forecasting of Daily Reservoir Inflow: Case Study of the Kotmale Reservoir in Sri Lanka

Authors: E. U. Dampage, Ovindi D. Bandara, Vinushi S. Waraketiya, Samitha S. R. De Silva, Yasiru S. Gunarathne

Abstract:

The knowledge of water inflow figures is paramount in decision making on the allocation for consumption for numerous purposes; irrigation, hydropower, domestic and industrial usage, and flood control. The understanding of how reservoir inflows are affected by different climatic and hydrological conditions is crucial to enable effective water management and downstream flood control. In this research, we propose a method using a Long Short Term Memory (LSTM) Artificial Neural Network (ANN) to assist the aforesaid decision-making process. The Kotmale reservoir, which is the uppermost reservoir in the Mahaweli reservoir complex in Sri Lanka, was used as the test bed for this research. The ANN uses the runoff in the Kotmale reservoir catchment area and the effect of Sea Surface Temperatures (SST) to make a forecast for seven days ahead. Three types of ANN are tested; Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and LSTM. The extensive field trials and validation endeavors found that the LSTM ANN provides superior performance in the aspects of accuracy and latency.

Keywords: convolutional neural network, CNN, inflow, long short-term memory, LSTM, multi-layer perceptron, MLP, neural network

Procedia PDF Downloads 151
178 The Potential Impacts of Climate Change on Air Quality in the Upper Northern Thailand

Authors: Chakrit Chotamonsak

Abstract:

In this study, the Weather Research and Forecasting (WRF) model was used as regional climate model to dynamically downscale the ECHAM5 Global Climate Model projection for the regional climate change impact on air quality–related meteorological conditions in the upper northern Thailand. The analyses were focused on meteorological variables that potentially impact on the regional air quality such as sea level pressure, planetary boundary layer height (PBLH), surface temperature, wind speed and ventilation. Comparisons were made between the present (1990–2009) and future (2045–2064) climate downscaling results during majority air pollution season (dry season, January-April). Analyses showed that the sea level pressure will be stronger in the future, suggesting more stable atmosphere. Increases in temperature were obvious observed throughout the region. Decreases in surface wind and PBLH were predicted during air pollution season, indicating weaker ventilation rate in this region. Consequently, air quality-related meteorological variables were predicted to change in almost part of the upper northern Thailand, yielding a favorable meteorological condition for pollutant accumulation in the future.

Keywords: climate change, climate impact, air quality, air pollution, Thailand

Procedia PDF Downloads 355
177 Transformative Digital Trends in Supply Chain Management: The Role of Artificial Intelligence

Authors: Srinivas Vangari

Abstract:

With the technological advancements around the globe, artificial intelligence (AI) has boosted supply chain management (SCM) by improving efficiency, sensitivity, and promptness. Artificial intelligence-based SCM provides comprehensive perceptions of consumer behavior in dynamic market situations and trends, foreseeing the accurate demand. It reduces overproduction and stockouts while optimizing production planning and streamlining operations. Consequently, the AI-driven SCM produces a customer-centric supply with resilient and robust operations. Intending to delve into the transformative significance of AI in SCM, this study focuses on improving efficiency in SCM with the integration of AI, understanding the production demand, accurate forecasting, and particular production planning. The study employs a mixed-method approach and expert survey insights to explore the challenges and benefits of AI applications in SCM. Further, a case analysis is incorporated to identify the best practices and potential challenges with the critical success features in AI-driven SCM. Key findings of the study indicate the significant advantages of the AI-integrated SCM, including optimized inventory management, improved transportation and logistics management, cost optimization, and advanced decision-making, positioning AI as a pivotal force in the future of supply chain management.

Keywords: artificial intelligence, supply chain management, accurate forecast, accurate planning of production, understanding demand

Procedia PDF Downloads 21
176 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning

Authors: Jun Wang, Ge Zhang

Abstract:

Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.

Keywords: machine learning, ETF prediction, dynamic trading, asset allocation

Procedia PDF Downloads 98
175 Exploring the Influence of Wind on Wildfire Behavior in China: A Data-Driven Study Using Machine Learning and Remote Sensing

Authors: Rida Kanwal, Wang Yuhui, Song Weiguo

Abstract:

Wildfires are one of the most prominent threats to ecosystems, human health, and economic activities, with wind acting as a critical driving factor. This study combines machine learning (ML) and remote sensing (RS) to assess the effects of wind on wildfires in Chongqing Province from August 16-23, 2022. Landsat 8 satellite images were used to estimate the difference normalized burn ratio (dNBR), representing prefire and postfire vegetation conditions. Wind data was analyzed through geographic information system (GIS) mapping. Correlation analysis between wind speed and fire radiative power (FRP) revealed a significant relationship. An autoregressive integrated moving average (ARIMA) model was developed for wind forecasting, and linear regression was applied to determine the effect of wind speed on FRP. The results identified high wind speed as a key factor contributing to the surge in FRP. Wind-rose plots showed winds blowing to the northwest (NW), aligning with the wildfire spread. This model was further validated with data from other provinces across China. This study integrated ML, RS, and GIS to analyze wildfire behavior, providing effective strategies for prediction and management.

Keywords: wildfires, machine learning, remote sensing, wind speed, GIS, wildfire behavior

Procedia PDF Downloads 20
174 An Assessment of the Temperature Change Scenarios Using RS and GIS Techniques: A Case Study of Sindh

Authors: Jan Muhammad, Saad Malik, Fadia W. Al-Azawi, Ali Imran

Abstract:

In the era of climate variability, rising temperatures are the most significant aspect. In this study PRECIS model data and observed data are used for assessing the temperature change scenarios of Sindh province during the first half of present century. Observed data from various meteorological stations of Sindh are the primary source for temperature change detection. The current scenario (1961–1990) and the future one (2010-2050) are acted by the PRECIS Regional Climate Model at a spatial resolution of 25 * 25 km. Regional Climate Model (RCM) can yield reasonably suitable projections to be used for climate-scenario. The main objective of the study is to map the simulated temperature as obtained from climate model-PRECIS and their comparison with observed temperatures. The analysis is done on all the districts of Sindh in order to have a more precise picture of temperature change scenarios. According to results the temperature is likely to increases by 1.5 - 2.1°C by 2050, compared to the baseline temperature of 1961-1990. The model assesses more accurate values in northern districts of Sindh as compared to the coastal belt of Sindh. All the district of the Sindh province exhibit an increasing trend in the mean temperature scenarios and each decade seems to be warmer than the previous one. An understanding of the change in temperatures is very vital for various sectors such as weather forecasting, water, agriculture, and health, etc.

Keywords: PRECIS Model, real observed data, Arc GIS, interpolation techniques

Procedia PDF Downloads 249
173 River Stage-Discharge Forecasting Based on Multiple-Gauge Strategy Using EEMD-DWT-LSSVM Approach

Authors: Farhad Alizadeh, Alireza Faregh Gharamaleki, Mojtaba Jalilzadeh, Houshang Gholami, Ali Akhoundzadeh

Abstract:

This study presented hybrid pre-processing approach along with a conceptual model to enhance the accuracy of river discharge prediction. In order to achieve this goal, Ensemble Empirical Mode Decomposition algorithm (EEMD), Discrete Wavelet Transform (DWT) and Mutual Information (MI) were employed as a hybrid pre-processing approach conjugated to Least Square Support Vector Machine (LSSVM). A conceptual strategy namely multi-station model was developed to forecast the Souris River discharge more accurately. The strategy used herein was capable of covering uncertainties and complexities of river discharge modeling. DWT and EEMD was coupled, and the feature selection was performed for decomposed sub-series using MI to be employed in multi-station model. In the proposed feature selection method, some useless sub-series were omitted to achieve better performance. Results approved efficiency of the proposed DWT-EEMD-MI approach to improve accuracy of multi-station modeling strategies.

Keywords: river stage-discharge process, LSSVM, discrete wavelet transform, Ensemble Empirical Decomposition Mode, multi-station modeling

Procedia PDF Downloads 175
172 Development of Risk Index and Corporate Governance Index: An Application on Indian PSUs

Authors: M. V. Shivaani, P. K. Jain, Surendra S. Yadav

Abstract:

Public Sector Undertakings (PSUs), being government-owned organizations have commitments for the economic and social wellbeing of the society; this commitment needs to be reflected in their risk-taking, decision-making and governance structures. Therefore, the primary objective of the study is to suggest measures that may lead to improvement in performance of PSUs. To achieve this objective two normative frameworks (one relating to risk levels and other relating to governance structure) are being put forth. The risk index is based on nine risks, such as, solvency risk, liquidity risk, accounting risk, etc. and each of the risks have been scored on a scale of 1 to 5. The governance index is based on eleven variables, such as, board independence, diversity, risk management committee, etc. Each of them are scored on a scale of 1 to five. The sample consists of 39 PSUs that featured in Nifty 500 index and, the study covers a 10 year period from April 1, 2005 to March, 31, 2015. Return on assets (ROA) and return on equity (ROE) have been used as proxies of firm performance. The control variables used in the model include, age of firm, growth rate of firm and size of firm. A dummy variable has also been used to factor in the effects of recession. Given the panel nature of data and possibility of endogeneity, dynamic panel data- generalized method of moments (Diff-GMM) regression has been used. It is worth noting that the corporate governance index is positively related to both ROA and ROE, indicating that with the improvement in governance structure, PSUs tend to perform better. Considering the components of CGI, it may be suggested that (i). PSUs ensure adequate representation of women on Board, (ii). appoint a Chief Risk Officer, and (iii). constitute a risk management committee. The results also indicate that there is a negative association between risk index and returns. These results not only validate the framework used to develop the risk index but also provide a yardstick to PSUs benchmark their risk-taking if they want to maximize their ROA and ROE. While constructing the CGI, certain non-compliances were observed, even in terms of mandatory requirements, such as, proportion of independent directors. Such infringements call for stringent penal provisions and better monitoring of PSUs. Further, if the Securities and Exchange Board of India (SEBI) and Ministry of Corporate Affairs (MCA) bring about such reforms in the PSUs and make mandatory the adherence to the normative frameworks put forth in the study, PSUs may have more effective and efficient decision-making, lower risks and hassle free management; all these ultimately leading to better ROA and ROE.

Keywords: PSU, risk governance, diff-GMM, firm performance, the risk index

Procedia PDF Downloads 157
171 Analysis of Operating Speed on Four-Lane Divided Highways under Mixed Traffic Conditions

Authors: Chaitanya Varma, Arpan Mehar

Abstract:

The present study demonstrates the procedure to analyse speed data collected on various four-lane divided sections in India. Field data for the study was collected at different straight and curved sections on rural highways with the help of radar speed gun and video camera. The data collected at the sections were analysed and parameters pertain to speed distributions were estimated. The different statistical distribution was analysed on vehicle type speed data and for mixed traffic speed data. It was found that vehicle type speed data was either follows the normal distribution or Log-normal distribution, whereas the mixed traffic speed data follows more than one type of statistical distribution. The most common fit observed on mixed traffic speed data were Beta distribution and Weibull distribution. The separate operating speed model based on traffic and roadway geometric parameters were proposed in the present study. The operating speed model with traffic parameters and curve geometry parameters were established. Two different operating speed models were proposed with variables 1/R and Ln(R) and were found to be realistic with a different range of curve radius. The models developed in the present study are simple and realistic and can be used for forecasting operating speed on four-lane highways.

Keywords: highway, mixed traffic flow, modeling, operating speed

Procedia PDF Downloads 460
170 Using IoT on Single Input Multiple Outputs (SIMO) DC–DC Converter to Control Smart-home

Authors: Auwal Mustapha Imam

Abstract:

The aim of the energy management system is to monitor and control utilization, access, optimize and manage energy availability. This can be realized through real-time analyses and energy sources and loads data control in a predictive way. Smart-home monitoring and control provide convenience and cost savings by controlling appliances, lights, thermostats and other loads. There may be different categories of loads in the various homes, and the homeowner may wish to control access to solar-generated energy to protect the storage from draining completely. Controlling the power system operation by managing the converter output power and controlling how it feeds the appliances will satisfy the residential load demand. The Internet of Things (IoT) provides an attractive technological platform to connect the two and make home automation and domestic energy utilization easier and more attractive. This paper presents the use of IoT-based control topology to monitor and control power distribution and consumption by DC loads connected to single-input multiple outputs (SIMO) DC-DC converter, thereby reducing leakages, enhancing performance and reducing human efforts. A SIMO converter was first developed and integrated with the IoT/Raspberry Pi control topology, which enables the user to monitor and control power scheduling and load forecasting via an Android app.

Keywords: flyback, converter, DC-DC, photovoltaic, SIMO

Procedia PDF Downloads 47
169 Efficient Principal Components Estimation of Large Factor Models

Authors: Rachida Ouysse

Abstract:

This paper proposes a constrained principal components (CnPC) estimator for efficient estimation of large-dimensional factor models when errors are cross sectionally correlated and the number of cross-sections (N) may be larger than the number of observations (T). Although principal components (PC) method is consistent for any path of the panel dimensions, it is inefficient as the errors are treated to be homoskedastic and uncorrelated. The new CnPC exploits the assumption of bounded cross-sectional dependence, which defines Chamberlain and Rothschild’s (1983) approximate factor structure, as an explicit constraint and solves a constrained PC problem. The CnPC method is computationally equivalent to the PC method applied to a regularized form of the data covariance matrix. Unlike maximum likelihood type methods, the CnPC method does not require inverting a large covariance matrix and thus is valid for panels with N ≥ T. The paper derives a convergence rate and an asymptotic normality result for the CnPC estimators of the common factors. We provide feasible estimators and show in a simulation study that they are more accurate than the PC estimator, especially for panels with N larger than T, and the generalized PC type estimators, especially for panels with N almost as large as T.

Keywords: high dimensionality, unknown factors, principal components, cross-sectional correlation, shrinkage regression, regularization, pseudo-out-of-sample forecasting

Procedia PDF Downloads 150
168 Increasing the Forecasting Fidelity of Current Collection System Operating Capability by Means of Contact Pressure Simulation Modelling

Authors: Anton Golubkov, Gleb Ermachkov, Aleksandr Smerdin, Oleg Sidorov, Victor Philippov

Abstract:

Current collection quality is one of the limiting factors when increasing trains movement speed in the rail sector. With the movement speed growth, the impact forces on the current collector from the rolling stock and the aerodynamic influence increase, which leads to the spread in the contact pressure values, separation of the current collector head from the contact wire, contact arcing and excessive wear of the contact elements. The upcoming trend in resolving this issue is the use of the automatic control systems providing stabilization of the contact pressure value. The present paper considers the features of the contemporary automatic control systems of the current collector’s pressure; their major disadvantages have been stated. A scheme of current collector pressure automatic control has been proposed, distinguished by a proactive influence on undesirable effects. A mathematical model of contact strips wearing has been presented, obtained in accordance with the provisions of the central composition rotatable design program. The analysis of the obtained dependencies has been carried out. The procedures for determining the optimal current collector pressure on the contact wire and the pressure control principle in the pneumatic drive have been described.

Keywords: contact strip, current collector, high-speed running, program control, wear

Procedia PDF Downloads 145
167 Inventory Management System of Seasonal Raw Materials of Feeds at San Jose Batangas through Integer Linear Programming and VBA

Authors: Glenda Marie D. Balitaan

Abstract:

The branch of business management that deals with inventory planning and control is known as inventory management. It comprises keeping track of supply levels and forecasting demand, as well as scheduling when and how to plan. Keeping excess inventory results in a loss of money, takes up physical space, and raises the risk of damage, spoilage, and loss. On the other hand, too little inventory frequently causes operations to be disrupted and raises the possibility of low customer satisfaction, both of which can be detrimental to a company's reputation. The United Victorious Feed mill Corporation's present inventory management practices were assessed in terms of inventory level, warehouse allocation, ordering frequency, shelf life, and production requirement. To help the company achieve their optimal level of inventory, a mathematical model was created using Integer Linear Programming. Due to the season, the goal function was to reduce the cost of purchasing US Soya and Yellow Corn. Warehouse space, annual production requirements, and shelf life were all considered. To ensure that the user only uses one application to record all relevant information, like production output and delivery, the researcher built a Visual Basic system. Additionally, the technology allows management to change the model's parameters.

Keywords: inventory management, integer linear programming, inventory management system, feed mill

Procedia PDF Downloads 83
166 A Fuzzy Inference System for Predicting Air Traffic Demand Based on Socioeconomic Drivers

Authors: Nur Mohammad Ali, Md. Shafiqul Alam, Jayanta Bhusan Deb, Nowrin Sharmin

Abstract:

The past ten years have seen significant expansion in the aviation sector, which during the previous five years has steadily pushed emerging countries closer to economic independence. It is crucial to accurately forecast the potential demand for air travel to make long-term financial plans. To forecast market demand for low-cost passenger carriers, this study suggests working with low-cost airlines, airports, consultancies, and governmental institutions' strategic planning divisions. The study aims to develop an artificial intelligence-based methods, notably fuzzy inference systems (FIS), to determine the most accurate forecasting technique for domestic low-cost carrier demand in Bangladesh. To give end users real-world applications, the study includes nine variables, two sub-FIS, and one final Mamdani Fuzzy Inference System utilizing a graphical user interface (GUI) made with the app designer tool. The evaluation criteria used in this inquiry included mean square error (MSE), accuracy, precision, sensitivity, and specificity. The effectiveness of the developed air passenger demand prediction FIS is assessed using 240 data sets, and the accuracy, precision, sensitivity, specificity, and MSE values are 90.83%, 91.09%, 90.77%, and 2.09%, respectively.

Keywords: aviation industry, fuzzy inference system, membership function, graphical user interference

Procedia PDF Downloads 72