Search results for: linear multistep methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17524

Search results for: linear multistep methods

17104 Adaptive Kaman Filter for Fault Diagnosis of Linear Parameter-Varying Systems

Authors: Rajamani Doraiswami, Lahouari Cheded

Abstract:

Fault diagnosis of Linear Parameter-Varying (LPV) system using an adaptive Kalman filter is proposed. The LPV model is comprised of scheduling parameters, and the emulator parameters. The scheduling parameters are chosen such that they are capable of tracking variations in the system model as a result of changes in the operating regimes. The emulator parameters, on the other hand, simulate variations in the subsystems during the identification phase and have negligible effect during the operational phase. The nominal model and the influence vectors, which are the gradient of the feature vector respect to the emulator parameters, are identified off-line from a number of emulator parameter perturbed experiments. A Kalman filter is designed using the identified nominal model. As the system varies, the Kalman filter model is adapted using the scheduling variables. The residual is employed for fault diagnosis. The proposed scheme is successfully evaluated on simulated system as well as on a physical process control system.

Keywords: identification, linear parameter-varying systems, least-squares estimation, fault diagnosis, Kalman filter, emulators

Procedia PDF Downloads 488
17103 A Study of User Awareness and Attitudes Towards Civil-ID Authentication in Oman’s Electronic Services

Authors: Raya Al Khayari, Rasha Al Jassim, Muna Al Balushi, Fatma Al Moqbali, Said El Hajjar

Abstract:

This study utilizes linear regression analysis to investigate the correlation between user account passwords and the probability of civil ID exposure, offering statistical insights into civil ID security. The study employs multiple linear regression (MLR) analysis to further investigate the elements that influence consumers’ views of civil ID security. This aims to increase awareness and improve preventive measures. The results obtained from the MLR analysis provide a thorough comprehension and can guide specific educational and awareness campaigns aimed at promoting improved security procedures. In summary, the study’s results offer significant insights for improving existing security measures and developing more efficient tactics to reduce risks related to civil ID security in Oman. By identifying key factors that impact consumers’ perceptions, organizations can tailor their strategies to address vulnerabilities effectively. Additionally, the findings can inform policymakers on potential regulatory changes to enhance civil ID security in the country.

Keywords: civil-id disclosure, awareness, linear regression, multiple regression

Procedia PDF Downloads 43
17102 Cars Redistribution Optimization Problem in the Free-Float Car-Sharing

Authors: Amine Ait-Ouahmed, Didier Josselin, Fen Zhou

Abstract:

Free-Float car-sharing is an one-way car-sharing service where cars are available anytime and anywhere in the streets such that no dedicated stations are needed. This means that after driving a car you can park it anywhere. This car-sharing system creates an imbalance car distribution in the cites which can be regulated by staff agents through the redistribution of cars. In this paper, we aim to solve the car-reservation and agents traveling problem so that the number of successful cars’ reservations could be maximized. Beside, we also tend to minimize the distance traveled by agents for cars redistribution. To this end, we present a mixed integer linear programming formulation for the car-sharing problem.

Keywords: one-way car-sharing, vehicle redistribution, car reservation, linear programming

Procedia PDF Downloads 333
17101 In and Out-Of-Sample Performance of Non Simmetric Models in International Price Differential Forecasting in a Commodity Country Framework

Authors: Nicola Rubino

Abstract:

This paper presents an analysis of a group of commodity exporting countries' nominal exchange rate movements in relationship to the US dollar. Using a series of Unrestricted Self-exciting Threshold Autoregressive models (SETAR), we model and evaluate sixteen national CPI price differentials relative to the US dollar CPI. Out-of-sample forecast accuracy is evaluated through calculation of mean absolute error measures on the basis of two-hundred and fifty-three months rolling window forecasts and extended to three additional models, namely a logistic smooth transition regression (LSTAR), an additive non linear autoregressive model (AAR) and a simple linear Neural Network model (NNET). Our preliminary results confirm presence of some form of TAR non linearity in the majority of the countries analyzed, with a relatively higher goodness of fit, with respect to the linear AR(1) benchmark, in five countries out of sixteen considered. Although no model appears to statistically prevail over the other, our final out-of-sample forecast exercise shows that SETAR models tend to have quite poor relative forecasting performance, especially when compared to alternative non-linear specifications. Finally, by analyzing the implied half-lives of the > coefficients, our results confirms the presence, in the spirit of arbitrage band adjustment, of band convergence with an inner unit root behaviour in five of the sixteen countries analyzed.

Keywords: transition regression model, real exchange rate, nonlinearities, price differentials, PPP, commodity points

Procedia PDF Downloads 269
17100 A Combined Error Control with Forward Euler Method for Dynamical Systems

Authors: R. Vigneswaran, S. Thilakanathan

Abstract:

Variable time-stepping algorithms for solving dynamical systems performed poorly for long time computations which pass close to a fixed point. To overcome this difficulty, several authors considered phase space error controls for numerical simulation of dynamical systems. In one generalized phase space error control, a step-size selection scheme was proposed, which allows this error control to be incorporated into the standard adaptive algorithm as an extra constraint at negligible extra computational cost. For this generalized error control, it was already analyzed the forward Euler method applied to the linear system whose coefficient matrix has real and negative eigenvalues. In this paper, this result was extended to the linear system whose coefficient matrix has complex eigenvalues with negative real parts. Some theoretical results were obtained and numerical experiments were carried out to support the theoretical results.

Keywords: adaptivity, fixed point, long time simulations, stability, linear system

Procedia PDF Downloads 304
17099 A Linear Programming Approach to Assist Roster Construction Under a Salary Cap

Authors: Alex Contarino

Abstract:

Professional sports leagues often have a “free agency” period, during which teams may sign players with expiring contracts.To promote parity, many leagues operate under a salary cap that limits the amount teams can spend on player’s salaries in a given year. Similarly, in fantasy sports leagues, salary cap drafts are a popular method for selecting players. In order to sign a free agent in either setting, teams must bid against one another to buy the player’s services while ensuring the sum of their player’s salaries is below the salary cap. This paper models the bidding process for a free agent as a constrained optimization problem that can be solved using linear programming. The objective is to determine the largest bid that a team should offer the player subject to the constraint that the value of signing the player must exceed the value of using the salary cap elsewhere. Iteratively solving this optimization problem for each available free agent provides teams with an effective framework for maximizing the talent on their rosters. The utility of this approach is demonstrated for team sport roster construction and fantasy sport drafts, using recent data sets from both settings.

Keywords: linear programming, optimization, roster management, salary cap

Procedia PDF Downloads 102
17098 Seismic Response Mitigation of Structures Using Base Isolation System Considering Uncertain Parameters

Authors: Rama Debbarma

Abstract:

The present study deals with the performance of Linear base isolation system to mitigate seismic response of structures characterized by random system parameters. This involves optimization of the tuning ratio and damping properties of the base isolation system considering uncertain system parameters. However, the efficiency of base isolator may reduce if it is not tuned to the vibrating mode it is designed to suppress due to unavoidable presence of system parameters uncertainty. With the aid of matrix perturbation theory and first order Taylor series expansion, the total probability concept is used to evaluate the unconditional response of the primary structures considering random system parameters. For this, the conditional second order information of the response quantities are obtained in random vibration framework using state space formulation. Subsequently, the maximum unconditional root mean square displacement of the primary structures is used as the objective function to obtain optimum damping parameters Numerical study is performed to elucidate the effect of parameters uncertainties on the optimization of parameters of linear base isolator and system performance.

Keywords: linear base isolator, earthquake, optimization, uncertain parameters

Procedia PDF Downloads 412
17097 Frequency Identification of Wiener-Hammerstein Systems

Authors: Brouri Adil, Giri Fouad

Abstract:

The problem of identifying Wiener-Hammerstein systems is addressed in the presence of two linear subsystems of structure totally unknown. Presently, the nonlinear element is allowed to be noninvertible. The system identification problem is dealt by developing a two-stage frequency identification method such a set of points of the nonlinearity are estimated first. Then, the frequency gains of the two linear subsystems are determined at a number of frequencies. The method involves Fourier series decomposition and only requires periodic excitation signals. All involved estimators are shown to be consistent.

Keywords: Wiener-Hammerstein systems, Fourier series expansions, frequency identification, automation science

Procedia PDF Downloads 520
17096 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland

Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski

Abstract:

PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.

Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks

Procedia PDF Downloads 131
17095 Active Linear Quadratic Gaussian Secondary Suspension Control of Flexible Bodied Railway Vehicle

Authors: Kaushalendra K. Khadanga, Lee Hee Hyol

Abstract:

Passenger comfort has been paramount in the design of suspension systems of high speed cars. To analyze the effect of vibration on vehicle ride quality, a vertical model of a six degree of freedom railway passenger vehicle, with front and rear suspension, is built. It includes car body flexible effects and vertical rigid modes. A second order linear shaping filter is constructed to model Gaussian white noise into random rail excitation. The temporal correlation between the front and rear wheels is given by a second order Pade approximation. The complete track and the vehicle model are then designed. An active secondary suspension system based on a Linear Quadratic Gaussian (LQG) optimal control method is designed. The results show that the LQG control method reduces the vertical acceleration, pitching acceleration and vertical bending vibration of the car body as compared to the passive system.

Keywords: active suspension, bending vibration, railway vehicle, vibration control

Procedia PDF Downloads 246
17094 Investigation of the Thermal Flow inside the Catalytic Combustor for Lean CH4-Air Mixture on a Platinum Catalyst with H2 Addition

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

In order to elaborate the main idea of investigating the flow physics inside the catalytic combustor, the characteristics of the catalytic surface reactions are analyzed by employing the CHEMKIN methodology with detailed gas and surface chemistries. The presence of a catalyst inside an engine enables complete combustion at lower temperatures which promotes desired chemical reactions. A single channel from the honeycomb monolith catalytic combustor is preferred to analyze the gas and surface reactions in the catalyst bed considering the fact that every channel in the honeycomb monolith behaves in similar fashion. The simplified approach with single catalyst channel using plug flow reactor can be used to predict the flow behavior inside the catalytic combustor. The hydrogen addition to the combustion reactants offers a way to light-off catalytic combustion of methane on platinum catalyst and aids to reduce the surface ignition temperature. Indeed, the hydrogen adsorption is higher on the uncovered Pt(s) surface sites because the sticking coefficient of hydrogen is larger than that of methane. The location of flame position in the catalyst bed is validated by igniting the methane fuel with the presence of hydrogen for corresponding multistep surface reactions.

Keywords: catalytic combustor, hydrogen adsorption, plug flow reactor, surface ignition temperature

Procedia PDF Downloads 338
17093 Iterative Linear Quadratic Regulator (iLQR) vs LQR Controllers for Quadrotor Path Tracking

Authors: Wesam Jasim, Dongbing Gu

Abstract:

This paper presents an iterative linear quadratic regulator optimal control technique to solve the problem of quadrotors path tracking. The dynamic motion equations are represented based on unit quaternion representation and include some modelled aerodynamical effects as a nonlinear part. Simulation results prove the ability and effectiveness of iLQR to stabilize the quadrotor and successfully track different paths. It also shows that iLQR controller outperforms LQR controller in terms of fast convergence and tracking errors.

Keywords: iLQR controller, optimal control, path tracking, quadrotor UAVs

Procedia PDF Downloads 427
17092 Optimal Control of DC Motor Using Linear Quadratic Regulator

Authors: Meetty Tomy, Arxhana G Thosar

Abstract:

This paper provides the implementation of optimal control for an armature-controlled DC motor. The selection of error weighted Matrix and control weighted matrix in order to implement optimal control theory for improving the dynamic behavior of DC motor is presented. The closed loop performance of Armature controlled DC motor with derived linear optimal controller is then evaluated for the transient operating condition (starting). The result obtained from MATLAB is compared with that of PID controller and simple closed loop response of the motor.

Keywords: optimal control, DC motor, performance index, MATLAB

Procedia PDF Downloads 395
17091 Physical Activity and Mental Health: A Cross-Sectional Investigation into the Relationship of Specific Physical Activity Domains and Mental Well-Being

Authors: Katja Siefken, Astrid Junge

Abstract:

Background: Research indicates that physical activity (PA) protects us from developing mental disorders. The knowledge regarding optimal domain, intensity, type, context, and amount of PA promotion for the prevention of mental disorders is sparse and incoherent. The objective of this study is to determine the relationship between PA domains and mental well-being, and whether associations vary by domain, amount, context, intensity, and type of PA. Methods: 310 individuals (age: 25 yrs., SD 7; 73% female) completed a questionnaire on personal patterns of their PA behaviour (IPQA) and their mental health (Centre of Epidemiologic Studies Depression Scale (CES-D), Generalized Anxiety Disorder (GAD-7) scale, the subjective physical well-being (FEW-16)). Linear and multiple regression were used for analysis. Findings: Individuals who met the PA recommendation (N=269) reported higher scores on subjective physical well-being than those who did not meet the PA recommendations (N=41). Whilst vigorous intensity PA predicts subjective well-being (β = .122, p = .028), it also correlates with depression. The more vigorously physically active a person is, the higher the depression score (β = .127, p = .026). The strongest impact of PA on mental well-being can be seen in the transport domain. A positive linear correlation on subjective physical well-being (β =.175, p = .002), and a negative linear correlation for anxiety (β =-.142, p = .011) and depression (β = -.164, p = .004) was found. Multiple regression analysis indicates similar results: Time spent in active transport on the bicycle significantly lowers anxiety and depression scores and enhances subjective physical well-being. The more time a participant spends using the bicycle for transport, the lower the depression (β = -.143, p = .013) and anxiety scores (β = -.111,p = .050). Conclusions: Meeting the PA recommendations enhances subjective physical well-being. Active transport has a substantial impact on mental well-being. Findings have implications for policymakers, employers, public health experts and civil society. A stronger focus on the promotion and protection of health through active transport is recommended. Inter-sectoral exchange, outside the health sector, is required. Health systems must engage other sectors in adopting policies that maximize possible health gains.

Keywords: active transport, mental well-being, health promotion, psychological disorders

Procedia PDF Downloads 310
17090 The Effect of Addition of Dioctyl Terephthalate and Calcite on the Tensile Properties of Organoclay/Linear Low Density Polyethylene Nanocomposites

Authors: A. Gürses, Z. Eroğlu, E. Şahin, K. Güneş, Ç. Doğar

Abstract:

In recent years, polymer/clay nanocomposites have generated great interest in the polymer industry as a new type of composite material because of their superior properties, which includes high heat deflection temperature, gas barrier performance, dimensional stability, enhanced mechanical properties, optical clarity and flame retardancy when compared with the pure polymer or conventional composites. The investigation of change of the tensile properties of organoclay/linear low density polyethylene (LLDPE) nanocomposites with the use of Dioctyl terephthalate (DOTP) (as plasticizer) and calcite (as filler) has been aimed. The composites and organoclay synthesized were characterized using the techniques such as XRD, HRTEM and FTIR techniques. The spectroscopic results indicate that platelets of organoclay were well dispersed within the polymeric matrix. The tensile properties of the composites were compared considering the stress-strain curve drawn for each composite and pure polymer. It was observed that the composites prepared by adding the plasticizer at different ratios and a certain amount of calcite exhibited different tensile behaviors compared to pure polymer.

Keywords: linear low density polyethylene, nanocomposite, organoclay, plasticizer

Procedia PDF Downloads 279
17089 Identifying Autism Spectrum Disorder Using Optimization-Based Clustering

Authors: Sharifah Mousli, Sona Taheri, Jiayuan He

Abstract:

Autism spectrum disorder (ASD) is a complex developmental condition involving persistent difficulties with social communication, restricted interests, and repetitive behavior. The challenges associated with ASD can interfere with an affected individual’s ability to function in social, academic, and employment settings. Although there is no effective medication known to treat ASD, to our best knowledge, early intervention can significantly improve an affected individual’s overall development. Hence, an accurate diagnosis of ASD at an early phase is essential. The use of machine learning approaches improves and speeds up the diagnosis of ASD. In this paper, we focus on the application of unsupervised clustering methods in ASD as a large volume of ASD data generated through hospitals, therapy centers, and mobile applications has no pre-existing labels. We conduct a comparative analysis using seven clustering approaches such as K-means, agglomerative hierarchical, model-based, fuzzy-C-means, affinity propagation, self organizing maps, linear vector quantisation – as well as the recently developed optimization-based clustering (COMSEP-Clust) approach. We evaluate the performances of the clustering methods extensively on real-world ASD datasets encompassing different age groups: toddlers, children, adolescents, and adults. Our experimental results suggest that the COMSEP-Clust approach outperforms the other seven methods in recognizing ASD with well-separated clusters.

Keywords: autism spectrum disorder, clustering, optimization, unsupervised machine learning

Procedia PDF Downloads 99
17088 Linear Stability of Convection in an Inclined Channel with Nanofluid Saturated Porous Medium

Authors: D. Srinivasacharya, Nidhi Humnekar

Abstract:

The goal of this research is to numerically investigate the convection of nanofluid flow in an inclined porous channel. Brownian motion and thermophoresis effects are accounted for by nanofluid. In addition, the flow in the porous region governs Brinkman’s equation. The perturbed state of the generalized eigenvalue problem is obtained using normal mode analysis, and Chebyshev spectral collocation was used to solve this problem. For various values of the governing parameters, the critical wavenumber and critical Rayleigh number are calculated, and preferred modes are identified.

Keywords: Brinkman model, inclined channel, nanofluid, linear stability, porous media

Procedia PDF Downloads 102
17087 Representation of the Solution of One Dynamical System on the Plane

Authors: Kushakov Kholmurodjon, Muhammadjonov Akbarshox

Abstract:

This present paper is devoted to a system of second-order nonlinear differential equations with a special right-hand side, exactly, the linear part and a third-order polynomial of a special form. It is shown that for some relations between the parameters, there is a second-order curve in which trajectories leaving the points of this curve remain in the same place. Thus, the curve is invariant with respect to the given system. Moreover, this system is invariant under a non-degenerate linear transformation of variables. The form of this curve, depending on the relations between the parameters and the eigenvalues of the matrix, is proved. All solutions of this system of differential equations are shown analytically.

Keywords: dynamic system, ellipse, hyperbola, Hess system, polar coordinate system

Procedia PDF Downloads 184
17086 Prediction of Road Accidents in Qatar by 2022

Authors: M. Abou-Amouna, A. Radwan, L. Al-kuwari, A. Hammuda, K. Al-Khalifa

Abstract:

There is growing concern over increasing incidences of road accidents and consequent loss of human life in Qatar. In light to the future planned event in Qatar, World Cup 2022; Qatar should put into consideration the future deaths caused by road accidents, and past trends should be considered to give a reasonable picture of what may happen in the future. Qatar roads should be arranged and paved in a way that accommodate high capacity of the population in that time, since then there will be a huge number of visitors from the world. Qatar should also consider the risk issues of road accidents raised in that period, and plan to maintain high level to safety strategies. According to the increase in the number of road accidents in Qatar from 1995 until 2012, an analysis of elements affecting and causing road accidents will be effectively studied. This paper aims to identify and criticize the factors that have high effect on causing road accidents in the state of Qatar, and predict the total number of road accidents in Qatar 2022. Alternative methods are discussed and the most applicable ones according to the previous researches are selected for further studies. The methods that satisfy the existing case in Qatar were the multiple linear regression model (MLR) and artificial neutral network (ANN). Those methods are analyzed and their findings are compared. We conclude that by using MLR the number of accidents in 2022 will become 355,226 accidents, and by using ANN 216,264 accidents. We conclude that MLR gave better results than ANN because the artificial neutral network doesn’t fit data with large range varieties.

Keywords: road safety, prediction, accident, model, Qatar

Procedia PDF Downloads 244
17085 Aggregate Production Planning Framework in a Multi-Product Factory: A Case Study

Authors: Ignatio Madanhire, Charles Mbohwa

Abstract:

This study looks at the best model of aggregate planning activity in an industrial entity and uses the trial and error method on spreadsheets to solve aggregate production planning problems. Also linear programming model is introduced to optimize the aggregate production planning problem. Application of the models in a furniture production firm is evaluated to demonstrate that practical and beneficial solutions can be obtained from the models. Finally some benchmarking of other furniture manufacturing industries was undertaken to assess relevance and level of use in other furniture firms

Keywords: aggregate production planning, trial and error, linear programming, furniture industry

Procedia PDF Downloads 540
17084 An Overview of Posterior Fossa Associated Pathologies and Segmentation

Authors: Samuel J. Ahmad, Michael Zhu, Andrew J. Kobets

Abstract:

Segmentation tools continue to advance, evolving from manual methods to automated contouring technologies utilizing convolutional neural networks. These techniques have evaluated ventricular and hemorrhagic volumes in the past but may be applied in novel ways to assess posterior fossa-associated pathologies such as Chiari malformations. Herein, we summarize literature pertaining to segmentation in the context of this and other posterior fossa-based diseases such as trigeminal neuralgia, hemifacial spasm, and posterior fossa syndrome. A literature search for volumetric analysis of the posterior fossa identified 27 papers where semi-automated, automated, manual segmentation, linear measurement-based formulas, and the Cavalieri estimator were utilized. These studies produced superior data than older methods utilizing formulas for rough volumetric estimations. The most commonly used segmentation technique was semi-automated segmentation (12 studies). Manual segmentation was the second most common technique (7 studies). Automated segmentation techniques (4 studies) and the Cavalieri estimator (3 studies), a point-counting method that uses a grid of points to estimate the volume of a region, were the next most commonly used techniques. The least commonly utilized segmentation technique was linear measurement-based formulas (1 study). Semi-automated segmentation produced accurate, reproducible results. However, it is apparent that there does not exist a single semi-automated software, open source or otherwise, that has been widely applied to the posterior fossa. Fully-automated segmentation via such open source software as FSL and Freesurfer produced highly accurate posterior fossa segmentations. Various forms of segmentation have been used to assess posterior fossa pathologies and each has its advantages and disadvantages. According to our results, semi-automated segmentation is the predominant method. However, atlas-based automated segmentation is an extremely promising method that produces accurate results. Future evolution of segmentation technologies will undoubtedly yield superior results, which may be applied to posterior fossa related pathologies. Medical professionals will save time and effort analyzing large sets of data due to these advances.

Keywords: chiari, posterior fossa, segmentation, volumetric

Procedia PDF Downloads 98
17083 Quality Parameters of Offset Printing Wastewater

Authors: Kiurski S. Jelena, Kecić S. Vesna, Aksentijević M. Snežana

Abstract:

Samples of tap and wastewater were collected in three offset printing facilities in Novi Sad, Serbia. Ten physicochemical parameters were analyzed within all collected samples: pH, conductivity, m - alkalinity, p - alkalinity, acidity, carbonate concentration, hydrogen carbonate concentration, active oxygen content, chloride concentration and total alkali content. All measurements were conducted using the standard analytical and instrumental methods. Comparing the obtained results for tap water and wastewater, a clear quality difference was noticeable, since all physicochemical parameters were significantly higher within wastewater samples. The study also involves the application of simple linear regression analysis on the obtained dataset. By using software package ORIGIN 5 the pH value was mutually correlated with other physicochemical parameters. Based on the obtained values of Pearson coefficient of determination a strong positive correlation between chloride concentration and pH (r = -0.943), as well as between acidity and pH (r = -0.855) was determined. In addition, statistically significant difference was obtained only between acidity and chloride concentration with pH values, since the values of parameter F (247.634 and 182.536) were higher than Fcritical (5.59). In this way, results of statistical analysis highlighted the most influential parameter of water contamination in offset printing, in the form of acidity and chloride concentration. The results showed that variable dependence could be represented by the general regression model: y = a0 + a1x+ k, which further resulted with matching graphic regressions.

Keywords: pollution, printing industry, simple linear regression analysis, wastewater

Procedia PDF Downloads 226
17082 An Analytical Method for Maintenance Cost Estimating Relationships of Helicopters Using Linear Programming

Authors: Meesun Sun, Yongmin Kim

Abstract:

Estimating maintenance cost is crucial in defense management because it affects military budgets and availability of equipment. When it comes to estimating maintenance cost of the deployed equipment, time series forecasting can be applied with the actual historical cost data. It is more difficult issue to estimate maintenance cost of new equipment for which the actual costs are not provided. In this underlying context, this study proposes an analytical method for maintenance cost estimating relationships (CERs) development of helicopters using linear programming. The CERs can be applied to a new helicopter because they use non-cost independent variables such as the number of engines, the empty weight and so on. In the Republic of Korea, the maintenance cost of new equipment has been usually estimated by reflecting maintenance cost to unit price ratio of the legacy equipment. This study confirms that the CERs perform well for the 10 types of airmobile helicopters in terms of mean absolute percentage error by applying leave-one-out cross-validation. The suggested method is very useful to estimate the maintenance cost of new equipment and can help in the affordability assessment of acquisition program portfolios for total life cycle systems management.

Keywords: affordability analysis, cost estimating relationship, helicopter, linear programming, maintenance cost

Procedia PDF Downloads 128
17081 Testing of Protective Coatings on Automotive Steel, a Correlation Between Salt Spray, Electrochemical Impedance Spectroscopy, and Linear Polarization Resistance Test

Authors: Dhanashree Aole, V. Hariharan, Swati Surushe

Abstract:

Corrosion can cause serious and expensive damage to the automobile components. Various proven techniques for controlling and preventing corrosion depend on the specific material to be protected. Electrochemical Impedance Spectroscopy (EIS) and salt spray tests are commonly used to assess the corrosion degradation mechanism of coatings on metallic surfaces. While, the only test which monitors the corrosion rate in real time is known as Linear Polarisation Resistance (LPR). In this study, electrochemical tests (EIS & LPR) and spray test are reviewed to assess the corrosion resistance and durability of different coatings. The main objective of this study is to correlate the test results obtained using linear polarization resistance (LPR) and Electrochemical Impedance Spectroscopy (EIS) with the results obtained using standard salt spray test. Another objective of this work is to evaluate the performance of various coating systems- CED, Epoxy, Powder coating, Autophoretic, and Zn-trivalent coating for vehicle underbody application. The corrosion resistance coating are assessed. From this study, a promising correlation between different corrosion testing techniques is noted. The most profound observation is that electrochemical tests gives quick estimation of corrosion resistance and can detect the degradation of coatings well before visible signs of damage appear. Furthermore, the corrosion resistances and salt spray life of the coatings investigated were found to be according to the order as follows- CED> powder coating > Autophoretic > epoxy coating > Zn- Trivalent plating.

Keywords: Linear Polarization Resistance (LPR), Electrochemical Impedance Spectroscopy (EIS), salt spray test, sacrificial and barrier coatings

Procedia PDF Downloads 512
17080 2D Convolutional Networks for Automatic Segmentation of Knee Cartilage in 3D MRI

Authors: Ananya Ananya, Karthik Rao

Abstract:

Accurate segmentation of knee cartilage in 3-D magnetic resonance (MR) images for quantitative assessment of volume is crucial for studying and diagnosing osteoarthritis (OA) of the knee, one of the major causes of disability in elderly people. Radiologists generally perform this task in slice-by-slice manner taking 15-20 minutes per 3D image, and lead to high inter and intra observer variability. Hence automatic methods for knee cartilage segmentation are desirable and are an active field of research. This paper presents design and experimental evaluation of 2D convolutional neural networks based fully automated methods for knee cartilage segmentation in 3D MRI. The architectures are validated based on 40 test images and 60 training images from SKI10 dataset. The proposed methods segment 2D slices one by one, which are then combined to give segmentation for whole 3D images. Proposed methods are modified versions of U-net and dilated convolutions, consisting of a single step that segments the given image to 5 labels: background, femoral cartilage, tibia cartilage, femoral bone and tibia bone; cartilages being the primary components of interest. U-net consists of a contracting path and an expanding path, to capture context and localization respectively. Dilated convolutions lead to an exponential expansion of receptive field with only a linear increase in a number of parameters. A combination of modified U-net and dilated convolutions has also been explored. These architectures segment one 3D image in 8 – 10 seconds giving average volumetric Dice Score Coefficients (DSC) of 0.950 - 0.962 for femoral cartilage and 0.951 - 0.966 for tibia cartilage, reference being the manual segmentation.

Keywords: convolutional neural networks, dilated convolutions, 3 dimensional, fully automated, knee cartilage, MRI, segmentation, U-net

Procedia PDF Downloads 246
17079 Real Estate Trend Prediction with Artificial Intelligence Techniques

Authors: Sophia Liang Zhou

Abstract:

For investors, businesses, consumers, and governments, an accurate assessment of future housing prices is crucial to critical decisions in resource allocation, policy formation, and investment strategies. Previous studies are contradictory about macroeconomic determinants of housing price and largely focused on one or two areas using point prediction. This study aims to develop data-driven models to accurately predict future housing market trends in different markets. This work studied five different metropolitan areas representing different market trends and compared three-time lagging situations: no lag, 6-month lag, and 12-month lag. Linear regression (LR), random forest (RF), and artificial neural network (ANN) were employed to model the real estate price using datasets with S&P/Case-Shiller home price index and 12 demographic and macroeconomic features, such as gross domestic product (GDP), resident population, personal income, etc. in five metropolitan areas: Boston, Dallas, New York, Chicago, and San Francisco. The data from March 2005 to December 2018 were collected from the Federal Reserve Bank, FBI, and Freddie Mac. In the original data, some factors are monthly, some quarterly, and some yearly. Thus, two methods to compensate missing values, backfill or interpolation, were compared. The models were evaluated by accuracy, mean absolute error, and root mean square error. The LR and ANN models outperformed the RF model due to RF’s inherent limitations. Both ANN and LR methods generated predictive models with high accuracy ( > 95%). It was found that personal income, GDP, population, and measures of debt consistently appeared as the most important factors. It also showed that technique to compensate missing values in the dataset and implementation of time lag can have a significant influence on the model performance and require further investigation. The best performing models varied for each area, but the backfilled 12-month lag LR models and the interpolated no lag ANN models showed the best stable performance overall, with accuracies > 95% for each city. This study reveals the influence of input variables in different markets. It also provides evidence to support future studies to identify the optimal time lag and data imputing methods for establishing accurate predictive models.

Keywords: linear regression, random forest, artificial neural network, real estate price prediction

Procedia PDF Downloads 94
17078 Construction and Performance of Nanocomposite-Based Electrochemical Biosensor

Authors: Jianfang Wang, Xianzhe Chen, Zhuoliang Liu, Cheng-An Tao, Yujiao Li

Abstract:

Organophosphorus (OPs) pesticide used as insecticides are widely used in agricultural pest control, household and storage deworming. The detection of pesticides needs more simple and efficient methods. One of the best ways is to make electrochemical biosensors. In this paper, an electrochemical enzyme biosensor based on acetylcholine esterase (AChE) was constructed, and its sensing properties and sensing mechanisms were studied. Reduced graphene oxide-polydopamine complexes (RGO-PDA), gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) were prepared firstly and composited with AChE and chitosan (CS), then fixed on the glassy carbon electrode (GCE) surface to construct the biosensor GCE/RGO-PDA-AuNPs-AgNPs-AChE-CS by one-pot method. The results show that graphene oxide (GO) can be reduced by dopamine (DA) and dispersed well in RGO-PDA complexes. And the composites have a synergistic catalysis effect and can improve the surface resistance of GCE. The biosensor selectively can detect acetylcholine (ACh) and OPs pesticide with good linear range and high sensitivity. The performance of the biosensor is affected by the ratio and adding ways of AChE and the adding of AuNPs and AChE. And the biosensor can achieve a detection limit of 2.4 ng/L for methyl parathion and a wide linear detection range of 0.02 ng/L ~ 80 ng/L, and has excellent stability, good anti-interference ability, and excellent preservation performance, indicating that the sensor has practical value.

Keywords: acetylcholine esterase, electrochemical biosensor, nanoparticles, organophosphates, reduced graphene oxide

Procedia PDF Downloads 100
17077 Risk Factors for High Resistance of Ciprofloxacin Against Escherichia coli in Complicated Urinary Tract Infection

Authors: Liaqat Ali, Khalid Farooq, Shafieullah Khan, Nasir Orakzai, Qudratullah

Abstract:

Objectives: To determine the risk factors for high resistance of ciprofloxacin in complicated urinary tract infections. Materials and Methods: It is an analytical study that was conducted in the department of Urology (Team ‘C’) at Institute of Kidney Diseases Hayatabad Peshawar from 1st June 2012 till 31st December 2012. Total numbers of 100 patients with complicated UTI was selected in the study. Multivariate analysis and linear regression were performed for the detection of risk factors. All the data was recorded on structured Proforma and was analyzed on SPSS version 17. Results: The mean age of the patient was 55.6 years (Range 3-82 years). 62 patients were male while 38 patients were female. 66 isolates of E-Coli were found sensitive to ciprofloxacin while 34 isolates were found Resistant for ciprofloxacin. Using multivariate analysis and linear regression, an increasing age above 50 (p=0.002) History of urinary catheterization especially for bladder outflow obstruction (p=0.001) and previous multiple use of ciprofloxacin (p=0.001) and poor brand of ciprofloxacin were found to be independent risk factors for high resistance of ciprofloxacin. Conclusion: UTI is common illness across the globe with increasing trend of antimicrobial resistance for ciprofloxacin against E Coli in complicated UTI. The risk factors for emerging resistance are increasing age, urinary catheterization and multiple use and poor brand of ciprofloxacin.

Keywords: urinary tract infection, ciprofloxacin, urethral catheterization, antimicrobial resistance

Procedia PDF Downloads 337
17076 Machine Learning Techniques in Seismic Risk Assessment of Structures

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.

Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine

Procedia PDF Downloads 92
17075 Solving the Transportation Problem for Warehouses and Dealers in Bangalore City

Authors: S. Aditya, K. T. Nideesh, N. Guruprasad

Abstract:

Being a subclass of linear programing problem, the Transportation Problem is a classic Operations Research problem where the objective is to determine the schedule for transporting goods from source to destination in a way that minimizes the shipping cost while satisfying supply and demand constraints. In this paper, we are representing the transportation problem for various warehouses along with various dealers situated in Bangalore city to reduce the transportation cost incurred by them as of now. The problem is solved by obtaining the Initial Basic feasible Solution through various methods and further proceeding to obtain optimal cost.

Keywords: NW method, optimum utilization, transportation problem, Vogel’s approximation method

Procedia PDF Downloads 424