Search results for: continuous mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3321

Search results for: continuous mining

2901 Implementation of Dozer Push Measurement under Payment Mechanism in Mining Operation

Authors: Anshar Ajatasatru

Abstract:

The decline of coal prices over past years have been significantly increasing the awareness of effective mining operation. A viable step must be undertaken in becoming more cost competitive while striving for best mining practice especially at Melak Coal Mine in East Kalimantan, Indonesia. This paper aims to show how effective dozer push measurement method can be implemented as it is controlled by contract rate on the unit basis of USD ($) per bcm. The method emerges from an idea of daily dozer push activity that continually shifts the overburden until final target design by mine planning. Volume calculation is then performed by calculating volume of each time overburden is removed within determined distance using cut and fill method from a high precision GNSS system which is applied into dozer as a guidance to ensure the optimum result of overburden removal. Accumulation of daily to weekly dozer push volume is found 95 bcm which is multiplied by average sell rate of $ 0,95, thus the amount monthly revenue is $ 90,25. Furthermore, the payment mechanism is then based on push distance and push grade. The push distance interval will determine the rates that vary from $ 0,9 - $ 2,69 per bcm and are influenced by certain push slope grade from -25% until +25%. The amount payable rates for dozer push operation shall be specifically following currency adjustment and is to be added to the monthly overburden volume claim, therefore, the sell rate of overburden volume per bcm may fluctuate depends on the real time exchange rate of Jakarta Interbank Spot Dollar Rate (JISDOR). The result indicates that dozer push measurement can be one of the surface mining alternative since it has enabled to refine method of work, operating cost and productivity improvement apart from exposing risk of low rented equipment performance. In addition, payment mechanism of contract rate by dozer push operation scheduling will ultimately deliver clients by almost 45% cost reduction in the form of low and consistent cost.

Keywords: contract rate, cut-fill method, dozer push, overburden volume

Procedia PDF Downloads 316
2900 Crystal Structures and High-Temperature Phase Transitions of the New Ordered Double Perovskites SrCaCoTeO6 and SrCaNiTeO6

Authors: Asmaa Zaraq

Abstract:

In the present work we report X-ray powder diffraction measurements of SrCaCoTeO6 and SrCaNiTeO6, at different temperatures. The crystal structures at room temperature of both compounds are determined; and results showing the existence of high-temperature phase transitions in them are presented. Both compounds have double perovskite structure with 1:1 ordered arrangement of the B site cations. At room temperature their symmetries are described with the P21/n space group, that correspond to the (a+b-b-) tilt system. The evolution with temperature of the structure of both compounds shows the presence of three phase transitions: a continuous one, at 450 and 500 K, a discontinuous one, at 700 and 775 K, and a continuous one at 900 and 950 K for SrCaCoTeO6 and SrCaNiTeO6, respectively with the following phase-transition sequence: P21/n → I2/m → I4/m → Fm-3m.

Keywords: double perovskites, caracterisation DRX, transition de phase

Procedia PDF Downloads 522
2899 Gaussian Operations with a Single Trapped Ion

Authors: Bruna G. M. Araújo, Pedro M. M. Q. Cruz

Abstract:

In this letter, we review the literature of the major concepts that govern Gaussian quantum information. As we work with quantum information and computation with continuous variables, Gaussian states are needed to better describe these systems. Analyzing a single ion locked in a Paul trap we use the interaction picture to obtain a toolbox of Gaussian operations with the ion-laser interaction Hamiltionian. This is achieved exciting the ion through the combination of two lasers of distinct frequencies corresponding to different sidebands of the external degrees of freedom. First we study the case of a trap with 1 mode and then the case with 2 modes. In this way, we achieve different continuous variables gates just by changing the external degrees of freedom of the trap and combining the Hamiltonians of blue and red sidebands.

Keywords: Paul trap, ion-laser interaction, Gaussian operations

Procedia PDF Downloads 686
2898 The Use of Continuous Improvement Methods to Empower the Osh MS With Leading Key Performance Indicators

Authors: Maha Rashid Al-Azib, Almuzn Qasem Alqathradi, Amal Munir Alshahrani, Bilqis Mohammed Assiri, Ali Almuflih

Abstract:

The Occupational Safety and Health Management System in one of the largest Saudi companies has been experiencing in the last 10 years extensive direct and indirect expenses due to lack of proactive leading indicators and safety leadership effective procedures. And since there are no studies that are associated with this department of safety in the company, this research has been conducted. In this study we used a mixed method approach containing a literature review and experts input, then a qualitative questionnaire provided by Institute for Work and Health related to determining the company’s occupational safety and health management system level out from three levels (Compliance - Improvement - Continuous Learning) and the output regarding the company’s level was in Continuous Learning. After that Deming cycle was employed to create a set of proactive leading indicators and analyzed using the SMART method to make sure of its effectiveness and suitability to the company. The objective of this research is to provide a set of proactive indicators to contribute in making an efficient occupational safety and health management system that has less accidents which results in less expenses. Therefore, we provided the company with a prototype of an APP, designed and empowered with our final results to contribute in supporting decisions making processes.

Keywords: proactive leading indicators, OSH MS, safety leadership, accidents reduction

Procedia PDF Downloads 80
2897 Multi-Criteria Inventory Classification Process Based on Logical Analysis of Data

Authors: Diana López-Soto, Soumaya Yacout, Francisco Ángel-Bello

Abstract:

Although inventories are considered as stocks of money sitting on shelve, they are needed in order to secure a constant and continuous production. Therefore, companies need to have control over the amount of inventory in order to find the balance between excessive and shortage of inventory. The classification of items according to certain criteria such as the price, the usage rate and the lead time before arrival allows any company to concentrate its investment in inventory according to certain ranking or priority of items. This makes the decision making process for inventory management easier and more justifiable. The purpose of this paper is to present a new approach for the classification of new items based on the already existing criteria. This approach is called the Logical Analysis of Data (LAD). It is used in this paper to assist the process of ABC items classification based on multiple criteria. LAD is a data mining technique based on Boolean theory that is used for pattern recognition. This technique has been tested in medicine, industry, credit risk analysis, and engineering with remarkable results. An application on ABC inventory classification is presented for the first time, and the results are compared with those obtained when using the well-known AHP technique and the ANN technique. The results show that LAD presented very good classification accuracy.

Keywords: ABC multi-criteria inventory classification, inventory management, multi-class LAD model, multi-criteria classification

Procedia PDF Downloads 881
2896 Fake News Detection for Korean News Using Machine Learning Techniques

Authors: Tae-Uk Yun, Pullip Chung, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection using machine learning techniques over the past years. But, there have been no prior studies proposed an automated fake news detection method for Korean news to our best knowledge. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (topic modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as logistic regression, backpropagation network, support vector machine, and deep neural network can be applied. To validate the effectiveness of the proposed method, we collected about 200 short Korean news from Seoul National University’s FactCheck. which provides with detailed analysis reports from 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.

Keywords: fake news detection, Korean news, machine learning, text mining

Procedia PDF Downloads 275
2895 Process Development for the Conversion of Organic Waste into Valuable Products

Authors: Ife O. Bolaji

Abstract:

Environmental concerns arising from the use of fossil fuels has increased the interest in the development of renewable and sustainable sources of energy. This would minimize the dependence on fossil fuels and serve as future alternatives. Organic wastes contain carbohydrates, proteins and lipids, which can be utilised as carbon sources for the production of bio-based products. Cellulose is the most abundant natural biopolymer, being the main structural component of lignocellulosic materials. The aim of this project is to develop a biological process for the hydrolysis and fermentation of organic wastes into ethanol and organic acids. The hydrolysis and fermentation processes are integrated in a single vessel using undefined mixed culture microorganisms. The anaerobic fermentation of microcrystalline cellulose was investigated in continuous and batch reactors at 25°C with an appropriate growth medium for cellulase formation, hydrolysis, and fermentation. The reactors were inoculated with soil (B1, C1, C3) or sludge from an anaerobic digester (B2, C2) and the breakdown of cellulose was monitored by measuring the production of ethanol, organic acids and the residual cellulose. The batch reactors B1 and B2 showed negligible microbial activity due to inhibition while the continuous reactors, C1, C2 and C3, exhibited little cellulose hydrolysis which was concealed by the cellulose accumulation in the reactor. At the end of the continuous operation, the reactors C1, C2 and C3 were operated under batch conditions. 48%, 34% and 42% cellulose had been fermented by day 88, 55 and 55 respectively of the batch fermentation. Acetic acid, ethanol, propionic acid and butyric acids were the main fermentation products in the reactors. A stable concentration of 0.6 g/l ethanol and 5 g/L acetic acid was maintained in C3 for several weeks due to reduced activity of methanogens caused by the decrease in pH. Thus far, the results have demonstrated that mixed microbial culture is capable of hydrolysing and fermenting cellulose under lenient conditions. The fermentation of cellulose has been found effective in a combination of continuous and batch processes.

Keywords: cellulose, hydrolysis, mixed culture, organic waste

Procedia PDF Downloads 367
2894 Mining Riding Patterns in Bike-Sharing System Connecting with Public Transportation

Authors: Chong Zhang, Guoming Tang, Bin Ge, Jiuyang Tang

Abstract:

With the fast growing road traffic and increasingly severe traffic congestion, more and more citizens choose to use the public transportation for daily travelling. Meanwhile, the shared bike provides a convenient option for the first and last mile to the public transit. As of 2016, over one thousand cities around the world have deployed the bike-sharing system. The combination of these two transportations have stimulated the development of each other and made significant contribution to the reduction of carbon footprint. A lot of work has been done on mining the riding behaviors in various bike-sharing systems. Most of them, however, treated the bike-sharing system as an isolated system and thus their results provide little reference for the public transit construction and optimization. In this work, we treat the bike-sharing and public transit as a whole and investigate the customers’ bike-and-ride behaviors. Specifically, we develop a spatio-temporal traffic delivery model to study the riding patterns between the two transportation systems and explore the traffic characteristics (e.g., distributions of customer arrival/departure and traffic peak hours) from the time and space dimensions. During the model construction and evaluation, we make use of large open datasets from real-world bike-sharing systems (the CitiBike in New York, GoBike in San Francisco and BIXI in Montreal) along with corresponding public transit information. The developed two-dimension traffic model, as well as the mined bike-and-ride behaviors, can provide great help to the deployment of next-generation intelligent transportation systems.

Keywords: riding pattern mining, bike-sharing system, public transportation, bike-and-ride behavior

Procedia PDF Downloads 780
2893 Constraining the Potential Nickel Laterite Area Using Geographic Information System-Based Multi-Criteria Rating in Surigao Del Sur

Authors: Reiner-Ace P. Mateo, Vince Paolo F. Obille

Abstract:

The traditional method of classifying the potential mineral resources requires a significant amount of time and money. In this paper, an alternative way to classify potential mineral resources with GIS application in Surigao del Sur. The three (3) analog map data inputs integrated to GIS are geologic map, topographic map, and land cover/vegetation map. The indicators used in the classification of potential nickel laterite integrated from the analog map data inputs are a geologic indicator, which is the presence of ultramafic rock from the geologic map; slope indicator and the presence of plateau edges from the topographic map; areas of forest land, grassland, and shrublands from the land cover/vegetation map. The potential mineral of the area was classified from low up to very high potential. The produced mineral potential classification map of Surigao del Sur has an estimated 4.63% low nickel laterite potential, 42.15% medium nickel laterite potential, 43.34% high nickel laterite potential, and 9.88% very high nickel laterite from its ultramafic terrains. For the validation of the produced map, it was compared with known occurrences of nickel laterite in the area using a nickel mining tenement map from the area with the application of remote sensing. Three (3) prominent nickel mining companies were delineated in the study area. The generated potential classification map of nickel-laterite in Surigao Del Sur may be of aid to the mining companies which are currently in the exploration phase in the study area. Also, the currently operating nickel mines in the study area can help to validate the reliability of the mineral classification map produced.

Keywords: mineral potential classification, nickel laterites, GIS, remote sensing, Surigao del Sur

Procedia PDF Downloads 123
2892 Ensuring Quality in DevOps Culture

Authors: Sagar Jitendra Mahendrakar

Abstract:

Integrating quality assurance (QA) practices into DevOps culture has become increasingly important in modern software development environments. Collaboration, automation and continuous feedback characterize the seamless integration of DevOps development and operations teams to achieve rapid and reliable software delivery. In this context, quality assurance plays a key role in ensuring that software products meet the highest quality, performance and reliability standards throughout the development life cycle. This brief explores key principles, challenges, and best practices related to quality assurance in a DevOps culture. This emphasizes the importance of quality transfer in the development process, as quality control processes are integrated in every step of the DevOps process. Automation is the cornerstone of DevOps quality assurance, enabling continuous testing, integration and deployment and providing rapid feedback for early problem identification and resolution. In addition, the summary addresses the cultural and organizational challenges of implementing quality assurance in DevOps, emphasizing the need to foster collaboration, break down silos, and promote a culture of continuous improvement. It also discusses the importance of toolchain integration and capability development to support effective QA practices in DevOps environments. Moreover, the abstract discusses the cultural and organizational challenges in implementing QA within DevOps, emphasizing the need for fostering collaboration, breaking down silos, and nurturing a culture of continuous improvement. It also addresses the importance of toolchain integration and skills development to support effective QA practices within DevOps environments. Overall, this collection works at the intersection of QA and DevOps culture, providing insights into how organizations can use DevOps principles to improve software quality, accelerate delivery, and meet the changing demands of today's dynamic software. landscape.

Keywords: quality engineer, devops, automation, tool

Procedia PDF Downloads 58
2891 Leveraging Power BI for Advanced Geotechnical Data Analysis and Visualization in Mining Projects

Authors: Elaheh Talebi, Fariba Yavari, Lucy Philip, Lesley Town

Abstract:

The mining industry generates vast amounts of data, necessitating robust data management systems and advanced analytics tools to achieve better decision-making processes in the development of mining production and maintaining safety. This paper highlights the advantages of Power BI, a powerful intelligence tool, over traditional Excel-based approaches for effectively managing and harnessing mining data. Power BI enables professionals to connect and integrate multiple data sources, ensuring real-time access to up-to-date information. Its interactive visualizations and dashboards offer an intuitive interface for exploring and analyzing geotechnical data. Advanced analytics is a collection of data analysis techniques to improve decision-making. Leveraging some of the most complex techniques in data science, advanced analytics is used to do everything from detecting data errors and ensuring data accuracy to directing the development of future project phases. However, while Power BI is a robust tool, specific visualizations required by geotechnical engineers may have limitations. This paper studies the capability to use Python or R programming within the Power BI dashboard to enable advanced analytics, additional functionalities, and customized visualizations. This dashboard provides comprehensive tools for analyzing and visualizing key geotechnical data metrics, including spatial representation on maps, field and lab test results, and subsurface rock and soil characteristics. Advanced visualizations like borehole logs and Stereonet were implemented using Python programming within the Power BI dashboard, enhancing the understanding and communication of geotechnical information. Moreover, the dashboard's flexibility allows for the incorporation of additional data and visualizations based on the project scope and available data, such as pit design, rock fall analyses, rock mass characterization, and drone data. This further enhances the dashboard's usefulness in future projects, including operation, development, closure, and rehabilitation phases. Additionally, this helps in minimizing the necessity of utilizing multiple software programs in projects. This geotechnical dashboard in Power BI serves as a user-friendly solution for analyzing, visualizing, and communicating both new and historical geotechnical data, aiding in informed decision-making and efficient project management throughout various project stages. Its ability to generate dynamic reports and share them with clients in a collaborative manner further enhances decision-making processes and facilitates effective communication within geotechnical projects in the mining industry.

Keywords: geotechnical data analysis, power BI, visualization, decision-making, mining industry

Procedia PDF Downloads 92
2890 Investigation of Topic Modeling-Based Semi-Supervised Interpretable Document Classifier

Authors: Dasom Kim, William Xiu Shun Wong, Yoonjin Hyun, Donghoon Lee, Minji Paek, Sungho Byun, Namgyu Kim

Abstract:

There have been many researches on document classification for classifying voluminous documents automatically. Through document classification, we can assign a specific category to each unlabeled document on the basis of various machine learning algorithms. However, providing labeled documents manually requires considerable time and effort. To overcome the limitations, the semi-supervised learning which uses unlabeled document as well as labeled documents has been invented. However, traditional document classifiers, regardless of supervised or semi-supervised ones, cannot sufficiently explain the reason or the process of the classification. Thus, in this paper, we proposed a methodology to visualize major topics and class components of each document. We believe that our methodology for visualizing topics and classes of each document can enhance the reliability and explanatory power of document classifiers.

Keywords: data mining, document classifier, text mining, topic modeling

Procedia PDF Downloads 402
2889 Searching Linguistic Synonyms through Parts of Speech Tagging

Authors: Faiza Hussain, Usman Qamar

Abstract:

Synonym-based searching is recognized to be a complicated problem as text mining from unstructured data of web is challenging. Finding useful information which matches user need from bulk of web pages is a cumbersome task. In this paper, a novel and practical synonym retrieval technique is proposed for addressing this problem. For replacement of semantics, user intent is taken into consideration to realize the technique. Parts-of-Speech tagging is applied for pattern generation of the query and a thesaurus for this experiment was formed and used. Comparison with Non-Context Based Searching, Context Based searching proved to be a more efficient approach while dealing with linguistic semantics. This approach is very beneficial in doing intent based searching. Finally, results and future dimensions are presented.

Keywords: natural language processing, text mining, information retrieval, parts-of-speech tagging, grammar, semantics

Procedia PDF Downloads 307
2888 Integrating Data Mining within a Strategic Knowledge Management Framework: A Platform for Sustainable Competitive Advantage within the Australian Minerals and Metals Mining Sector

Authors: Sanaz Moayer, Fang Huang, Scott Gardner

Abstract:

In the highly leveraged business world of today, an organisation’s success depends on how it can manage and organize its traditional and intangible assets. In the knowledge-based economy, knowledge as a valuable asset gives enduring capability to firms competing in rapidly shifting global markets. It can be argued that ability to create unique knowledge assets by configuring ICT and human capabilities, will be a defining factor for international competitive advantage in the mid-21st century. The concept of KM is recognized in the strategy literature, and increasingly by senior decision-makers (particularly in large firms which can achieve scalable benefits), as an important vehicle for stimulating innovation and organisational performance in the knowledge economy. This thinking has been evident in professional services and other knowledge intensive industries for over a decade. It highlights the importance of social capital and the value of the intellectual capital embedded in social and professional networks, complementing the traditional focus on creation of intellectual property assets. Despite the growing interest in KM within professional services there has been limited discussion in relation to multinational resource based industries such as mining and petroleum where the focus has been principally on global portfolio optimization with economies of scale, process efficiencies and cost reduction. The Australian minerals and metals mining industry, although traditionally viewed as capital intensive, employs a significant number of knowledge workers notably- engineers, geologists, highly skilled technicians, legal, finance, accounting, ICT and contracts specialists working in projects or functions, representing potential knowledge silos within the organisation. This silo effect arguably inhibits knowledge sharing and retention by disaggregating corporate memory, with increased operational and project continuity risk. It also may limit the potential for process, product, and service innovation. In this paper the strategic application of knowledge management incorporating contemporary ICT platforms and data mining practices is explored as an important enabler for knowledge discovery, reduction of risk, and retention of corporate knowledge in resource based industries. With reference to the relevant strategy, management, and information systems literature, this paper highlights possible connections (currently undergoing empirical testing), between an Strategic Knowledge Management (SKM) framework incorporating supportive Data Mining (DM) practices and competitive advantage for multinational firms operating within the Australian resource sector. We also propose based on a review of the relevant literature that more effective management of soft and hard systems knowledge is crucial for major Australian firms in all sectors seeking to improve organisational performance through the human and technological capability captured in organisational networks.

Keywords: competitive advantage, data mining, mining organisation, strategic knowledge management

Procedia PDF Downloads 415
2887 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction

Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan

Abstract:

Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.

Keywords: decision trees, neural network, myocardial infarction, Data Mining

Procedia PDF Downloads 429
2886 Use of Quasi-3D Inversion of VES Data Based on Lateral Constraints to Characterize the Aquifer and Mining Sites of an Area Located in the North-East of Figuil, North Cameroon

Authors: Fofie Kokea Ariane Darolle, Gouet Daniel Hervé, Koumetio Fidèle, Yemele David

Abstract:

The electrical resistivity method is successfully used in this paper in order to have a clearer picture of the subsurface of the North-East ofFiguil in northern Cameroon. It is worth noting that this method is most often used when the objective of the study is to image the shallow subsoils by considering them as a set of stratified ground layers. The problem to be solved is very often environmental, and in this case, it is necessary to perform an inversion of the data in order to have a complete and accurate picture of the parameters of the said layers. In the case of this work, thirty-three (33) Schlumberger VES have been carried out on an irregular grid to investigate the subsurface of the study area. The 1D inversion applied as a preliminary modeling tool and in correlation with the mechanical drillings results indicates a complex subsurface lithology distribution mainly consisting of marbles and schists. Moreover, the quasi-3D inversion with lateral constraint shows that the misfit between the observed field data and the model response is quite good and acceptable with a value low than 10%. The method also reveals existence of two water bearing in the considered area. The first is the schist or weathering aquifer (unsuitable), and the other is the marble or the fracturing aquifer (suitable). The final quasi 3D inversion results and geological models indicate proper sites for groundwaters prospecting and for mining exploitation, thus allowing the economic development of the study area.

Keywords: electrical resistivity method, 1D inversion, quasi 3D inversion, groundwaters, mining

Procedia PDF Downloads 155
2885 Total Controllability of the Second Order Nonlinear Differential Equation with Delay and Non-Instantaneous Impulses

Authors: Muslim Malik, Avadhesh Kumar

Abstract:

A stronger concept of exact controllability which is called Total Controllability is introduced in this manuscript. Sufficient conditions have been established for the total controllability of a control problem, governed by second order nonlinear differential equation with delay and non-instantaneous impulses in a Banach space X. The results are obtained using the strongly continuous cosine family and Banach fixed point theorem. Also, the total controllability of an integrodifferential problem is investigated. At the end, some numerical examples are provided to illustrate the analytical findings.

Keywords: Banach fixed point theorem, non-instantaneous impulses, strongly continuous cosine family, total controllability

Procedia PDF Downloads 298
2884 Identifying Concerned Citizen Communication Style During the State Parliamentary Elections in Bavaria

Authors: Volker Mittendorf, Andre Schmale

Abstract:

In this case study, we want to explore the Twitter-use of candidates during the state parliamentary elections-year 2018 in Bavaria, Germany. This paper focusses on the seven parties that probably entered the parliament. Against this background, the paper classifies the use of language as populism which itself is considered as a political communication style. First, we determine the election campaigns which started in the years 2017 on Twitter, after that we categorize the posting times of the different direct candidates in order to derive ideal types from our empirical data. Second, we have done the exploration based on the dictionary of concerned citizens which contains German political language of the right and the far right. According to that, we are analyzing the corpus with methods of text mining and social network analysis, and afterwards we display the results in a network of words of concerned citizen communication style (CCCS).

Keywords: populism, communication style, election, text mining, social media

Procedia PDF Downloads 149
2883 A Review of Literature for Online Social Network Business Continuance Intention and the Hypotheses Thereof

Authors: Akwesi Assensoh-Kodua

Abstract:

Online Social Networks (OSN) has come and gone, yet the explosion of business activities on such platforms continuous to surge high, giving advantage to the bold entrepreneurs. It is therefore a practical requirement that practitioners and researchers understand the key determinants of costumers’ online social network business activities and continuance intention. An exploratory literature research to examine OSN continuous intention of business participants on OSN revealed that the practice of doing business on social network has come to stay and the following factors are the likely drivers for this new business model: perceived trust, perceived ease of use, confirmation, habit, social norm, perceived behavioural control, expected benefit, and satisfaction are the most probable factors that can lead to online social network (OSN) continuance intention.

Keywords: online social network, continuance intention, business continuance

Procedia PDF Downloads 493
2882 Sexting Phenomenon in Educational Settings: A Data Mining Approach

Authors: Koutsopoulou Ioanna, Gkintoni Evgenia, Halkiopoulos Constantinos, Antonopoulou Hera

Abstract:

Recent advances in Internet Computer Technology (ICT) and the ever-increasing use of technological equipment amongst adolescents and young adults along with unattended access to the internet and social media and uncontrolled use of smart phones and PCs have caused social problems like sexting to emerge. The main purpose of the present article is first to present an analytic theoretical framework of sexting as a recent social phenomenon based on studies that have been conducted the last decade or so; and second to investigate Greek students’ and also social network users, sexting perceptions and to record how often social media users exchange sexual messages and to retrace demographic variables predictors. Data from 1,000 students were collected and analyzed and all statistical analysis was done by the software package WEKA. The results indicate among others, that the use of data mining methods is an important tool to draw conclusions that could affect decision and policy making especially in the field and related social topics of educational psychology. To sum up, sexting lurks many risks for adolescents and young adults students in Greece and needs to be better addressed in relevance to the stakeholders as well as society in general. Furthermore, policy makers, legislation makers and authorities will have to take action to protect minors. Prevention strategies based on Greek cultural specificities are being proposed. This social problem has raised concerns in recent years and will most likely escalate concerns in global communities in the future.

Keywords: educational ethics, sexting, Greek sexters, sex education, data mining

Procedia PDF Downloads 182
2881 Heart Failure Identification and Progression by Classifying Cardiac Patients

Authors: Muhammad Saqlain, Nazar Abbas Saqib, Muazzam A. Khan

Abstract:

Heart Failure (HF) has become the major health problem in our society. The prevalence of HF has increased as the patient’s ages and it is the major cause of the high mortality rate in adults. A successful identification and progression of HF can be helpful to reduce the individual and social burden from this syndrome. In this study, we use a real data set of cardiac patients to propose a classification model for the identification and progression of HF. The data set has divided into three age groups, namely young, adult, and old and then each age group have further classified into four classes according to patient’s current physical condition. Contemporary Data Mining classification algorithms have been applied to each individual class of every age group to identify the HF. Decision Tree (DT) gives the highest accuracy of 90% and outperform all other algorithms. Our model accurately diagnoses different stages of HF for each age group and it can be very useful for the early prediction of HF.

Keywords: decision tree, heart failure, data mining, classification model

Procedia PDF Downloads 402
2880 Early Childhood Practitioners' Perceptions on Continuous Professional Development Opportunities and Its Potential for Career Progression to Leadership Roles in Singapore

Authors: Lin Yanyan

Abstract:

This research set out to understand early childhood practitioners’ perceptions of continuous professional development (CPD) opportunities and its relationship to career progression and leadership roles in Singapore. The small-scale qualitative inductive study was conducted in two phases. Phase one used close-ended questionnaires with a total of 24 early years practitioner participants, while phase two included a total of 5 participants who were invited to participate in the second part of the data collection. Semi-structured interviews were used at phase two to elicit deeper responses from parents and teachers. Findings from the study were then thematically coded and analysed. The findings from both questionnaires and interviews showed that early years practitioners perceived CPD to be important to their professional growth, but there was no conclusive link that CPD necessarily led to the progression of leadership roles in the early years. Participants experience of CPD was strongly determined by their employer- the preschool operator, being government-funded or a private entity, which resulted in key differences emerging between their responses. Participants also experienced road blocks in their pursuit of CPD, in the form of staff shortage, budget constraints and lack of autonomy as their employers imposed specific CPD courses on them to suit the organisational needs, rather than their personal or professional needs.

Keywords: continuous professional development (CPD), early years practitioners (EYP), career progression, leadership

Procedia PDF Downloads 198
2879 Downhole Logging and Dynamics Data Resolving Lithology-Related Drilling Behavior

Authors: Christopher Viens, Steve Krase

Abstract:

Terms such as “riding a hard streak”, “formation push”, and “fighting formation” are commonly used in the directional drilling world to explain BHA behavior that causes unwanted trajectory change. Theories about downhole directional tendencies are commonly speculated from various personal experiences with little merit due to the lack of hard data to reveal the actual mechanisms behind the phenomenon, leaving interpretation of the root cause up to personal perception. Understanding and identifying in real time the lithological factors that influence the BHA to change or hold direction adds tremendous value in terms reducing sliding time and targeting zones for optimal ROP. Utilizing surface drilling parameters and employing downhole measurements of azimuthal gamma, continuous inclination, and bending moment, a direct measure of the rock related directional phenomenon have been captured and quantified. Furthermore, identifying continuous zones of like lithology with consistent bit to rock interaction has value from a reservoir characterization and completions standpoint. The paper will show specific examples of lithology related directional tendencies from the Spraberry and Wolfcamp in the Delaware Basin.

Keywords: Azimuthal gamma imaging, bending moment, continuous inclination, downhole dynamics measurements, high frequency data

Procedia PDF Downloads 290
2878 Challenging the Traditional Practice of Continuous Abscess Cavity Packing – A Single Center, Single Blind Randomized Controlled Trial

Authors: Lakmali Anthony, Bushra Oathman, Anshini Jain, Raaj Chandra

Abstract:

Introduction: Abscesses are traditionally treated by incision and drainage with the packing of the residual abscess cavity until healing. This method requires regular visits from community nurses for continuous wound packing upon discharge from the hospital and causes considerable patient discomfort. Whether abscess cavity packing offers any advantage over non-packing has not yet been adequately studied to the best of our knowledge. This study aims to determine if there are differences in clinical outcomes of time to healing, fistula formation and recurrence of abscess between abscess cavity packing vs. non-packing groups. Methods: This study was a single-center, single-blind, randomized controlled trial where patients were randomized into packing and non-packing arms. All patients over 18 years presenting to Eastern Health with an abscess requiring incision and drainage in the theatre were invited to participate. Those with underlying conditions that cause recurrent abscesses were excluded. Data were collected from December 2018 to April 2020. Results: There were 63 patients who had abscesses treated with incision and drainage that were enrolled in the study, 52 of which were suitable for analysis. Demographic characteristics were similar in both groups. The packing group had a significantly longer time to heal compared to the non-packing group. Rates of fistula formation and recurrence of abscess were low and there were no statistically significant differences between groups. The packing group had more patients with delayed healing (defined as >60 days) and required more follow-up visits compared to the non-packing group. Conclusion: This pilot study indicates that abscesses can not only be managed safely with incision and drainage alone without the need for continuous abscess cavity packing but also that non-packing may offer clinical benefits to patients with earlier healing of abscesses compared to continuous cavity packing.

Keywords: abscess packing, subcutaneous, perianal, pilonidal

Procedia PDF Downloads 73
2877 The Comparative Study of Binary Artifact Repository Managers

Authors: Evgeny Chugunnyy, Alena Gerasimova, Kirill Chernyavskiy, Alexander Krasnov

Abstract:

One of the primary component of Continuous deployment (CD) is a binary artifact repository — the place where artifacts are stored with metadata in a structured way. The binary artifact repository manager (BARM) is a software, which implements this repository logic and exposes a public application programming interface (API) for managing these artifacts. Almost every programming language ecosystem has its own artifact repository kind. During creating Artipie — BARM constructor and server, we analyzed and implemented a lot of different artifact repositories. In this paper we present criterias for comparing artifact repositories, and analyze the most popular repositories using these metrics. We also describe some of the notable features of different repositories. This paper aimed to help people who are creating, maintaining or optimizing software repository and CI tools.

Keywords: artifact, repository, continuous deployment, build automation, artifacts management

Procedia PDF Downloads 150
2876 Choosing between the Regression Correlation, the Rank Correlation, and the Correlation Curve

Authors: Roger L. Goodwin

Abstract:

This paper presents a rank correlation curve. The traditional correlation coefficient is valid for both continuous variables and for integer variables using rank statistics. Since the correlation coefficient has already been established in rank statistics by Spearman, such a calculation can be extended to the correlation curve. This paper presents two survey questions. The survey collected non-continuous variables. We will show weak to moderate correlation. Obviously, one question has a negative effect on the other. A review of the qualitative literature can answer which question and why. The rank correlation curve shows which collection of responses has a positive slope and which collection of responses has a negative slope. Such information is unavailable from the flat, "first-glance" correlation statistics.

Keywords: Bayesian estimation, regression model, rank statistics, correlation, correlation curve

Procedia PDF Downloads 476
2875 Sino-Africa Trade Ties: The Curse of African Minerals: Tweaking the Corporate Scorecard to Benefit the Mining Village Communities

Authors: Donald Ouko

Abstract:

For decades, Africa has been home to several foreign companies doing business in various sectors. In recent years, China has consistently positioned itself as a development partner powerhouse among African nations. However, this has not been felt as equally beneficial to the local communities where the partnerships bloom in extractives trading. This paper explores the impact of Chinese involvement in mining on the local communities in three African countries, the factors that enable the sector to thrive amid the impacts, and what could be done differently for the local communities to experience a different outcome. It suggests alternative terms of engagement that aim at transparency, accountability, and anti-corruption to ensure inclusive social and economic development, and sound governance both at state and corporate levels.

Keywords: law and society, social development, corporate governance, China-Africa ties, human rights, socio-economic development, accountability, transparency

Procedia PDF Downloads 28
2874 Effective Tandem Mesh Nebulisation of Pulmonary Vasodilator and Bronchodilators in Critical Respiratory Failure

Authors: Nathalie Bolding, Marta Montero, Joaquim Cevallos, Juan F. Martin-Lazaro

Abstract:

Background: Inhaled epoprostenol (iEPO) have been shown to improve PaO2:FiO2 (PF) in combination with bronchodilators (BD). However, there is not an available device to deliver these two therapies concomitantly. We describe a new method to provide this therapy successfully. Objective: To evaluate the response to continuous nebulization of iEPO and intermittent nebulization of Salbutamol/Ipratropium bromide in adults with severe respiratory failure through a double mesh nebulisation in tandem. Methods: This observational study included two mechanical ventilated adults under hourly ventilatory, gasometrical and clinical measurements during 48h. Both had severe respiratory failure treated with continuous iEPO (50 – 200 micrograms/h) and BD (Salbutamol 2.5 mg and Ipratropium bromide 500 mcg every 6 hours) through double mesh nebulisation (Aerogen solo®) placed in tandem in the dry side of the humidificator. The primary endpoints were the variables associated with a positive response to this tandem nebulised therapy (PaFiO2 index, ROX index). Secondary endpoints were laboratory (ABG) clinical and ventilatory variables. Statistical analysis (SPSS v29) included linear regression and ANOVA. Results: The patients included (n=2) survived, both extubated, one after ECMO therapy. Severe acute respiratory failure had a positive response rate to continuous iEPO and intermittent BD: PaFiO2 increased (7.40 to 30.91; P75: 27%) as well as ROX index (2.91 to 11.43; P75: 33%). There was a linear correlation of improvement between iEPO with PaFiO2 (ANOVA, r=0.393, p<0.002) and ROX (r=0.419, p<0.001). iEPO+BD therapy did not show any complications. Conclusion: Continuous and intermittent mesh tandem nebulisation can be effectively delivered with this method with a positive effect in ventilatory parameters without observed complications. Randomised studies will be able to provide reassurance in this new therapy.

Keywords: tandem, mesh, nebulisers, pulmonary, vasoldilators, bronchodilators, respiratory, failure

Procedia PDF Downloads 83
2873 An Experimental Study on the Positive Streamer Leader Propagation under Slow Front Impulse Voltages in a 10m Rod-Plane Air Gap

Authors: Wahab Ali Shah, Junjia He

Abstract:

In this work, we performed a large-scale investigation into leader development in a 10 m rod-plane gap under a long front positive impulse. To describe the leader propagation under slow front impulse voltages, we recorded the leader propagation with a high-speed charge coupled device (CCD) camera. It is important to figure out this phenomenon to deepen our understanding of leader discharge. The observation results showed that the leader mechanism is a very complex physical phenomenon; it could be categorized into two types of leader process, namely, continuous and the discontinuous leader streamer-leader propagation. Furthermore, we studied the continuous leader development parameters, including two-dimensional (2-D) leader length, injected charge, and final jump stage, as well as leader velocity for rod–plane configuration. We observed that the discontinuous leader makes an important contribution to the appearance of channel re-illuminations of the positive leader. The comparative study shows better results in terms of standard switch impulse and long front positive impulse. Finally, the results are presented with a view toward improving our understanding of propagation mechanisms related to restrike phenomena, which are rarely reported. To clarify the above doubts under long front cases, we carried out extensive experiments in this study.

Keywords: continuous and discontinuous leader, high-speed photographs, long air gap, positive long front impulse, restrike phenomena

Procedia PDF Downloads 169
2872 Neural Networks Models for Measuring Hotel Users Satisfaction

Authors: Asma Ameur, Dhafer Malouche

Abstract:

Nowadays, user comments on the Internet have an important impact on hotel bookings. This confirms that the e-reputation issue can influence the likelihood of customer loyalty to a hotel. In this way, e-reputation has become a real differentiator between hotels. For this reason, we have a unique opportunity in the opinion mining field to analyze the comments. In fact, this field provides the possibility of extracting information related to the polarity of user reviews. This sentimental study (Opinion Mining) represents a new line of research for analyzing the unstructured textual data. Knowing the score of e-reputation helps the hotelier to better manage his marketing strategy. The score we then obtain is translated into the image of hotels to differentiate between them. Therefore, this present research highlights the importance of hotel satisfaction ‘scoring. To calculate the satisfaction score, the sentimental analysis can be manipulated by several techniques of machine learning. In fact, this study treats the extracted textual data by using the Artificial Neural Networks Approach (ANNs). In this context, we adopt the aforementioned technique to extract information from the comments available in the ‘Trip Advisor’ website. This actual paper details the description and the modeling of the ANNs approach for the scoring of online hotel reviews. In summary, the validation of this used method provides a significant model for hotel sentiment analysis. So, it provides the possibility to determine precisely the polarity of the hotel users reviews. The empirical results show that the ANNs are an accurate approach for sentiment analysis. The obtained results show also that this proposed approach serves to the dimensionality reduction for textual data’ clustering. Thus, this study provides researchers with a useful exploration of this technique. Finally, we outline guidelines for future research in the hotel e-reputation field as comparing the ANNs with other technique.

Keywords: clustering, consumer behavior, data mining, e-reputation, machine learning, neural network, online hotel ‘reviews, opinion mining, scoring

Procedia PDF Downloads 136