Search results for: equivalent circuit
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1586

Search results for: equivalent circuit

1166 Estimation of Hysteretic Damping in Steel Dual Systems with Buckling Restrained Brace and Moment Resisting Frame

Authors: Seyed Saeid Tabaee, Omid Bahar

Abstract:

Nowadays, using energy dissipation devices has been commonly used in structures. A high rate of energy absorption during earthquakes is the benefit of using such devices, which results in damage reduction of structural elements specifically columns. The hysteretic damping capacity of energy dissipation devices is the key point that it may adversely complicate analysis and design of such structures. This effect may be generally represented by equivalent viscous damping. The equivalent viscous damping may be obtained from the expected hysteretic behavior under the design or maximum considered displacement of a structure. In this paper, the hysteretic damping coefficient of a steel moment resisting frame (MRF), which its performance is enhanced by a buckling restrained brace (BRB) system has been evaluated. Having the foresight of damping fraction between BRB and MRF is inevitable for seismic design procedures like Direct Displacement-Based Design (DDBD) method. This paper presents an approach to calculate the damping fraction for such systems by carrying out the dynamic nonlinear time history analysis (NTHA) under harmonic loading, which is tuned to the natural frequency of the system. Two steel moment frame structures, one equipped with BRB, and the other without BRB are simultaneously studied. The extensive analysis shows that proportion of each system damping fraction may be calculated by its shear story portion. In this way, the contribution of each BRB in the floors and their general contribution in the structural performance may be clearly recognized, in advance.

Keywords: buckling restrained brace, direct displacement based design, dual systems, hysteretic damping, moment resisting frames

Procedia PDF Downloads 434
1165 Quantifying Temporal Variation of Volatile Organic Compounds and Their Ozone Forming Potential at Rural Atmosphere in Delhi

Authors: Amit Kumar, Bhupendra Pratap Singh, Manoj Singh, Monika Punia, Krishan Kumar, V. K. Jain

Abstract:

Ambient concentrations of volatile organic compounds (VOCs) were investigated in order to find out temporal variations and their ozone forming potentials (OFP) at rural site in Delhi National Capital Region during summer 2013. Sampling was performed for continuous five days, to identify the differences in working days and weekend VOCs concentration levels. Sampling and analytical procedure for VOCs were done using National Institute for Occupational Safety and Health (NIOSH) standard method. On each sampling day, VOCs samples were collected for 3-hours in the morning, afternoon and evening. There has been observed a noticeable contrast in the concentration of VOCs levels between working days and weekend. However, most of the VOCs showed diurnal fluctuations with higher concentrations in the morning and evening as compared to afternoon which might be due to change in meteorology. The results showed that mean toluene/benzene and m-/p-xylene/benzene ratios were higher in the afternoon while it was lower during morning and evening. The relative contribution of the VOCs to ozone formation, total propylene equivalent concentrations and OFP were calculated. Toluene was the most contributing organic contaminant to ozone formation as well as ambient VOCs concentrations. Results obtained in current study demonstrate that ozone formation at rural site in Delhi is probably limited by the emissions of VOCs.

Keywords: VOCs, rural, NIOSH, ozone forming potential, propylene equivalent concentration

Procedia PDF Downloads 529
1164 Microvoid Growth in the Interfaces during Aging

Authors: Jae-Yong Park, Gwancheol Seo, Young-Ho Kim

Abstract:

Microvoids, sometimes called Kikendall voids, generally form in the interfaces between Sn-based solders and Cu and degrade the mechanical and electrical properties of the solder joints. The microvoid formation is known as the rapid interdiffusion between Sn and Cu and impurity content in the Cu. Cu electroplating from the acid solutions has been widely used by microelectronic packaging industry for both printed circuit board (PCB) and integrated circuit (IC) applications. The quality of electroplated Cu that can be optimized by the electroplating conditions is critical for the solder joint reliability. In this paper, the influence of electroplating conditions on the microvoid growth in the interfaces between Sn-3.0Ag-0.5Cu (SAC) solder and Cu layer was investigated during isothermal aging. The Cu layers were electroplated by controlling the additive of electroplating bath and current density to induce various microvoid densities. The electroplating bath consisted of sulfate, sulfuric acid, and additives and the current density of 5-15 mA/cm2 for each bath was used. After aging at 180 °C for up to 250 h, typical bi-layer of Cu6Sn5 and Cu3Sn intermetallic compounds (IMCs) was gradually growth at the SAC/Cu interface and microvoid density in the Cu3Sn showed disparities in the electroplating conditions. As the current density increased, the microvoid formation was accelerated in all electroplating baths. The higher current density induced, the higher impurity content in the electroplated Cu. When the polyethylene glycol (PEG) and Cl- ion were mixed in an electroplating bath, the microvoid formation was the highest compared to other electroplating baths. On the other hand, the overall IMC thickness was similar in all samples irrespective of the electroplating conditions. Impurity content in electroplated Cu influenced the microvoid growth, but the IMC growth was not affected by the impurity content. In conclusion, the electroplated conditions are properly optimized to avoid the excessive microvoid formation that results in brittle fracture of solder joint under high strain rate loading.

Keywords: electroplating, additive, microvoid, intermetallic compound

Procedia PDF Downloads 259
1163 Application of Electrochemical Impedance Spectroscopy to Monitor the Steel/Soil Interface During Cathodic Protection of Steel in Simulated Soil Solution

Authors: Mandlenkosi George Robert Mahlobo, Tumelo Seadira, Major Melusi Mabuza, Peter Apata Olubambi

Abstract:

Cathodic protection (CP) has been widely considered a suitable technique for mitigating corrosion of buried metal structures. Plenty of efforts have been made in developing techniques, in particular non-destructive techniques, for monitoring and quantifying the effectiveness of CP to ensure the sustainability and performance of buried steel structures. The aim of this study was to investigate the evolution of the electrochemical processes at the steel/soil interface during the application of CP on steel in simulated soil. Carbon steel was subjected to electrochemical tests with NS4 solution used as simulated soil conditions for 4 days before applying CP for a further 11 days. A previously modified non-destructive voltammetry technique was applied before and after the application of CP to measure the corrosion rate. Electrochemical impedance spectroscopy (EIS), in combination with mathematical modeling through equivalent electric circuits, was applied to determine the electrochemical behavior at the steel/soil interface. The measured corrosion rate was found to have decreased from 410 µm/yr to 8 µm/yr between days 5 and 14 because of the applied CP. Equivalent electrical circuits were successfully constructed and used to adequately model the EIS results. The modeling of the obtained EIS results revealed the formation of corrosion products via a mixed activation-diffusion mechanism during the first 4 days, while the activation mechanism prevailed in the presence of CP, resulting in a protective film. The x-ray diffraction analysis confirmed the presence of corrosion products and the predominant protective film corresponding to the calcareous deposit.

Keywords: carbon steel, cathodic protection, NS4 solution, voltammetry, EIS

Procedia PDF Downloads 64
1162 Study Employed a Computer Model and Satellite Remote Sensing to Evaluate the Temporal and Spatial Distribution of Snow in the Western Hindu Kush Region of Afghanistan

Authors: Noori Shafiqullah

Abstract:

Millions of people reside downstream of river basins that heavily rely on snowmelt originating from the Hindu Kush (HK) region. Snowmelt plays a critical role as a primary water source in these areas. This study aimed to evaluate snowfall and snowmelt characteristics in the HK region across altitudes ranging from 2019m to 4533m. To achieve this, the study employed a combination of remote sensing techniques and the Snow Model (SM) to analyze the spatial and temporal distribution of Snow Water Equivalent (SWE). By integrating the simulated Snow-cover Area (SCA) with data from the Moderate Resolution Imaging Spectroradiometer (MODIS), the study optimized the Precipitation Gradient (PG), snowfall assessment, and the degree-day factor (DDF) for snowmelt distribution. Ground observed data from various elevations were used to calculate a temperature lapse rate of -7.0 (°C km-1). Consequently, the DDF value was determined as 3 (mm °C-1 d-1) for altitudes below 3000m and 3 to 4 (mm °C-1 d-1) for higher altitudes above 3000m. Moreover, the distribution of precipitation varies with elevation, with the PG being 0.001 (m-1) at lower elevations below 4000m and 0 (m-1) at higher elevations above 4000m. This study successfully utilized the SM to assess SCA and SWE by incorporating the two optimized parameters. The analysis of simulated SCA and MODIS data yielded coefficient determinations of R2, resulting in values of 0.95 and 0.97 for the years 2014-2015, 2015-2016, and 2016-2017, respectively. These results demonstrate that the SM is a valuable tool for managing water resources in mountainous watersheds such as the HK, where data scarcity poses a challenge."

Keywords: improved MODIS, experiment, snow water equivalent, snowmelt

Procedia PDF Downloads 69
1161 Construction and Optimization of Green Infrastructure Network in Mountainous Counties Based on Morphological Spatial Pattern Analysis and Minimum Cumulative Resistance Models: A Case Study of Shapingba District, Chongqing

Authors: Yuning Guan

Abstract:

Under the background of rapid urbanization, mountainous counties need to break through mountain barriers for urban expansion due to undulating topography, resulting in ecological problems such as landscape fragmentation and reduced biodiversity. Green infrastructure networks are constructed to alleviate the contradiction between urban expansion and ecological protection, promoting the healthy and sustainable development of urban ecosystems. This study applies the MSPA model, the MCR model and Linkage Mapper Tools to identify eco-sources and eco-corridors in the Shapingba District of Chongqing and combined with landscape connectivity assessment and circuit theory to delineate the importance levels to extract ecological pinch point areas on the corridors. The results show that: (1) 20 ecological sources are identified, with a total area of 126.47 km², accounting for 31.88% of the study area, and showing a pattern of ‘one core, three corridors, multi-point distribution’. (2) 37 ecological corridors are formed in the area, with a total length of 62.52km, with a ‘more in the west, less in the east’ pattern. (3) 42 ecological pinch points are extracted, accounting for 25.85% of the length of the corridors, which are mainly distributed in the eastern new area. Accordingly, this study proposes optimization strategies for sub-area protection of ecological sources, grade-level construction of ecological corridors, and precise restoration of ecological pinch points.

Keywords: green infrastructure network, morphological spatial pattern, minimal cumulative resistance, mountainous counties, circuit theory, shapingba district

Procedia PDF Downloads 43
1160 Antioxidant Activity of the Methanolic Extract and Antimicrobial Activity of the Essential Oil of Rosmarinus officinalis L. Grown in Algeria

Authors: Nassim Belkacem, Amina Azzam, Dalila Haouchine, Kahina Bennacer, Samira Soufit

Abstract:

Objective: To evaluate the antioxidant activity of the methanolic extract along with the antimicrobial activity of the essential oil of the aerial parts of Rosmarinus officinalis L. collected in the region of Bejaia (northern center of Algeria). Materials and methods: The polyphenols and flavonoids contents of the methanolic extract were measured. The antioxidant activity was evaluated using two methods: the ABTS method and DPPH assay. The antimicrobial activity was studied by the agar diffusion method against five bacterial strains (Three Gram positive strains and two Gram negative strains) and one fungus. Results: The total polyphenol and flavonoid content was about 43.8 mg gallic acid equivalent per gram (GA Eq/g) and 7.04 mg quercetin equivalent per gram (Q Eq/g), respectively. In the ABTS assay, the rosemary extract has shown an inhibition of 98.02% at the concentration of 500ug/ml with a half maximal inhibitory concentration value (IC50) of 194.92ug/ml. The results of DPPH assay have shown that the rosemary extract has an inhibition of 94.67 % with an IC50 value of 17.87ug/ml, which is lower than that of Butylhydroxyanisol (BHA) about 6.03ug/ml and ascorbic acid about 1.24μg/ml. The yield in essential oil of rosemary obtained by hydrodistillation was 1.42%. Based on the determination of the diameter of inhibition, different antimicrobial activity of the essential oil was revealed against the six tested microbes. Escherichia coli from the University Hospital (UH), Streptococcus aureus (UH) and Pseudomonas aeruginosa ATCC have a minimum inhibitory concentration value (MIC) of 62.5µl/ml. However, Bacillus sp (UH) and Staphylococcus aureus ATCC have an MIC value of 125μl/ml. The inhibition zone against Candida sp was about 24 mm. The aromatograms showed that the essential oil of rosemary exercises an antifungal activity more important than the antibacterial one.

Keywords: Rosmarinus officinalis L., maceration, essential oil, antioxidant, antimicrobial activity

Procedia PDF Downloads 521
1159 Lateral Torsional Buckling Resistance of Trapezoidally Corrugated Web Girders

Authors: Annamária Käferné Rácz, Bence Jáger, Balázs Kövesdi, László Dunai

Abstract:

Due to the numerous advantages of steel corrugated web girders, its application field is growing for bridges as well as for buildings. The global stability behavior of such girders is significantly larger than those of conventional I-girders with flat web, thus the application of the structural steel material can be significantly reduced. Design codes and specifications do not provide clear and complete rules or recommendations for the determination of the lateral torsional buckling (LTB) resistance of corrugated web girders. Therefore, the authors made a thorough investigation regarding the LTB resistance of the corrugated web girders. Finite element (FE) simulations have been performed to develop new design formulas for the determination of the LTB resistance of trapezoidally corrugated web girders. FE model is developed considering geometrical and material nonlinear analysis using equivalent geometric imperfections (GMNI analysis). The equivalent geometric imperfections involve the initial geometric imperfections and residual stresses coming from rolling, welding and flame cutting. Imperfection sensitivity analysis was performed to determine the necessary magnitudes regarding only the first eigenmodes shape imperfections. By the help of the validated FE model, an extended parametric study is carried out to investigate the LTB resistance for different trapezoidal corrugation profiles. First, the critical moment of a specific girder was calculated by FE model. The critical moments from the FE calculations are compared to the previous analytical calculation proposals. Then, nonlinear analysis was carried out to determine the ultimate resistance. Due to the numerical investigations, new proposals are developed for the determination of the LTB resistance of trapezoidally corrugated web girders through a modification factor on the design method related to the conventional flat web girders.

Keywords: corrugated web, lateral torsional buckling, critical moment, FE modeling

Procedia PDF Downloads 283
1158 Sol-Gel Coated Fabric for Controlled Release of Mosquito Repellent

Authors: Bhaskar M. Murai, Neeraj Banchor, Ishveen Chabbra, Madhusudhan Nadgir, S. Vidhya

Abstract:

Sol-gel technology combined with electronics and biochemistry helps to overcome the problems caused by mosquitoes by developing a portable, low-cost device which enables controlled release of trapped compound inside it. It is a wet-chemical technique which is used primarily for fabrication of silicate gel which is usually allowed to dry as per requirement. The outcome is solid rock hard material which is porous and has lots of applications in different fields. Taking porosity as a key factor, allethrin a naturally occurring synthetic compound with molecular mass 302.40 was entrapped inside the sol-gel matrix as a dopant. Allethrin is commonly used as an insecticide and is a key ingredient in commercially available mosquitoes repellent in Asian and subtropical countries. It has low toxicity for humans and birds, and are used in many household insecticides such as RAID as well as mosquito coils. They are however highly toxic to fish and bees. Insects subject to its exposure become paralyzed (nervous system effect) before dying. They are also used as an ultra-low volume spray for outdoor mosquito control. Therefore, there is a need for controlled release of allethrin in the environment. For controlled release of allethrin from sol-gel matrix, its (allethrin) we utilized temperature based controlled evaporation through porous sol-gel. Different types of fabric like cotton, Terri-cotton, polyester, surgical cap, knee-cap etc are studied and the best with maximum absorption capacity is selected to hold the sol-gel matrix with maximum quantity. For sol-gel coating 2 x 2cm cloth pieces are dipped in sol-gel solution for 10 minutes and by calculating the weight difference we concluded that Terri cotton is best suitable for our project. An electronic circuit with heating plate is developed in to test the controlled release of compound. An oscillatory circuit is used to produce the required heat.

Keywords: sol-gel, allethrin, TEOS, biochemistry

Procedia PDF Downloads 375
1157 Protective Effect of Rosemary Extract against Toxicity Induced by Egyptian Naja haje Venom

Authors: Walaa H. Salama, Azza M. Abdel-Aty, Afaf S. Fahmy

Abstract:

Background: Egyptian Cobra; Naja haje (Elapidae) is one of most common snakes, widely distributed in Egypt and its envenomation causes multi-organ failure leading to rapid death. Thus, Different medicinal plants showed a protective effect against venom toxicity and may complement the conventional antivenom therapy. Aim: The present study was designed to assess both the antioxidant capacity of methanolic extract of rosemary leaves and evaluate the neutralizing ability of the extract against hepatotoxicity induced by Naja haje venom. Methods: The total phenolic and flavonoid contents and the antioxidant capacity of the methanolic rosemary extract were estimated by DPPH and ABTS Scavenging methods. In addition, the rosemary extract were assessed for anti-venom properties under in vitro and in vivo standard assays. Results: The rosemary extract had high total phenolic and flavonoid content as 12 ± 2 g of gallic acid equivalent per 100 gram of dry weight (g GAE/100g dw) and 5.5 ± 0.8 g of catechin equivalent per 100 grams of dry weight (g CE/100g dw), respectively. In addition, the rosemary extract showed high antioxidant capacity. Furthermore, The rosemary extract were inhibited in vitro the enzymatic activities of phospholipase A₂, L-amino acid oxidase, and hyaluronidase of the venom in a dose-dependent manner. Moreover, indirect hemolytic activity, hepatotoxicity induced by venom were completely neutralized as shown by histological studies. Conclusion: The phenolic compounds of rosemary extract with potential antioxidant activity may be considered as a promising candidate for future therapeutics in snakebite therapy.

Keywords: antioxidant activity, neutralization, phospholipase A₂ enzyme, snake venom

Procedia PDF Downloads 182
1156 Parasagittal Approach to Lumbar Epidural Steroid Injections: A Cost-Effectiveness Analysis

Authors: K. D. Candido, A. Lissounov, I. Knezevic, N. Knezevic

Abstract:

Background: The most commonly performed pain procedures in the USA is Lumbar Epidural Steroid Injections (LESI). There are three main types of these procedures: transforaminal (TF), interlaminar (IL) and caudal injections. It is expected for TF injections to have better outcomes than IL injections, based on the recently published systematic review. The studies presented in that review used a midline IL approach, but those with parasagittal IL approach were not taken into consideration. Our aim is to emphasize the efficacy of the lateral parasagittal (paramedian) IL approach in this review. Methods: We included five studies in this systematic review, which compared Parasagittal-IL (PIL) with either Midline-IL (MIL) or TF LESI. Total of 296 patients who had undergone different types of LESI were observed across the five studies, and the average pain and functional improvements were calculated and compared among groups. Results: Pain and function improvements with PIL approach is superior on 12 months follow up to MIL approach (53.4% vs. 14.7%) and (55% vs. 27.7%), respectively. A 12 months follow-up results between PIL and TF shows a near equivalent effectiveness for pain (58.9% vs. 63.2%) and function improvement (47.3% vs. 48.1%). An average follow-up of 17.1 days have shown better short-term pain relief for PIL than TF approach (45.8% vs. 19.2%), respectively. Number of repeated injections is lower for PIL injections than MIL. Number of weeks between 1st and 2nd injections: PIL averaged 15.8 weeks and MIL averaged 9.7 weeks. Third LESI injection is more common in TF group (30%) than PIL group (18.8%). Conclusion: Higher complication rates are associated with TF injections for which FDA7 issued an official warning. We have recorded better outcomes in pain and function improvement of Parasagittal-IL LESI as compared to midline-IL injection, in the presented systematic review. Parasagittal and TF injections have equivalent efficacy in Pain and Function improvements thus we advocate for Parasagittal-IL approach consideration as an alternative for TF injections.

Keywords: parasagital approach, lumbar, back pain, epidural steroid injection

Procedia PDF Downloads 174
1155 Effect of Withania Somnifera in Alloxan Induced Diabetic Rabbits

Authors: Farah Ali, Tehreem Fayyaz, Musadiq Idris

Abstract:

The present work was undertaken to investigate effects of various extracts of W. somniferafor anti-diabetic activity in alloxan induced diabetic rabbits. Rabbits were acclimatized for a week to standard laboratory temperature. Animals were fed according to a strict schedule (8 am, 3 pm and 10 pm) with green fodder (Medicago sativa) and tap water ad libitum. Animals were divided into nine groups of six rabbits each in a random manner. Body weights and physical activities of all rabbits were recorded before start of experiments. The animals of group 1 and 2 were given lactose (250 mg/kg,p.o) and Withaniasomniferaroot powder (100 mg/kg, p.o) respectively daily from day 1-20. Animals of group 3 were given alloxan (100 mg/kg,i.v) as a single dose on day 1. Powdered root of Withaniasomnifera in the doses of 100, 150, 200 mg/kg and its aqueous and ethanol extracts (equivalent to 200 mg/kg of crude drug) were given to the treated animals (groups 4-8), respectively by oral route for three weeks (day 1-20o.d), along with alloxan (100 mg/kg, i.v) as a single dose on day 1. Group 9 was treated with metformin (200 mg/kg, p.o) daily from day 1-20, along with a single dose of alloxan (100 mg/ kg, i.v) on day 1. Fasting serum glucose concentration in groups 3-9 was increased significantly (p<0.05) on day 3, with a maximum increase (215.3 mg/dl) in animals of toxic control (TC) group (3) on day 21 of the experiment as compared to normal control (NC) group (1). Effects of different doses (100, 150, 200 mg/kg, p.o) of W. somnifera root powder (WS) decreased the fasting serum glucose concentration as compared to toxic control group, with a maximum decrease (88.3 mg/dl) in group 2 (treated control) on day 21 of the experiment. Metformin (200 mg/kg, p.o) (reference control), aqueous extract (AWS) and ethanol extract (EWS) of W. somnifera (equivalent to 100 mg/kg W.somnifera root, p.o) antagonized the effects of alloxan as compared to toxic control group. These results indicate that the W. somnifera possess significant anti –diabetic activity.

Keywords: diabetes, serum, glucose, blood, sugar, rabbits

Procedia PDF Downloads 561
1154 A Low Cost Education Proposal Using Strain Gauges and Arduino to Develop a Balance

Authors: Thais Cavalheri Santos, Pedro Jose Gabriel Ferreira, Alexandre Daliberto Frugoli, Lucio Leonardo, Pedro Americo Frugoli

Abstract:

This paper presents a low cost education proposal to be used in engineering courses. The engineering education in universities of a developing country that is in need of an increasing number of engineers carried out with quality and affordably, pose a difficult problem to solve. In Brazil, the political and economic scenario requires academic managers able to reduce costs without compromising the quality of education. Within this context, the elaboration of a physics principles teaching method with the construction of an electronic balance is proposed. First, a method to develop and construct a load cell through which the students can understand the physical principle of strain gauges and bridge circuit will be proposed. The load cell structure was made with aluminum 6351T6, in dimensions of 80 mm x 13 mm x 13 mm and for its instrumentation, a complete Wheatstone Bridge was assembled with strain gauges of 350 ohms. Additionally, the process involves the use of a software tool to document the prototypes (design circuits), the conditioning of the signal, a microcontroller, C language programming as well as the development of the prototype. The project also intends to use an open-source I/O board (Arduino Microcontroller). To design the circuit, the Fritizing software will be used and, to program the controller, an open-source software named IDE®. A load cell was chosen because strain gauges have accuracy and their use has several applications in the industry. A prototype was developed for this study, and it confirmed the affordability of this educational idea. Furthermore, the goal of this proposal is to motivate the students to understand the several possible applications in high technology of the use of load cells and microcontroller.

Keywords: Arduino, load cell, low-cost education, strain gauge

Procedia PDF Downloads 303
1153 Modeling of Masonry In-Filled R/C Frame to Evaluate Seismic Performance of Existing Building

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

This paper deals with different modeling aspects of masonry infill: no infill model, Layered shell infill model, and strut infill model. These models consider the complicated behavior of the in-filled plane frames under lateral load similar to an earthquake load. Three strut infill models are used: NBCC (2005) strut infill model, ASCE/SEI 41-06 strut infill model and proposed strut infill model based on modification to Canadian, NBCC (2005) strut infill model. Pushover and modal analyses of a masonry infill concrete frame with a single storey and an existing 5-storey RC building have been carried out by using different models for masonry infill. The corresponding hinge status, the value of base shear at target displacement as well as their dynamic characteristics have been determined and compared. A validation of the structural numerical models for the existing 5-storey RC building has been achieved by comparing the experimentally measured and the analytically estimated natural frequencies and their mode shapes. This study shows that ASCE/SEI 41-06 equation underestimates the values for the equivalent properties of the diagonal strut while Canadian, NBCC (2005) equation gives realistic values for the equivalent properties. The results indicate that both ASCE/SEI 41-06 and Canadian, NBCC (2005) equations for strut infill model give over estimated values for dynamic characteristic of the building. Proposed modification to Canadian, NBCC (2005) equation shows that the fundamental dynamic characteristic values of the building are nearly similar to the corresponding values using layered shell elements as well as measured field results.

Keywords: masonry infill, framed structures, RC buildings, non-structural elements

Procedia PDF Downloads 277
1152 The Effect of Withania Somnifera in Alloxan Induced Diabetic Rabbits

Authors: Farah Ali, Tehreem Fayyaz, Musadiq Idris

Abstract:

The present work was undertaken to investigate effects of various extracts of withania somnifera for anti-diabetic activity in alloxan induced diabetic rabbits. Rabbits were acclimatized for a week to standard laboratory temperature. Animals were fed according to a strict schedule (8 am, 3 pm and 10 pm) with green fodder (Medicago sativa) and tap water ad libitum. Animals were divided into nine groups of six rabbits each in a random manner. Body weights and physical activities of all rabbits were recorded before start of experiments. The animals of group 1 and 2 were given lactose (250 mg/kg, p.o) and Withania somniferaroot powder (100 mg/kg, p.o) respectively daily from day 1-20. Animals of group 3 were given alloxan (100 mg/kg, i.v) as a single dose on day 1. Powdered root of Withania somnifera in the doses of 100, 150, 200 mg/kg and its aqueous and ethanol extracts (equivalent to 200 mg/kg of crude drug) were given to the treated animals (groups 4-8), respectively by oral route for three weeks (day 1-20o.d), along with alloxan (100 mg/kg, i.v) as a single dose on day 1. Group 9 was treated with metformin (200 mg/kg, p.o) daily from day 1-20, along with a single dose of alloxan (100 mg/ kg, i.v) on day 1. Fasting serum glucose concentration in groups 3-9 was increased significantly (p<0.05) on day 3, with a maximum increase (215.3 mg/dl) in animals of toxic control (TC) group (3) on day 21 of the experiment as compared to normal control (NC) group (1). Effects of different doses (100, 150, 200 mg/kg, p.o) of W. somnifera root powder (WS) decreased the fasting serum glucose concentration as compared to toxic control group, with a maximum decrease (88.3 mg/dl) in group 2 (treated control) on day 21 of the experiment. Metformin (200 mg/kg, p.o) (reference control), aqueous extract (AWS) and ethanol extract (EWS) of W. somnifera (equivalent to 100 mg/kg W.somnifera root, p.o) antagonized the effects of alloxan as compared to toxic control group. These results indicate that the W. somnifera possess significant anti–diabetic activity.

Keywords: diabetes, serum, glucose, blood, sugar, rabbits

Procedia PDF Downloads 522
1151 Resistance Training and Ginger Consumption on Cytokines Levels

Authors: Alireza Barari, Ahmad Abdi

Abstract:

Regular body trainings cause adaption in various system in body. One of the important effect of body training is its effect on immune system. It seems that cytokines usually release after long period exercises or some exercises which cause skeletal muscular damages. If some of the cytokines which cause responses such as inflammation of cells in skeletal muscles, with manipulating of training program, it can be avoided or limited from those exercises which induct cytokines release. Ginger plant is a kind of medicinal plants which is known as a anti inflammation plant. This plant is as most precedence medicinal plants in medicine science especially in inflammation cure. The aim of the present study was the effect of selected resistance training and consumption of ginger extract on IL-1α and TNFα untrained young women. The population includes young women interested in participating in the study with the average of 30±2 years old from Abbas Abad city among which 32 participants were chosen randomly and divided into 4 four groups, resistance training (R), resistance training and ginger consumption(RG), Ginger consumption(G)and Control group(C). The training groups performed circuit resistance training at the intensity of 65-75% one repeat maximum, 3 days a week for 6 weeks. Besides resistance training, subjects were given either ginseng (5 mg/kg per day) or placebo. Prior to and 48 hours after interventions body composition was measured and blood samples were taken in order to assess serum levels of IL-1α and TNFα. Plasma levels of cytokines were measured with commercially available ELISA Kits.IL-1α kit and TNFα kit were used in this research. To demonstrate the effectiveness of the independent variable and the comparison between groups, t-test and ANOVA were used. To determine differences between the groups, the Scheffe test was used that showed significant changes in any of the variables. we observed that circuit resistance training in R and RG groups can significant decreased in weight and body mass index in untrained females (p<0.05). The results showed a significant decreased in the mean level of IL-1α levels before and after the training period in G group (p=0.046) and RG group (p=0.022). Comparison between groups also showed there was significant difference between groups R-RG and RG-C. Intergroup comparison results showed that the mean levels of TNFα before and after the training in group G (p=0.044) and RG (p=0.037), significantly decreased. Comparison between groups also showed there was significant difference between groups R–RG , R-G ,RG-C and G-C. The research shows that circuit resistance training with reducing overload method results in systemic inflammation had significant effect on IL-1α levels and TNFα. Of course, Ginger can counteract the negative effects of resistance training exercise on immune function and stability of the mast cell membrane. Considerable evidence supported the anti-inflammatory properties of ginger for several constituents, especially gingerols, shogaols, paradols, and zingerones, through decreased cytokine gene TNF α and IL-1Α expression and inhibition of cyclooxygenase 1 and 2. These established biological actions suggest that ingested ginger could block the increase in IL-1α.

Keywords: resistance training, ginger, IL-1α , TNFα

Procedia PDF Downloads 428
1150 Optimization of Assembly and Welding of Complex 3D Structures on the Base of Modeling with Use of Finite Elements Method

Authors: M. N. Zelenin, V. S. Mikhailov, R. P. Zhivotovsky

Abstract:

It is known that residual welding deformations give negative effect to processability and operational quality of welded structures, complicating their assembly and reducing strength. Therefore, selection of optimal technology, ensuring minimum welding deformations, is one of the main goals in developing a technology for manufacturing of welded structures. Through years, JSC SSTC has been developing a theory for estimation of welding deformations and practical activities for reducing and compensating such deformations during welding process. During long time a methodology was used, based on analytic dependence. This methodology allowed defining volumetric changes of metal due to welding heating and subsequent cooling. However, dependences for definition of structures deformations, arising as a result of volumetric changes of metal in the weld area, allowed performing calculations only for simple structures, such as units, flat sections and sections with small curvature. In case of complex 3D structures, estimations on the base of analytic dependences gave significant errors. To eliminate this shortage, it was suggested to use finite elements method for resolving of deformation problem. Here, one shall first calculate volumes of longitudinal and transversal shortenings of welding joints using method of analytic dependences and further, with obtained shortenings, calculate forces, which action is equivalent to the action of active welding stresses. Further, a finite-elements model of the structure is developed and equivalent forces are added to this model. Having results of calculations, an optimal sequence of assembly and welding is selected and special measures to reduce and compensate welding deformations are developed and taken.

Keywords: residual welding deformations, longitudinal and transverse shortenings of welding joints, method of analytic dependences, finite elements method

Procedia PDF Downloads 409
1149 A Compact Via-less Ultra-Wideband Microstrip Filter by Utilizing Open-Circuit Quarter Wavelength Stubs

Authors: Muhammad Yasir Wadood, Fatemeh Babaeian

Abstract:

By developing ultra-wideband (UWB) systems, there is a high demand for UWB filters with low insertion loss, wide bandwidth, and having a planar structure which is compatible with other components of the UWB system. A microstrip interdigital filter is a great option for designing UWB filters. However, the presence of via holes in this structure creates difficulties in the fabrication procedure of the filter. Especially in the higher frequency band, any misalignment of the drilled via hole with the Microstrip stubs causes large errors in the measurement results compared to the desired results. Moreover, in this case (high-frequency designs), the line width of the stubs are very narrow, so highly precise small via holes are required to be implemented, which increases the cost of fabrication significantly. Also, in this case, there is a risk of having fabrication errors. To combat this issue, in this paper, a via-less UWB microstrip filter is proposed which is designed based on a modification of a conventional inter-digital bandpass filter. The novel approaches in this filter design are 1) replacement of each via hole with a quarter-wavelength open circuit stub to avoid the complexity of manufacturing, 2) using a bend structure to reduce the unwanted coupling effects and 3) minimising the size. Using the proposed structure, a UWB filter operating in the frequency band of 3.9-6.6 GHz (1-dB bandwidth) is designed and fabricated. The promising results of the simulation and measurement are presented in this paper. The selected substrate for these designs was Rogers RO4003 with a thickness of 20 mils. This is a common substrate in most of the industrial projects. The compact size of the proposed filter is highly beneficial for applications which require a very miniature size of hardware.

Keywords: band-pass filters, inter-digital filter, microstrip, via-less

Procedia PDF Downloads 156
1148 Experimental and Modal Determination of the State-Space Model Parameters of a Uni-Axial Shaker System for Virtual Vibration Testing

Authors: Jonathan Martino, Kristof Harri

Abstract:

In some cases, the increase in computing resources makes simulation methods more affordable. The increase in processing speed also allows real time analysis or even more rapid tests analysis offering a real tool for test prediction and design process optimization. Vibration tests are no exception to this trend. The so called ‘Virtual Vibration Testing’ offers solution among others to study the influence of specific loads, to better anticipate the boundary conditions between the exciter and the structure under test, to study the influence of small changes in the structure under test, etc. This article will first present a virtual vibration test modeling with a main focus on the shaker model and will afterwards present the experimental parameters determination. The classical way of modeling a shaker is to consider the shaker as a simple mechanical structure augmented by an electrical circuit that makes the shaker move. The shaker is modeled as a two or three degrees of freedom lumped parameters model while the electrical circuit takes the coil impedance and the dynamic back-electromagnetic force into account. The establishment of the equations of this model, describing the dynamics of the shaker, is presented in this article and is strongly related to the internal physical quantities of the shaker. Those quantities will be reduced into global parameters which will be estimated through experiments. Different experiments will be carried out in order to design an easy and practical method for the identification of the shaker parameters leading to a fully functional shaker model. An experimental modal analysis will also be carried out to extract the modal parameters of the shaker and to combine them with the electrical measurements. Finally, this article will conclude with an experimental validation of the model.

Keywords: lumped parameters model, shaker modeling, shaker parameters, state-space, virtual vibration

Procedia PDF Downloads 269
1147 Comprehensive, Up-to-Date Climate System Change Indicators, Trends and Interactions

Authors: Peter Carter

Abstract:

Comprehensive climate change indicators and trends inform the state of the climate (system) with respect to present and future climate change scenarios and the urgency of mitigation and adaptation. With data records now going back for many decades, indicator trends can complement model projections. They are provided as datasets by several climate monitoring centers, reviewed by state of the climate reports, and documented by the IPCC assessments. Up-to-date indicators are provided here. Rates of change are instructive, as are extremes. The indicators include greenhouse gas (GHG) emissions (natural and synthetic), cumulative CO2 emissions, atmospheric GHG concentrations (including CO2 equivalent), stratospheric ozone, surface ozone, radiative forcing, global average temperature increase, land temperature increase, zonal temperature increases, carbon sinks, soil moisture, sea surface temperature, ocean heat content, ocean acidification, ocean oxygen, glacier mass, Arctic temperature, Arctic sea ice (extent and volume), northern hemisphere snow cover, permafrost indices, Arctic GHG emissions, ice sheet mass, sea level rise, and stratospheric and surface ozone. Global warming is not the most reliable single metric for the climate state. Radiative forcing, atmospheric CO2 equivalent, and ocean heat content are more reliable. Global warming does not provide future commitment, whereas atmospheric CO2 equivalent does. Cumulative carbon is used for estimating carbon budgets. The forcing of aerosols is briefly addressed. Indicator interactions are included. In particular, indicators can provide insight into several crucial global warming amplifying feedback loops, which are explained. All indicators are increasing (adversely), most as fast as ever and some faster. One particularly pressing indicator is rapidly increasing global atmospheric methane. In this respect, methane emissions and sources are covered in more detail. In their application, indicators used in assessing safe planetary boundaries are included. Indicators are considered with respect to recent published papers on possible catastrophic climate change and climate system tipping thresholds. They are climate-change-policy relevant. In particular, relevant policies include the 2015 Paris Agreement on “holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels” and the 1992 UN Framework Convention on Climate change, which has “stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system.”

Keywords: climate change, climate change indicators, climate change trends, climate system change interactions

Procedia PDF Downloads 103
1146 Modelling of Heat Generation in a 18650 Lithium-Ion Battery Cell under Varying Discharge Rates

Authors: Foo Shen Hwang, Thomas Confrey, Stephen Scully, Barry Flannery

Abstract:

Thermal characterization plays an important role in battery pack design. Lithium-ion batteries have to be maintained between 15-35 °C to operate optimally. Heat is generated (Q) internally within the batteries during both the charging and discharging phases. This can be quantified using several standard methods. The most common method of calculating the batteries heat generation is through the addition of both the joule heating effects and the entropic changes across the battery. In addition, such values can be derived by identifying the open-circuit voltage (OCV), nominal voltage (V), operating current (I), battery temperature (T) and the rate of change of the open-circuit voltage in relation to temperature (dOCV/dT). This paper focuses on experimental characterization and comparative modelling of the heat generation rate (Q) across several current discharge rates (0.5C, 1C, and 1.5C) of a 18650 cell. The analysis is conducted utilizing several non-linear mathematical functions methods, including polynomial, exponential, and power models. Parameter fitting is carried out over the respective function orders; polynomial (n = 3~7), exponential (n = 2) and power function. The generated parameter fitting functions are then used as heat source functions in a 3-D computational fluid dynamics (CFD) solver under natural convection conditions. Generated temperature profiles are analyzed for errors based on experimental discharge tests, conducted at standard room temperature (25°C). Initial experimental results display low deviation between both experimental and CFD temperature plots. As such, the heat generation function formulated could be easier utilized for larger battery applications than other methods available.

Keywords: computational fluid dynamics, curve fitting, lithium-ion battery, voltage drop

Procedia PDF Downloads 95
1145 Estimate Robert Gordon University's Scope Three Emissions by Nearest Neighbor Analysis

Authors: Nayak Amar, Turner Naomi, Gobina Edward

Abstract:

The Scottish Higher Education Institutes must report their scope 1 & 2 emissions, whereas reporting scope 3 is optional. Scope 3 is indirect emissions which embodies a significant component of total carbon footprint and therefore it is important to record, measure and report it accurately. Robert Gordon University (RGU) reported only business travel, grid transmission and distribution, water supply and transport, and recycling scope 3 emissions. This study estimates the RGUs total scope 3 emissions by comparing it with a similar HEI in scale. The scope 3 emission reporting of sixteen Scottish HEI was studied. Glasgow Caledonian University was identified as the nearest neighbour by comparing its students' full time equivalent, staff full time equivalent, research-teaching split, budget, and foundation year. Apart from the peer, data was also collected from the Higher Education Statistics Agency database. RGU reported emissions from business travel, grid transmission and distribution, water supply, and transport and recycling. This study estimated RGUs scope 3 emissions from procurement, student-staff commute, and international student trip. The result showed that RGU covered only 11% of the scope 3 emissions. The major contributor to scope 3 emissions were procurement (48%), student commute (21%), international student trip (16%), and staff commute (4%). The estimated scope 3 emission was more than 14 times the reported emissions. This study has shown the relative importance of each scope 3 emissions source, which gives a guideline for the HEIs, on where to focus their attention to capture maximum scope 3 emissions. Moreover, it has demonstrated that it is possible to estimate the scope 3 emissions with limited data.

Keywords: HEI, university, emission calculations, scope 3 emissions, emissions reporting

Procedia PDF Downloads 100
1144 Performance Monitoring and Environmental Impact Analysis of a Photovoltaic Power Plant: A Numerical Modeling Approach

Authors: Zahzouh Zoubir

Abstract:

The widespread adoption of photovoltaic panel systems for global electricity generation is a prominent trend. Algeria, demonstrating steadfast commitment to strategic development and innovative projects for harnessing solar energy, emerges as a pioneering force in the field. Heat and radiation, being fundamental factors in any solar system, are currently subject to comprehensive studies aiming to discern their genuine impact on crucial elements within photovoltaic systems. This endeavor is particularly pertinent given that solar module performance is exclusively assessed under meticulously defined Standard Test Conditions (STC). Nevertheless, when deployed outdoors, solar modules exhibit efficiencies distinct from those observed under STC due to the influence of diverse environmental factors. This discrepancy introduces ambiguity in performance determination, especially when surpassing test conditions. This article centers on the performance monitoring of an Algerian photovoltaic project, specifically the Oued El Keberite power (OKP) plant boasting a 15 megawatt capacity, situated in the town of Souk Ahras in eastern Algeria. The study elucidates the behavior of a subfield within this facility throughout the year, encompassing various conditions beyond the STC framework. To ensure the optimal efficiency of solar panels, this study integrates crucial factors, drawing on an authentic technical sheet from the measurement station of the OKP photovoltaic plant. Numerical modeling and simulation of a sub-field of the photovoltaic station were conducted using MATLAB Simulink. The findings underscore how radiation intensity and temperature, whether low or high, impact the short-circuit current, open-circuit voltage; fill factor, and overall efficiency of the photovoltaic system.

Keywords: performance monitoring, photovoltaic system, numerical modeling, radiation intensity

Procedia PDF Downloads 69
1143 Finite Element Modeling and Nonlinear Analysis for Seismic Assessment of Off-Diagonal Steel Braced RC Frame

Authors: Keyvan Ramin

Abstract:

The geometric nonlinearity of Off-Diagonal Bracing System (ODBS) could be a complementary system to covering and extending the nonlinearity of reinforced concrete material. Finite element modeling is performed for flexural frame, x-braced frame and the ODBS braced frame system at the initial phase. Then the different models are investigated along various analyses. According to the experimental results of flexural and x-braced frame, the verification is done. Analytical assessments are performed in according to three-dimensional finite element modeling. Non-linear static analysis is considered to obtain performance level and seismic behavior, and then the response modification factors calculated from each model’s pushover curve. In the next phase, the evaluation of cracks observed in the finite element models, especially for RC members of all three systems is performed. The finite element assessment is performed on engendered cracks in ODBS braced frame for various time steps. The nonlinear dynamic time history analysis accomplished in different stories models for three records of Elcentro, Naghan, and Tabas earthquake accelerograms. Dynamic analysis is performed after scaling accelerogram on each type of flexural frame, x-braced frame and ODBS braced frame one by one. The base-point on RC frame is considered to investigate proportional displacement under each record. Hysteresis curves are assessed along continuing this study. The equivalent viscous damping for ODBS system is estimated in according to references. Results in each section show the ODBS system has an acceptable seismic behavior and their conclusions have been converged when the ODBS system is utilized in reinforced concrete frame.

Keywords: FEM, seismic behaviour, pushover analysis, geometric nonlinearity, time history analysis, equivalent viscous damping, passive control, crack investigation, hysteresis curve

Procedia PDF Downloads 378
1142 Electrical Degradation of GaN-based p-channel HFETs Under Dynamic Electrical Stress

Authors: Xuerui Niu, Bolin Wang, Xinchuang Zhang, Xiaohua Ma, Bin Hou, Ling Yang

Abstract:

The application of discrete GaN-based power switches requires the collaboration of silicon-based peripheral circuit structures. However, the packages and interconnection between the Si and GaN devices can introduce parasitic effects to the circuit, which has great impacts on GaN power transistors. GaN-based monolithic power integration technology is an emerging solution which can improve the stability of circuits and allow the GaN-based devices to achieve more functions. Complementary logic circuits consisting of GaN-based E-mode p-channel heterostructure field-effect transistors (p-HFETs) and E-mode n-channel HEMTs can be served as the gate drivers. E-mode p-HFETs with recessed gate have attracted increasing interest because of the low leakage current and large gate swing. However, they suffer from a poor interface between the gate dielectric and polarized nitride layers. The reliability of p-HFETs is analyzed and discussed in this work. In circuit applications, the inverter is always operated with dynamic gate voltage (VGS) rather than a constant VGS. Therefore, dynamic electrical stress has been simulated to resemble the operation conditions for E-mode p-HFETs. The dynamic electrical stress condition is as follows. VGS is a square waveform switching from -5 V to 0 V, VDS is fixed, and the source grounded. The frequency of the square waveform is 100kHz with the rising/falling time of 100 ns and duty ratio of 50%. The effective stress time is 1000s. A number of stress tests are carried out. The stress was briefly interrupted to measure the linear IDS-VGS, saturation IDS-VGS, As VGS switches from -5 V to 0 V and VDS = 0 V, devices are under negative-bias-instability (NBI) condition. Holes are trapped at the interface of oxide layer and GaN channel layer, which results in the reduction of VTH. The negative shift of VTH is serious at the first 10s and then changes slightly with the following stress time. However, different phenomenon is observed when VDS reduces to -5V. VTH shifts negatively during stress condition, and the variation in VTH increases with time, which is different from that when VDS is 0V. Two mechanisms exists in this condition. On the one hand, the electric field in the gate region is influenced by the drain voltage, so that the trapping behavior of holes in the gate region changes. The impact of the gate voltage is weakened. On the other hand, large drain voltage can induce the hot holes generation and lead to serious hot carrier stress (HCS) degradation with time. The poor-quality interface between the oxide layer and GaN channel layer at the gate region makes a major contribution to the high-density interface traps, which will greatly influence the reliability of devices. These results emphasize that the improved etching and pretreatment processes needs to be developed so that high-performance GaN complementary logics with enhanced stability can be achieved.

Keywords: GaN-based E-mode p-HFETs, dynamic electric stress, threshold voltage, monolithic power integration technology

Procedia PDF Downloads 90
1141 Design of Solar Charge Controller and Power Converter with the Multisim

Authors: Sohal Latif

Abstract:

Solar power is in the form of photovoltaic, also known as PV, which is a form of renewable energy that applies solar panels in producing electricity from the sun. It has a vital role in fulfilling the present need for clean and renewable energy to get rid of conventional and non-renewable energy sources that emit high levels of greenhouse gases. Solar energy is embraced because of its availability, easy accessibility, and effectiveness in the provision of power, chiefly in country areas. In solar charging, device charge entails a change of light power into electricity using photovoltaic or PV panels, which supply direct current electric power or DC. Here, the solar charge controller has a very crucial role to play regarding the voltages and the currents coming from the solar panels to take up the changing needs of a battery without overcharging the same. Certain devices, such as inverters, are required to transform the DC power produced by the solar panels into an AC to serve the normal electrical appliances and the current power network. This project was initiated for a project of a solar charge controller and power converter with the MULTISIM. The formation of this project begins with a literature survey to obtain basic knowledge about power converters, charge controllers, and photovoltaic systems. Fundamentals of the operation of solar panels include the process by which light is converted into electricity and a comparison of PWM and MPPT chargers with controllers. Knowledge of rectifiers is built to help achieve AC-to-DC and DC-AC change. Choosing a resistor, capacitance, MOSFET, and OP-AMP is done by the need of the system. The circuit diagrams of converters and charge controllers are designed using the Multisim program. Pulse width modulation, Bubba oscillator circuit, and inverter circuits are modeled and simulated. In the subsequent steps, the analysis of the simulation outcomes indicates the efficiency of the intended converter systems. The various outputs from the different configurations, with the transformer incorporated as well as without it, are then monitored for effective power conversion as well as power regulation.

Keywords: solar charge controller, MULTISIM, converter, inverter

Procedia PDF Downloads 22
1140 Measurement of Radon Exhalation Rate, Natural Radioactivity, and Radiation Hazard Assessment in Soil Samples from the Surrounding Area of Kasimpur Thermal Power Plant Kasimpur (U. P.), India

Authors: Anil Sharma, Ajay Kumar Mahur, R. G. Sonkawade, A. C. Sharma, R. Prasad

Abstract:

In coal fired thermal power stations, large amount of fly ash is produced after burning of coal. Fly ash is spread and distributed in the surrounding area by air and may be deposited on the soil of the region surrounding the power plant. Coal contains increased levels of these radionuclides and fly ash may increase the radioactivity in the soil around the power plant. Radon atoms entering into the pore space from the mineral grain are transported by diffusion and advection through this space until they in turn decay or are released into the atmosphere. In the present study, Soil samples were collected from the region around a Kasimpur Thermal Power Plant, Kasimpur, Aligarh (U.P.). Radon activity, radon surface exhalation and mass exhalation rates were measured using “sealed can technique” using LR 115-type II nuclear track detectors. Radon activities vary from 92.9 to 556.8 Bq m-3 with mean value of 279.8 Bq m-3. Surface exhalation rates (EX) in these samples are found to vary from 33.4 to 200.2 mBq m-2 h-1 with an average value of 100.5 mBq m-2 h-1 whereas, Mass exhalation rates (EM) vary from 1.2 to 7.7 mBq kg-1 h-1 with an average value of 3.8 mBq kg-1 h-1. Activity concentrations of radionuclides were measured in these samples by using a low level NaI (Tl) based gamma ray spectrometer. Activity concentrations of 226Ra 232Th and 40K vary from 12 to 49 Bq kg-1, 24 to 49 Bq kg-1 and 135 to 546 Bq kg-1 with overall mean values of 30.3 Bq kg-1, 38.5 Bq kg-1 and 317.8 Bq kg-1, respectively. Radium equivalent activity has been found to vary from 80.0 to 143.7 Bq kg-1 with an average value of 109.7 Bq kg-1. Absorbed dose rate varies from 36.1 to 66.4 nGy h-1 with an average value of 50.4 nGy h-1 and corresponding outdoor annual effective dose varies from 0.044 to 0.081 mSv with an average value of 0.061 mSv. Values of external and internal hazard index Hex, Hin in this study vary from 0.21 to 0.38 and 0.27 to 0.50 with an average value of 0.29 and 0.37, Respectively. The results will be discussed in light of various factors.

Keywords: natural radioactivity, radium equivalent activity, absorbed dose rate, gamma ray spectroscopy

Procedia PDF Downloads 362
1139 Designing Automated Embedded Assessment to Assess Student Learning in a 3D Educational Video Game

Authors: Mehmet Oren, Susan Pedersen, Sevket C. Cetin

Abstract:

Despite the frequently criticized disadvantages of the traditional used paper and pencil assessment, it is the most frequently used method in our schools. Although assessments do an acceptable measurement, they are not capable of measuring all the aspects and the richness of learning and knowledge. Also, many assessments used in schools decontextualize the assessment from the learning, and they focus on learners’ standing on a particular topic but do not concentrate on how student learning changes over time. For these reasons, many scholars advocate that using simulations and games (S&G) as a tool for assessment has significant potentials to overcome the problems in traditionally used methods. S&G can benefit from the change in technology and provide a contextualized medium for assessment and teaching. Furthermore, S&G can serve as an instructional tool rather than a method to test students’ learning at a particular time point. To investigate the potentials of using educational games as an assessment and teaching tool, this study presents the implementation and the validation of an automated embedded assessment (AEA), which can constantly monitor student learning in the game and assess their performance without intervening their learning. The experiment was conducted on an undergraduate level engineering course (Digital Circuit Design) with 99 participant students over a period of five weeks in Spring 2016 school semester. The purpose of this research study is to examine if the proposed method of AEA is valid to assess student learning in a 3D Educational game and present the implementation steps. To address this question, this study inspects three aspects of the AEA for the validation. First, the evidence-centered design model was used to lay out the design and measurement steps of the assessment. Then, a confirmatory factor analysis was conducted to test if the assessment can measure the targeted latent constructs. Finally, the scores of the assessment were compared with an external measure (a validated test measuring student learning on digital circuit design) to evaluate the convergent validity of the assessment. The results of the confirmatory factor analysis showed that the fit of the model with three latent factors with one higher order factor was acceptable (RMSEA < 0.00, CFI =1, TLI=1.013, WRMR=0.390). All of the observed variables significantly loaded to the latent factors in the latent factor model. In the second analysis, a multiple regression analysis was used to test if the external measure significantly predicts students’ performance in the game. The results of the regression indicated the two predictors explained 36.3% of the variance (R2=.36, F(2,96)=27.42.56, p<.00). It was found that students’ posttest scores significantly predicted game performance (β = .60, p < .000). The statistical results of the analyses show that the AEA can distinctly measure three major components of the digital circuit design course. It was aimed that this study can help researchers understand how to design an AEA, and showcase an implementation by providing an example methodology to validate this type of assessment.

Keywords: educational video games, automated embedded assessment, assessment validation, game-based assessment, assessment design

Procedia PDF Downloads 421
1138 Sequence Component-Based Adaptive Protection for Microgrids Connected Power Systems

Authors: Isabelle Snyder

Abstract:

Microgrid protection presents challenges to conventional protection techniques due to the low induced fault current. Protection relays present in microgrid applications require a combination of settings groups to adjust based on the architecture of the microgrid in islanded and grid-connected mode. In a radial system where the microgrid is at the other end of the feeder, directional elements can be used to identify the direction of the fault current and switch settings groups accordingly (grid connected or microgrid connected). However, with multiple microgrid connections, this concept becomes more challenging, and the direction of the current alone is not sufficient to identify the source of the fault current contribution. ORNL has previously developed adaptive relaying schemes through other DOE-funded research projects that will be evaluated and used as a baseline for this research. The four protection techniques in this study are the following: (1) Adaptive Current only Protection System (ACPS), Intentional (2) Unbalanced Control for Protection Control (IUCPC), (3) Adaptive Protection System with Communication Controller (APSCC) (4) Adaptive Model-Driven Protective Relay (AMDPR). The first two methods focus on identifying the islanded mode without communication by monitoring the current sequence component generated by the system (ACPS) or induced with inverter control during islanded mode (IUCPC) to identify the islanding condition without communication at the relay to adjust the settings. These two methods are used as a backup to the APSCC, which relies on a communication network to communicate the islanded configuration to the system components. The fourth method relies on a short circuit model inside the relay that is used in conjunction with communication to adjust the system configuration and computes the fault current and adjusts the settings accordingly.

Keywords: adaptive relaying, microgrid protection, sequence components, islanding detection, communication controlled protection, integrated short circuit model

Procedia PDF Downloads 95
1137 Experimental Study of Boost Converter Based PV Energy System

Authors: T. Abdelkrim, K. Ben Seddik, B. Bezza, K. Benamrane, Aeh. Benkhelifa

Abstract:

This paper proposes an implementation of boost converter for a resistive load using photovoltaic energy as a source. The model of photovoltaic cell and operating principle of boost converter are presented. A PIC micro controller is used in the close loop control to generate pulses for controlling the converter circuit. To performance evaluation of boost converter, a variation of output voltage of PV panel is done by shading one and two cells.

Keywords: boost converter, microcontroller, photovoltaic power generation, shading cells

Procedia PDF Downloads 877