Search results for: mesh erosion
535 Migration and Identity Erosion: An Exploratory Study of First Generation Nigerian-Americans
Authors: Lolade Siyonbola
Abstract:
Nigerians are often celebrated as being the most educated cultural group in America. The cultural values and history that have led to this reality are particular to a generation that came of age post colonialism. Many of these cultural values have been passed down from post-colonial parent to millennial child, but most have not. This study, based on interviews and surveys of Nigerian millennials and their parents in the United States, explores the degree to which identity has been eroded in the millennial generation due to a lack of imparted cultural values and knowledge from the previous generation. Most of the subjects do not speak their native language or identify with their cultural heritage sufficiently to build ties with their native land. Most are experiencing some degree of identity crisis, and therefore limited self-actualization, with little to no support; as there are few successful tools available to this population. If governmental programs to reverse these trends are not implemented within this generation, the implications to the individual, family and home nation (Nigeria), will be felt for generations to come.Keywords: identity, culture, self-actualization, social identity theory, migration, transnationalism, value systems
Procedia PDF Downloads 371534 Application of the State of the Art of Hydraulic Models to Manage Coastal Problems, Case Study: The Egyptian Mediterranean Coast Model
Authors: Al. I. Diwedar, Moheb Iskander, Mohamed Yossef, Ahmed ElKut, Noha Fouad, Radwa Fathy, Mustafa M. Almaghraby, Amira Samir, Ahmed Romya, Nourhan Hassan, Asmaa Abo Zed, Bas Reijmerink, Julien Groenenboom
Abstract:
Coastal problems are stressing the coastal environment due to its complexity. The dynamic interaction between the sea and the land results in serious problems that threaten coastal areas worldwide, in addition to human interventions and activities. This makes the coastal environment highly vulnerable to natural processes like flooding, erosion, and the impact of human activities as pollution. Protecting and preserving this vulnerable coastal zone with its valuable ecosystems calls for addressing the coastal problems. This, in the end, will support the sustainability of the coastal communities and maintain the current and future generations. Consequently applying suitable management strategies and sustainable development that consider the unique characteristics of the coastal system is a must. The coastal management philosophy aims to solve the conflicts of interest between human development activities and this dynamic nature. Modeling emerges as a successful tool that provides support to decision-makers, engineers, and researchers for better management practices. Modeling tools proved that it is accurate and reliable in prediction. With its capability to integrate data from various sources such as bathymetric surveys, satellite images, and meteorological data, it offers the possibility for engineers and scientists to understand this complex dynamic system and get in-depth into the interaction between both the natural and human-induced factors. This enables decision-makers to make informed choices and develop effective strategies for sustainable development and risk mitigation of the coastal zone. The application of modeling tools supports the evaluation of various scenarios by affording the possibility to simulate and forecast different coastal processes from the hydrodynamic and wave actions and the resulting flooding and erosion. The state-of-the-art application of modeling tools in coastal management allows for better understanding and predicting coastal processes, optimizing infrastructure planning and design, supporting ecosystem-based approaches, assessing climate change impacts, managing hazards, and finally facilitating stakeholder engagement. This paper emphasizes the role of hydraulic models in enhancing the management of coastal problems by discussing the diverse applications of modeling in coastal management. It highlights the modelling role in understanding complex coastal processes, and predicting outcomes. The importance of informing decision-makers with modeling results which gives technical and scientific support to achieve sustainable coastal development and protection.Keywords: coastal problems, coastal management, hydraulic model, numerical model, physical model
Procedia PDF Downloads 27533 Simulation the Stress Distribution of Wheel/Rail at Contact Region
Authors: Norie A. Akeel, Z. Sajuri, A. K. Ariffin
Abstract:
This paper discusses the effect of different loading analysis on crack initiation life of wheel/rail in the contact region. A simulated three dimensional (3D) elasto plastic model of a wheel/rail contact is modeled using the fine mesh technique in the contact region by using Finite Element Method FEM code ANSYS 11.0 software. Different loads of approximately from 70 to 140 KN was applied on the wheel tread through the running surface on the railhead surface to simulate stress distribution (Von Mises) and a life prediction of the crack initiation under rolling contact motion. Stress analysis is achieved and the fatigue life to the rail head surface is calculated numerically by using a multi-axial fatigue life of crack initiation model. All results obtained from the previous researches are compared with this research.Keywords: FEM, rolling contact, rail track, stress distribution, fatigue life
Procedia PDF Downloads 554532 Vortex Control by a Downstream Splitter Plate in Psudoplastic Fluid Flow
Authors: Sudipto Sarkar, Anamika Paul
Abstract:
Pseudoplastic (n<1, n is the power index) fluids have great importance in food, pharmaceutical and chemical process industries which require a lot of attention. Unfortunately, due to its complex flow behavior inadequate research works can be found even in laminar flow regime. A practical problem is solved in the present research work by numerical simulation where we tried to control the vortex shedding from a square cylinder using a horizontal splitter plate placed at the downstream flow region. The position of the plate is at the centerline of the cylinder with varying distance from the cylinder to calculate the critical gap-ratio. If the plate is placed inside this critical gap, the vortex shedding from the cylinder suppressed completely. The Reynolds number considered here is in unsteady laminar vortex shedding regime, Re = 100 (Re = U∞a/ν, where U∞ is the free-stream velocity of the flow, a is the side of the cylinder and ν is the maximum value of kinematic viscosity of the fluid). Flow behavior has been studied for three different gap-ratios (G/a = 2, 2.25 and 2.5, where G is the gap between cylinder and plate) and for a fluid with three different flow behavior indices (n =1, 0.8 and 0.5). The flow domain is constructed using Gambit 2.2.30 and this software is also used to generate the mesh and to impose the boundary conditions. For G/a = 2, the domain size is considered as 37.5a × 16a with 316 × 208 grid points in the streamwise and flow-normal directions respectively after a thorough grid independent study. Fine and equal grid spacing is used close to the geometry to capture the vortices shed from the cylinder and the boundary layer developed over the flat plate. Away from the geometry meshes are unequal in size and stretched out. For other gap-ratios, proportionate domain size and total grid points are used with similar kind of mesh distribution. Velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition) at upper and lower domain boundary conditions are used for the simulation. Wall boundary condition (u = v = 0) is considered both on the cylinder and the splitter plate surfaces. Discretized forms of fully conservative 2-D unsteady Navier Stokes equations are then solved by Ansys Fluent 14.5. SIMPLE algorithm written in finite volume method is selected for this purpose which is a default solver inculcate in Fluent. The results obtained for Newtonian fluid flow agree well with previous works supporting Fluent’s usefulness in academic research. A thorough analysis of instantaneous and time-averaged flow fields are depicted both for Newtonian and pseudoplastic fluid flow. It has been observed that as the value of n reduces the stretching of shear layers also reduce and these layers try to roll up before the plate. For flow with high pseudoplasticity (n = 0.5) the nature of vortex shedding changes and the value of critical gap-ratio reduces. These are the remarkable findings for laminar periodic vortex shedding regime in pseudoplastic flow environment.Keywords: CFD, pseudoplastic fluid flow, wake-boundary layer interactions, critical gap-ratio
Procedia PDF Downloads 111531 A Runge Kutta Discontinuous Galerkin Method for Lagrangian Compressible Euler Equations in Two-Dimensions
Authors: Xijun Yu, Zhenzhen Li, Zupeng Jia
Abstract:
This paper presents a new cell-centered Lagrangian scheme for two-dimensional compressible flow. The new scheme uses a semi-Lagrangian form of the Euler equations. The system of equations is discretized by Discontinuous Galerkin (DG) method using the Taylor basis in Eulerian space. The vertex velocities and the numerical fluxes through the cell interfaces are computed consistently by a nodal solver. The mesh moves with the fluid flow. The time marching is implemented by a class of the Runge-Kutta (RK) methods. A WENO reconstruction is used as a limiter for the RKDG method. The scheme is conservative for the mass, momentum and total energy. The scheme maintains second-order accuracy and has free parameters. Results of some numerical tests are presented to demonstrate the accuracy and the robustness of the scheme.Keywords: cell-centered Lagrangian scheme, compressible Euler equations, RKDG method
Procedia PDF Downloads 546530 Soil Reinforcement by Fibers Using Triaxial Compression Test
Authors: Negadi Kheira, Arab Ahmed, Kamal Elbokl Mohamed, Setti Fatima
Abstract:
In order to evaluate influences of roots on soil shear strength, monotonic drained and undrained triaxial laboratory tests were carried out on reconstituted specimens at various confining pressure (σc’=50, 100, 200, 300, 400 kPa) and a constant relative density (Dr = 50%). Reinforcement of soil by fibrous roots is crucial for preventing soil erosion and degradation. Therefore, we investigated soil reinforcement by roots of acacia planted in the area of Chlef where shallow landslides and slope instability are frequent. These roots were distributed in soil in two forms: vertically and horizontally. The monotonic test results showed that roots have more impacts on the soil shear strength than the friction angle, and the presence of roots in soil substantially increased the soil shear strength. Also, the results showed that the contribution of roots on the shear strength mobilized increases with increase in the confining pressure.Keywords: soil, monotonic, triaxial test, root fiber, undrained
Procedia PDF Downloads 415529 Effect of Mercerization on Coconut Fiber Surface Condition
Authors: Sphiwe Simelane, Daniel Madyira
Abstract:
The use of natural fibers requires that they should be treated in preparation for their use in Natural Fiber-reinforced polymer composites. This paper reports on the effects of sodium hydroxide (NaOH) treatment on the surface of coconut fibers. The fibers were subjected to 5%, 10%, 15% and 20% NaOH concentrations and soaked for 4 hours and thoroughly rinsed and allowed to dry in the open air for seven days, after which time they were dried in an oven for 30 minutes. Untreated and treated coconut fibers were observed under the Scanning Electron Microscope and it was noted that the surface structure of the fibers was modified differently by the different NaOH concentrations, and the resultant colour of the treated fibers got darker as the solution concentration increased, and the texture felt rougher to the touch as a result of the erosion of the fiber surface. Further, the increase in alkali concentration striped the surface of more constituents, thus exposing “pits” and other surface components rendering the surface rough.Keywords: coconut fiber, scanning electron microscope, sodium hydroxide, surface treatment
Procedia PDF Downloads 202528 Investigation of the Effect of Grid Size on External Store Separation Trajectory Using CFD
Authors: Alaa A. Osman, Amgad M. Bayoumy Aly, Ismail El baialy, Osama E. Abdellatif, Essam E. Khallil
Abstract:
In this paper, a numerical simulation of a finned store separating from a wing-pylon configuration has been studied and validated. A dynamic unstructured tetrahedral mesh approach is accomplished by using three grid sizes to numerically solving the discretized three dimensional, inviscid and compressible Navier-stokes equations. The method used for computations of separation of an external store assuming quasi-steady flow condition. Computations of quasi-steady flow have been directly coupled to a six degree-of-freedom (6DOF) rigid-body motion code to generate store trajectories. The pressure coefficients at four different angular cuts and time histories of various trajectory parameters during the store separation are compared for every grid size with published experimental data.Keywords: CFD modelling, transonic store separation, quasi-steady flow, moving-body trajectories
Procedia PDF Downloads 390527 Worm Gearing Design Improvement by Considering Varying Mesh Stiffness
Authors: A. H. Elkholy, A. H. Falah
Abstract:
A new approach has been developed to estimate the load share and stress distribution of worm gear sets. The approach is based upon considering the instantaneous tooth meshing stiffness where the worm gear drive was modelled as a series of spur gear slices, and each slice was analyzed separately using the well established formulae of spur gears. By combining the results obtained for all slices, the entire envolute worm gear set loading and stressing was obtained. The geometric modelling method presented, allows tooth elastic deformation and tooth root stresses of worm gear drives under different load conditions to be investigated. On the basis of the method introduced in this study, the instantaneous meshing stiffness and load share were obtained. In comparison with existing methods, this approach has both good analysis accuracy and less computing time.Keywords: gear, load/stress distribution, worm, wheel, tooth stiffness, contact line
Procedia PDF Downloads 345526 Properties of Composite Materials Made from Surface Treated Particles from Annual Plants
Authors: Štěpán Hýsek, Petra Gajdačová, Milan Podlena
Abstract:
Annual plants are becoming more and more popular source of lignin and cellulose. In those days a lot of research is carried out in order to evaluate the possibility of utilization of fibres and particles from these plants in composite materials production. These lingo-cellulosic materials seem to be a great alternative to wood, however, due to waxy and silica layers on the surface of these stalks, one additional technological step is needed–erosion of the layers for the purpose of achieving better adhesion between particle and adhesive. In this research, we used several kinds of particle pre-treatment, in order to modify surface properties of these particles. Further, an adhesive was applied to the particles using laboratory blender and board were produced using laboratory press. Both physical and mechanical properties of boards were observed. It was found out that the surface modification of particles had statistically significant effect on properties of produced boards.Keywords: annual plant, composites, mechanical properties, particleboard
Procedia PDF Downloads 198525 Reinforced Concrete, Problems and Solutions: A Literature Review
Authors: Omar Alhamad, Waleed Eid
Abstract:
Reinforced concrete is a concrete lined with steel so that the materials work together in the resistance forces. Reinforcement rods or mesh are used for tensile, shear, and sometimes intense pressure in a concrete structure. Reinforced concrete is subject to many natural problems or industrial errors. The result of these problems is that it reduces the efficiency of the reinforced concrete or its usefulness. Some of these problems are cracks, earthquakes, high temperatures or fires, as well as corrosion of reinforced iron inside reinforced concrete. There are also factors of ancient buildings or monuments that require some techniques to preserve them. This research presents some general information about reinforced concrete, the pros and cons of reinforced concrete, and then presents a series of literary studies of some of the late published researches on the subject of reinforced concrete and how to preserve it, propose solutions or treatments for the treatment of reinforced concrete problems, raise efficiency and quality for a longer period. These studies have provided advanced and modern methods and techniques in the field of reinforced concrete.Keywords: reinforced concrete, treatment, concrete, corrosion, seismic, cracks
Procedia PDF Downloads 152524 The Effect of Choke on the Efficiency of Coaxial Antenna for Percutaneous Microwave Coagulation Therapy for Hepatic Tumor
Authors: Surita Maini
Abstract:
There are many perceived advantages of microwave ablation have driven researchers to develop innovative antennas to effectively treat deep-seated, non-resectable hepatic tumors. In this paper a coaxial antenna with a miniaturized sleeve choke has been discussed for microwave interstitial ablation therapy, in order to reduce backward heating effects irrespective of the insertion depth into the tissue. Two dimensional Finite Element Method (FEM) is used to simulate and measure the results of miniaturized sleeve choke antenna. This paper emphasizes the importance of factors that can affect simulation accuracy, which include mesh resolution, surface heating and reflection coefficient. Quarter wavelength choke effectiveness has been discussed by comparing it with the unchoked antenna with same dimensions.Keywords: microwave ablation, tumor, finite element method, coaxial slot antenna, coaxial dipole antenna
Procedia PDF Downloads 357523 Chemical and Vibrational Nonequilibrium Hypersonic Viscous Flow around an Axisymmetric Blunt Body
Authors: Rabah Haoui
Abstract:
Hypersonic flows around spatial vehicles during their reentry phase in planetary atmospheres are characterized by intense aerothermodynamics phenomena. The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium for air mixture species and the no slip condition at the wall. For this purpose, the Navier-Stokes equations system is resolved by the finite volume methodology to determine the flow parameters around the axisymmetric blunt body especially at the stagnation point and in the boundary layer along the wall of the blunt body. The code allows the capture of shock wave before a blunt body placed in hypersonic free stream. The numerical technique uses the Flux Vector Splitting method of Van Leer. CFL coefficient and mesh size level are selected to ensure the numerical convergence.Keywords: hypersonic flow, viscous flow, chemical kinetic, dissociation, finite volumes, frozen and non-equilibrium flow
Procedia PDF Downloads 465522 Flap Structure Geometry in Breakthrough Structure: A Case Study from the Southern Tunisian Atlas Example, Orbata Anticline
Authors: Soulef Amamria, Mohamed Sadok Bensalem, Mohamed Ghanmi
Abstract:
The structural and sedimentological study of fault-related- folds in the Southern Tunisian Atlas is distinguished by a special geometry of the gravitational structures. This distinct geometry is observable in the example of a flap structure in Jebel Ben Zannouch with the formation of a stuck syncline. This geometry can be explained by the mechanism of major thrusting in Orbata anticline in the occidental extremity of Gafsa chains, with asymmetrical flank dips and hinge migration kinematics. These kinematics was originally controlled by the Breakthrough structure; the study of this special geometry of gravity flap structure depends on the sedimentation domain, shortening ratios, and erosion speed. This study constitutes one of the complete examples of kinematic model validation on a field scale.Keywords: fault-related-folds, southern Tunisian Atlas, flap structure, breakthrough
Procedia PDF Downloads 101521 Dynamic Bandwidth Allocation in Fiber-Wireless (FiWi) Networks
Authors: Eman I. Raslan, Haitham S. Hamza, Reda A. El-Khoribi
Abstract:
Fiber-Wireless (FiWi) networks are a promising candidate for future broadband access networks. These networks combine the optical network as the back end where different passive optical network (PON) technologies are realized and the wireless network as the front end where different wireless technologies are adopted, e.g. LTE, WiMAX, Wi-Fi, and Wireless Mesh Networks (WMNs). The convergence of both optical and wireless technologies requires designing architectures with robust efficient and effective bandwidth allocation schemes. Different bandwidth allocation algorithms have been proposed in FiWi networks aiming to enhance the different segments of FiWi networks including wireless and optical subnetworks. In this survey, we focus on the differentiating between the different bandwidth allocation algorithms according to their enhancement segment of FiWi networks. We classify these techniques into wireless, optical and Hybrid bandwidth allocation techniques.Keywords: fiber-wireless (FiWi), dynamic bandwidth allocation (DBA), passive optical networks (PON), media access control (MAC)
Procedia PDF Downloads 531520 Analysis of Gas Disturbance Characteristics in Lunar Sample Storage
Authors: Lv Shizeng, Han Xiao, Zhang Yi, Ding Wenjing
Abstract:
The lunar sample storage device is mainly used for the preparation of the lunar samples, observation, physical analysis and other work. The lunar samples and operating equipment are placed directly inside the storage device. The inside of the storage device is a high purity nitrogen environment to ensure that the sample is not contaminated by the Earth's environment. In order to ensure that the water and oxygen indicators in the storage device meet the sample requirements, a dynamic gas cycle is required between the storage device and the external purification equipment. However, the internal gas disturbance in the storage device can affect the operation of the sample. In this paper, the storage device model is established, and the tetrahedral mesh is established by Tetra/Mixed method. The influence of different inlet position and gas flow on the internal flow field disturbance is calculated, and the disturbed flow area should be avoided during the sampling operation.Keywords: lunar samples, gas disturbance, storage device, characteristic analysis
Procedia PDF Downloads 294519 Numerical Modeling of Structural Failure of a Ship During the Collision Event
Authors: Adjal Yassine, Semmani Amar
Abstract:
During the last decades, The risk of collision has been increased, especially in high maritime traffic. As the consequence, the demand is required for safety at sea and environmental protection. For this purpose, the consequences prediction of ship collisions is recommended in order to minimize structural failure. additionally, at the design stage of the ship, damage generated during the collision event must be taken into consideration. This structural failure, in some cases, can develop into the progressive collapse of other structural elements and generate catastrophic consequences. The present study investigates the progressive collapse of ships damaged by collisions using the Non -linear finite element method. The failure criteria are taken into account. The impacted area has a refined mesh in order to have more reliable results. Finally, a parametric study was conducted in this study to highlight the effect of the ship's speed, as well as the different impacted areas of double-bottom ships.Keywords: collsion, strucural failure, ship, finite element analysis
Procedia PDF Downloads 100518 Electrochemical Performance of Femtosecond Laser Structured Commercial Solid Oxide Fuel Cells Electrolyte
Authors: Mohamed A. Baba, Gazy Rodowan, Brigita Abakevičienė, Sigitas Tamulevičius, Bartlomiej Lemieszek, Sebastian Molin, Tomas Tamulevičius
Abstract:
Solid oxide fuel cells (SOFC) efficiently convert hydrogen to energy without producing any disturbances or contaminants. The core of the cell is electrolyte. For improving the performance of electrolyte-supported cells, it is desirable to extend the available exchange surface area by micro-structuring of the electrolyte with laser-based micromachining. This study investigated the electrochemical performance of cells micro machined using a femtosecond laser. Commercial ceramic SOFC (Elcogen, AS) with a total thickness of 400 μm was structured by 1030 nm wavelength Yb: KGW fs-laser Pharos (Light Conversion) using 100 kHz repetition frequency and 290 fs pulse length light by scanning with the galvanometer scanner (ScanLab) and focused with a f-Theta telecentric lens (SillOptics). The sample height was positioned using a motorized z-stage. The microstructures were formed using a laser spiral trepanning in Ni/YSZ anode supported membrane at the central part of the ceramic piece of 5.5 mm diameter at active area of the cell. All surface was drilled with 275 µm diameter holes spaced by 275 µm. The machining processes were carried out under ambient conditions. The microstructural effects of the femtosecond laser treatment on the electrolyte surface were investigated prior to the electrochemical characterisation using a scanning electron microscope (SEM) Quanta 200 FEG (FEI). The Novo control Alpha-A was used for electrochemical impedance spectroscopy on a symmetrical cell configuration with an excitation amplitude of 25 mV and a frequency range of 1 MHz to 0.1 Hz. The fuel cell characterization of the cell was examined on open flanges test setup by Fiaxell. Using nickel mesh on the anode side and au mesh on the cathode side, the cell was electrically linked. The cell was placed in a Kittec furnace with a Process IDentifier temperature controller. The wires were connected to a Solartron 1260/1287 frequency analyzer for the impedance and current-voltage characterization. In order to determine the impact of the anode's microstructure on the performance of the commercial cells, the acquired results were compared to cells with unstructured anode. Geometrical studies verified that the depth of the -holes increased linearly according to laser energy and scanning times. On the other hand, it reduced as the scanning speed increased. The electrochemical analysis demonstrates that the open circuit voltage OCV values of the two cells are equal. Further, the modified cell's initial slope reduces to 0.209 from 0.253 of the unmodified cell, revealing that the surface modification considerably decreases energy loss. Plus, the maximum power density for the cell with the microstructure and the reference cell respectively, are 1.45 and 1.16 Wcm⁻².Keywords: electrochemical performance, electrolyte-supported cells, laser micro-structuring, solid oxide fuel cells
Procedia PDF Downloads 65517 Experimental Study on Floating Breakwater Anchored by Piles
Authors: Yessi Nirwana Kurniadi, Nira Yunita Permata
Abstract:
Coastline is vulnerable to coastal erosion which damage infrastructure and buildings. Floating breakwaters are applied in order to minimize material cost but still can reduce wave height. In this paper, we investigated floating breakwater anchored by piles based on experimental study in the laboratory with model scale 1:8. Two type of floating model were tested with several combination wave height, wave period and surface water elevation to determined transmission coefficient. This experimental study proved that floating breakwater with piles can prevent wave height up to 27 cm. The physical model shows that ratio of depth to wave length is less than 0.6 and ratio of model width to wave length is less than 0.3. It is confirmed that if those ratio are less than those value, the transmission coefficient is 0.5. The result also showed that the first type model of floating breakwater can reduce wave height by 60.4 % while the second one can reduce up to 55.56 %.Keywords: floating breakwater, experimental study, pile, transimission coefficient
Procedia PDF Downloads 530516 Numerical Modeling of Waves and Currents by Using a Hydro-Sedimentary Model
Authors: Mustapha Kamel Mihoubi, Hocine Dahmani
Abstract:
Over recent years much progress has been achieved in the fields of numerical modeling shoreline processes: waves, currents, waves and current. However, there are still some problems in the existing models to link the on the first, the hydrodynamics of waves and currents and secondly, the sediment transport processes and due to the variability in time, space and interaction and the simultaneous action of wave-current near the shore. This paper is the establishment of a numerical modeling to forecast the sediment transport from development scenarios of harbor structure. It is established on the basis of a numerical simulation of a water-sediment model via a 2D model using a set of codes calculation MIKE 21-DHI software. This is to examine the effect of the sediment transport drivers following the dominant incident wave in the direction to pass input harbor work under different variants planning studies to find the technical and economic limitations to the sediment transport and protection of the harbor structure optimum solution.Keywords: swell, current, radiation, stress, mesh, mike21, sediment
Procedia PDF Downloads 469515 Coupled Field Formulation – A Unified Method for Formulating Structural Mechanics Problems
Authors: Ramprasad Srinivasan
Abstract:
Engineers create inventions and put their ideas in concrete terms to design new products. Design drivers must be established, which requires, among other things, a complete understanding of the product design, load paths, etc. For Aerospace Vehicles, weight/strength ratio, strength, stiffness and stability are the important design drivers. A complex built-up structure is made up of an assemblage of primitive structural forms of arbitrary shape, which include 1D structures like beams and frames, 2D structures like membranes, plate and shell structures, and 3D solid structures. Justification through simulation involves a check for all the quantities of interest, namely stresses, deformation, frequencies, and buckling loads and is normally achieved through the finite element (FE) method. Over the past few decades, Fiber-reinforced composites are fast replacing the traditional metallic structures in the weight-sensitive aerospace and aircraft industries due to their high specific strength, high specific stiffness, anisotropic properties, design freedom for tailoring etc. Composite panel constructions are used in aircraft to design primary structure components like wings, empennage, ailerons, etc., while thin-walled composite beams (TWCB) are used to model slender structures like stiffened panels, helicopter, and wind turbine rotor blades, etc. The TWCB demonstrates many non-classical effects like torsional and constrained warping, transverse shear, coupling effects, heterogeneity, etc., which makes the analysis of composite structures far more complex. Conventional FE formulations to model 1D structures suffer from many limitations like shear locking, particularly in slender beams, lower convergence rates due to material coupling in composites, inability to satisfy, equilibrium in the domain and natural boundary conditions (NBC) etc. For 2D structures, the limitations of conventional displacement-based FE formulations include the inability to satisfy NBC explicitly and many pathological problems such as shear and membrane locking, spurious modes, stress oscillations, lower convergence due to mesh distortion etc. This mandates frequent re-meshing to even achieve an acceptable mesh (satisfy stringent quality metrics) for analysis leading to significant cycle time. Besides, currently, there is a need for separate formulations (u/p) to model incompressible materials, and a single unified formulation is missing in the literature. Hence coupled field formulation (CFF) is a unified formulation proposed by the author for the solution of complex 1D and 2D structures addressing the gaps in the literature mentioned above. The salient features of CFF and its many advantages over other conventional methods shall be presented in this paper.Keywords: coupled field formulation, kinematic and material coupling, natural boundary condition, locking free formulation
Procedia PDF Downloads 66514 Avoiding Packet Drop for Improved through Put in the Multi-Hop Wireless N/W
Authors: Manish Kumar Rajak, Sanjay Gupta
Abstract:
Mobile ad hoc networks (MANETs) are infrastructure less and intercommunicate using single-hop and multi-hop paths. Network based congestion avoidance which involves managing the queues in the network devices is an integral part of any network. QoS: A set of service requirements that are met by the network while transferring a packet stream from a source to a destination. Especially in MANETs, packet loss results in increased overheads. This paper presents a new algorithm to avoid congestion using one or more queue on nodes and corresponding flow rate decided in advance for each node. When any node attains an initial value of queue then it sends this status to its downstream nodes which in turn uses the pre-decided flow rate of packet transfer to its upstream nodes. The flow rate on each node is adjusted according to the status received from its upstream nodes. This proposed algorithm uses the existing infrastructure to inform to other nodes about its current queue status.Keywords: mesh networks, MANET, packet count, threshold, throughput
Procedia PDF Downloads 474513 Different Tillage Possibilities for Second Crop in Green Bean Farming
Authors: Yilmaz Bayhan, Emin Güzel, Ömer Barış Özlüoymak, Ahmet İnce, Abdullah Sessiz
Abstract:
In this study, determining of reduced tillage techniques in green bean farming as a second crop after harvesting wheat was targeted. To this aim, four different soil tillage methods namely, heavy-duty disc harrow (HD), rotary tiller (ROT), heavy-duty disc harrow plus rotary tiller (HD+ROT) and no-tillage (NT) (seeding by direct drill) were examined. Experiments were arranged in a randomized block design with three replications. The highest green beans yields were obtained in HD+ROT and NT as 5,862.1 and 5,829.3 Mg/ha, respectively. The lowest green bean yield was found in HD as 3,076.7 Mg/ha. The highest fuel consumption was measured 30.60 L ha-1 for HD+ROT whereas the lowest value was found 7.50 L ha-1 for NT. No tillage method gave the best results for fuel consumption and effective power requirement. It is concluded that no-tillage method can be used in second crop green bean in the Thrace Region due to economic and erosion conditions.Keywords: green bean, soil tillage, yield, vegetative
Procedia PDF Downloads 373512 A GIS Based Composite Land Degradation Assessment and Mapping of Tarkwa Mining Area
Authors: Bernard Kumi-Boateng, Kofi Bonsu
Abstract:
The clearing of vegetation in the Tarkwa Mining Area (TMA) for the purposes of mining, lumbering and development of settlement for the increasing population has caused a large scale denudation of the forest cover and erosion of the top soil thereby degrading the agriculture land. It is, therefore, essential to know the current status of land degradation in TMA so as to facilitate land conservation policy-making. The types of degradation, the extents of the degradations and their various degrees were combined to develop a composite land degradation index to assess the current status of land degradation in TMA using GIS based techniques. The assessment revealed that the most significant types of degradation in TMA were open pit and quarry mining; urbanisation and other construction projects; and surface scraping during land clearing. It was found that 21.62 % of the total area of TMA (353.07 km2) had high degradation index rating. It is recommended that decision makers use this assessment as a reference point for future initiatives that will be taken in order to develop land conservation policy.Keywords: degradation, GIS, land, mining
Procedia PDF Downloads 354511 Numerical Modelling of Dry Stone Masonry Structures Based on Finite-Discrete Element Method
Authors: Ž. Nikolić, H. Smoljanović, N. Živaljić
Abstract:
This paper presents numerical model based on finite-discrete element method for analysis of the structural response of dry stone masonry structures under static and dynamic loads. More precisely, each discrete stone block is discretized by finite elements. Material non-linearity including fracture and fragmentation of discrete elements as well as cyclic behavior during dynamic load are considered through contact elements which are implemented within a finite element mesh. The application of the model was conducted on several examples of these structures. The performed analysis shows high accuracy of the numerical results in comparison with the experimental ones and demonstrates the potential of the finite-discrete element method for modelling of the response of dry stone masonry structures.Keywords: dry stone masonry structures, dynamic load, finite-discrete element method, static load
Procedia PDF Downloads 414510 Occurrence of Aspidiscus cristatus (Lamarck) in the 'Marnes De Smail' from the Bellezma-Batna Range (Algeria): An Index Species for the Middle Cenomanian
Authors: Salmi-Laouar Sihem, Aouissi Riadh
Abstract:
The Cenomanian formations of the Bellezma-Batna Range are yielding very diversified fossiliferous beds. Among the abundant and well-preserved fossils stands out Aspidiscus cristatus (Lamarck). This taxon is assigned to the Family Latomeandridae (Alloiteau) for the presence of six symmetry axes. The outer morphology of sampled specimens documents a low-energy environment with a high sedimentary rate and a mud-supported bottom. Its provincialism evidences some characteristic thermal gradients of the marked Tethysian climatic areas. Biometric measurements are given. Coral size increases from the North towards the southeastern Tethysian margin where waters are supposed warmer; this feature is also underlined by a frequent bio-erosion of sampled specimens. Its limited stratigraphic range makes it a good candidate for an index species for the Middle Cenomanian.Keywords: Aspidiscus cristatus, coral, Middle Cenomanian, Batna, Bellezma, Algeria
Procedia PDF Downloads 175509 Numerical Analysis of NOₓ Emission in Staged Combustion for the Optimization of Once-Through-Steam-Generators
Authors: Adrien Chatel, Ehsan Askari Mahvelati, Laurent Fitschy
Abstract:
Once-Through-Steam-Generators are commonly used in the oil-sand industry in the heavy fuel oil extraction process. They are composed of three main parts: the burner, the radiant and convective sections. Natural gas is burned through staged diffusive flames stabilized by the burner. The heat generated by the combustion is transferred to the water flowing through the piping system in the radiant and convective sections. The steam produced within the pipes is then directed to the ground to reduce the oil viscosity and allow its pumping. With the rapid development of the oil-sand industry, the number of OTSG in operation has increased as well as the associated emissions of environmental pollutants, especially the Nitrous Oxides (NOₓ). To limit the environmental degradation, various international environmental agencies have established regulations on the pollutant discharge and pushed to reduce the NOₓ release. To meet these constraints, OTSG constructors have to rely on more and more advanced tools to study and predict the NOₓ emission. With the increase of the computational resources, Computational Fluid Dynamics (CFD) has emerged as a flexible tool to analyze the combustion and pollutant formation process. Moreover, to optimize the burner operating condition regarding the NOx emission, field characterization and measurements are usually accomplished. However, these kinds of experimental campaigns are particularly time-consuming and sometimes even impossible for industrial plants with strict operation schedule constraints. Therefore, the application of CFD seems to be more adequate in order to provide guidelines on the NOₓ emission and reduction problem. In the present work, two different software are employed to simulate the combustion process in an OTSG, namely the commercial software ANSYS Fluent and the open source software OpenFOAM. RANS (Reynolds-Averaged Navier–Stokes) equations combined with the Eddy Dissipation Concept to model the combustion and closed by the k-epsilon model are solved. A mesh sensitivity analysis is performed to assess the independence of the solution on the mesh. In the first part, the results given by the two software are compared and confronted with experimental data as a mean to assess the numerical modelling. Flame temperatures and chemical composition are used as reference fields to perform this validation. Results show a fair agreement between experimental and numerical data. In the last part, OpenFOAM is employed to simulate several operating conditions, and an Emission Characteristic Map of the combustion system is generated. The sources of high NOₓ production inside the OTSG are pointed and correlated to the physics of the flow. CFD is, therefore, a useful tool for providing an insight into the NOₓ emission phenomena in OTSG. Sources of high NOₓ production can be identified, and operating conditions can be adjusted accordingly. With the help of RANS simulations, an Emission Characteristics Map can be produced and then be used as a guide for a field tune-up.Keywords: combustion, computational fluid dynamics, nitrous oxides emission, once-through-steam-generators
Procedia PDF Downloads 113508 Effect of Accelerated Ions Interacted with Al Targets Using Plasma Focus Device
Authors: Morteza Habibi, Reza Amrollahi
Abstract:
The Aluminum made targets were placed at the central part of a Fillipov type (90KJ) plasma focus cathode. These targets were exposed to perpendicular dense plasma stream incidence. Melt layer erosion by melt motion, surface smoothing, and bubble formation were some of different effects caused by diverse working conditions. Micro hardness of surface layer tends to decrease particularly in the central region of the sample where destruction is more intense. The most pronouced melt motion is registered in the region of the maximum gradient of pressure and the etching of aluminium surface is noticeable in the central part of target. The crater with a maximum depth of 200µm, and the diameter of about 8.5mm is observed close to the mountains. Adding Krypton admixture to the Deuterium gas lead to collapsing bubbles and greater surface damage.Keywords: fillipov type plasma focus, al target interaction, bubbling effect, melt layer motion, surface smoothing
Procedia PDF Downloads 535507 Material Characterization and Numerical Simulation of a Rubber Bumper
Authors: Tamás Mankovits, Dávid Huri, Imre Kállai, Imre Kocsis, Tamás Szabó
Abstract:
Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. Rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. In this paper, a comprehensive investigation is introduced including laboratory measurements, mesh density analysis and complex finite element simulations to obtain the load-displacement curve of the chosen rubber bumper. Contact and friction effects are also taken into consideration. The aim of this research is to elaborate an FEM model which is accurate and competitive for a future shape optimization task.Keywords: rubber bumper, finite element analysis, compression test, Mooney-Rivlin material model
Procedia PDF Downloads 509506 Effective Removal of Tetrodotoxin with Fiber Mat Containing Activated Charcoal
Authors: Min Sik Kim, Hwa Sung Shin
Abstract:
From 2013, small eel farms, which are located in Han River Estuary, South Korea suffer damage because of unknown massive perish. In the middle of discussion that the cause of perish could be environmental changes or waste water, a large amount of unknown nemertean was discovered during that time. Some nemerteans are known releasing neurotoxin substance. In this study, we isolated intestinal bacteria using selective media and conducted 16s rDNA microbial identification by gene alignment. As a result, there was a type of bacteria producing TTX, blocks sodium-channel inducing organism’s death. TTX production from the bacteria was confirmed by ELISA and liquid chromatography coupled with mass spectrometer. Additionally, the activated-charcoal which has an ability to absorb small molecules like toxin was applied to fibrous mesh to prevent ingestion of aquatic organisms and increase applicable area. The viability of zebrafish in the water with TTX and charcoal fiber mat were not decreased meaning it could be used for solving the perishing problem in fish farm.Keywords: nemertean, TTX, fiber mat, activated charcoal, zebrafish
Procedia PDF Downloads 207