Search results for: artificial air storage reservoir
4162 Effect of Different Ozone Doses on Antioxidant Activity in Different Tomato Tissues and at Different Stages of Ripening
Authors: Shalluf Milad
Abstract:
Tomatoes are widely produced and consumed due to their nutritional content and versatility. However, the tomato is a soft fruit liable to damage and flavour deterioration. Hence, the main challenge for the tomato producing industry is to prevent the high loss incurred during harvest, handling and transportation of the crops. The objective of this study was to investigate the overall nutritional implication of controlled storage of tomatoes using ozone on the basic nutritional components of tomatoes. This investigation was also designed to focus on the effect of different ozone doses on the basic components (antioxidant activity). Green, yellow and red stages of ripeness (elegance tomatoes), were harvested at different dates for each experiment. The tomatoes were cleaned and placed inside the glass reactors and ozonated at 0.25, 0.50 and 1 mg O3/g tomatoes and clean air respectively for 5 days at 15°C ± 2 and 90-95 % relative humidity respectively. The fruits were analysed for total antioxidant activity. Analysis of the fruits clearly showed that antioxidant activity in the pericarp tissue was the lowest (P<0.001) compared with the pulp tissue of tomatoes during storage in the red stage of maturity, after being treated with ozone in the atmosphere of storage in a dose of 1.00 mgO3/g tomatoes. It can be concluded from this study that the use of ozone in the atmospheres of storage and handling of fresh products maintains the important compounds of these products while maintaining the nutritional value and health quality.Keywords: post-harvest treatment, controlled atmosphere storage, ozone, tomatoes, antioxidant activity
Procedia PDF Downloads 3274161 Study of the Use of Artificial Neural Networks in Islamic Finance
Authors: Kaoutar Abbahaddou, Mohammed Salah Chiadmi
Abstract:
The need to find a relevant way to predict the next-day price of a stock index is a real concern for many financial stakeholders and researchers. We have known across years the proliferation of several methods. Nevertheless, among all these methods, the most controversial one is a machine learning algorithm that claims to be reliable, namely neural networks. Thus, the purpose of this article is to study the prediction power of neural networks in the particular case of Islamic finance as it is an under-looked area. In this article, we will first briefly present a review of the literature regarding neural networks and Islamic finance. Next, we present the architecture and principles of artificial neural networks most commonly used in finance. Then, we will show its empirical application on two Islamic stock indexes. The accuracy rate would be used to measure the performance of the algorithm in predicting the right price the next day. As a result, we can conclude that artificial neural networks are a reliable method to predict the next-day price for Islamic indices as it is claimed for conventional ones.Keywords: Islamic finance, stock price prediction, artificial neural networks, machine learning
Procedia PDF Downloads 2374160 Artificial Intelligence in Duolingo
Authors: Elana Mahboub, Lamar Bakhurji, Hind Alhindi, Sara Alesayi
Abstract:
Duolingo is a revolutionary language learning platform that offers an interactive and accessible learning experience. Its gamified approach makes language learning engaging and enjoyable, with a diverse range of languages available. The platform's adaptive learning system tailors lessons to individual proficiency levels, ensuring a personalized and efficient learning journey. The incorporation of multimedia elements enhances the learning experience and promotes practical language application. Duolingo's success is attributed to its mobile accessibility, offering basic access to language courses for free, with optional premium features for those seeking additional resources. Research shows positive outcomes for users, and the app's global impact extends beyond individual learning to formal language education initiatives. Duolingo is a transformative force in language education, breaking down barriers and making language learning an attainable goal for millions worldwide.Keywords: duolingo, artificial intelligence, artificial intelligence in duolingo, benefit of artificial intelligence
Procedia PDF Downloads 724159 Artificial Seed Production in Stipagrostis pennata
Authors: Masoumeh Asadi Aghbolaghi, Beata Dedicova, Farzad Sharifzadeh, Mansoor Omidi, Ulrika Egertsdotter
Abstract:
Stipagrostis pennata is one of the valuable fodder plants and is very resistant to drought, due to the low capacity of seed production, the use of asexual reproduction methods, including somatic embryogenesis and artificial seed, can increase its reproduction on a large scale. This study was conducted in order to obtain optimal treatments for the production of artificial seeds of this plant through the somatic embryo encapsulating. Embryonic calluses were encapsulated using sodium alginate and calcium chloride and then sowed in a germination medium. The experiment was conducted as a factorial based on a completely randomized design with three replications. The treatments include three concentrations of sodium alginate (1.5, 2.5, and 3.5 percent), two ion exchange times (20 and 30 minutes,) and two artificial seed germination media (hormone free MS and MS containing zeatin riboside and L-proline). Germination percentage and number of days until the beginning of germination were investigated. The highest percentage of artificial seed germination was obtained when 2.5% sodium alginate was used for 30 minutes (ion exchange time) and the seeds were placed on the germination medium containing zeatin riboside and L-proline.Keywords: somatic embryogenesis, Stipagrostis pennata, synthetic seed, tissue culture
Procedia PDF Downloads 994158 Application of Artificial Neural Network to Prediction of Feature Academic Performance of Students
Authors: J. K. Alhassan, C. S. Actsu
Abstract:
This study is on the prediction of feature performance of undergraduate students with Artificial Neural Networks (ANN). With the growing decline in the quality academic performance of undergraduate students, it has become essential to predict the students’ feature academic performance early in their courses of first and second years and to take the necessary precautions using such prediction-based information. The feed forward multilayer neural network model was used to train and develop a network and the test carried out with some of the input variables. A result of 80% accuracy was obtained from the test which was carried out, with an average error of 0.009781.Keywords: academic performance, artificial neural network, prediction, students
Procedia PDF Downloads 4674157 Artificial Intelligence Methods for Returns Expectations in Financial Markets
Authors: Yosra Mefteh Rekik, Younes Boujelbene
Abstract:
We introduce in this paper a new conceptual model representing the stock market dynamics. This model is essentially based on cognitive behavior of the intelligence investors. In order to validate our model, we build an artificial stock market simulation based on agent-oriented methodologies. The proposed simulator is composed of market supervisor agent essentially responsible for executing transactions via an order book and various kinds of investor agents depending to their profile. The purpose of this simulation is to understand the influence of psychological character of an investor and its neighborhood on its decision-making and their impact on the market in terms of price fluctuations. Therefore, the difficulty of the prediction is due to several features: the complexity, the non-linearity and the dynamism of the financial market system, as well as the investor psychology. The Artificial Neural Networks learning mechanism take on the role of traders, who from their futures return expectations and place orders based on their expectations. The results of intensive analysis indicate that the existence of agents having heterogeneous beliefs and preferences has provided a better understanding of price dynamics in the financial market.Keywords: artificial intelligence methods, artificial stock market, behavioral modeling, multi-agent based simulation
Procedia PDF Downloads 4454156 Artificial Intelligence: Mathway and Its Features
Authors: Aroob Binhimd, Lyan Sayoti, Rana Almansour
Abstract:
In recent years, artificial intelligence has grown drastically. This has led to the growth of educational programs to help students in solving educational problems and assist them in understanding certain topics. The purpose of this report is to investigate the Mathway application. Mathway is a mathematics software that teaches students how to solve and handle mathematical issues. The app allows students to insert questions manually on the platform or take a picture of the question, and then they get an answer to this mathematical question. It helps students enhance their performance in mathematics. This app can also be used to verify or check if their answers are correct. The report will include a questionnaire to collect data and analyze the users of this application.Keywords: artificial intelligence, Mathway, mathematics, mathematical problems
Procedia PDF Downloads 2614155 Experimental and Numerical Studies on Hydrogen Behavior in a Small-Scale Container with Passive Autocatalytic Recombiner
Authors: Kazuyuki Takase, Yoshihisa Hiraki, Gaku Takase, Isamu Kudo
Abstract:
One of the most important issue is to ensure the safety of long-term waste storage containers in which fuel debris and radioactive materials are accumulated. In this case, hydrogen generated by water decomposition by radiation is accumulated in the container for a long period of time, so it is necessary to reduce the concentration of hydrogen in the container. In addition, a condition that any power supplies from the outside of the container are unnecessary is requested. Then, radioactive waste storage containers with the passive autocatalytic recombiner (PAR) would be effective. The radioactive waste storage container with PAR was used for moving the fuel debris of the Three Mile Island Unit 2 to the storage location. However, the effect of PAR is not described in detail. Moreover, the reduction of hydrogen concentration during the long-term storage period was performed by the venting system, which was installed on the top of the container. Therefore, development of a long-term storage container with PAR was started with the aim of safely storing fuel debris picked up at the Fukushima Daiichi Nuclear Power Plant for a long period of time. A fundamental experiment for reducing the concentration of hydrogen which generates in a nuclear waste long-term storage container was carried out using a small-scale container with PAR. Moreover, the circulation flow behavior of hydrogen in the small-scale container resulting from the natural convection by the decay heat was clarified. In addition, preliminary numerical analyses were performed to predict the experimental results regarding the circulation flow behavior and the reduction of hydrogen concentration in the small-scale container. From the results of the present study, the validity of the container with PAR was experimentally confirmed on the reduction of hydrogen concentration. In addition, it was predicted numerically that the circulation flow behavior of hydrogen in the small-scale container is blocked by steam which generates by chemical reaction of hydrogen and oxygen.Keywords: hydrogen behavior, reduction of concentration, long-term storage container, small-scale, PAR, experiment, analysis
Procedia PDF Downloads 1634154 Petroleum Play Fairway Analysis of the Middle Paleocene Lower Beda Formation, Concession 71, South-Central Sirt Basin, Libya
Authors: Hatem K. Hamed, Mohamed S. Hrouda
Abstract:
The Middle Paleocene Lower Beda Formation was deposited in a ramp system with local shoaling. The main constituent is limestone, with subordinate dolomites and Shales. Reservoir quality is largely influenced by depositional environments and diagenesis processes. Generally the reservoir quality of Lower Beda Formation is low risk on the Inferred Horst and in the Southern Shelf where the Lower Beda formation comprises mainly of calcarenties. In the vicinity of the well GG1 the Lower Beda comprise mainly of argillaceous calcilutites and shale. The reservoir quality gradually improves from high risk to moderate risk towards KK1, LL1 and NN1 wells. The average gross thickness of Lower Beda Formation is about 300 ft. The net thickness varies from about 270 ft. in the E1-71 well to about 30 ft. in the vicinity of GG1-71 well. The net thickest of Lower Beda form a NNW-SSW trend with an average of 250 ft. the change in facies is due to change in the depositional environment, from lagoonal to shoal barrier to open marine affected the reservoir quality. The Upper Cretaceous Sirte Shale is the main source rock. It is developed within the three troughs surrounding the study area. S-Marada Trough to the N- E, Gerad Trough to the N N-W, and Abu Tummym Sub-basin to the S-W of the Inferred Horst. Sirte shale reaches 1000ft, of organically rich section. It has good organic contents over large area 2% to 3%. Hydrocarbon shows were encountered in several wells in Beda Formation this is an indication of vertical and lateral migration of hydrocarbon. The overlying Upper Paleocene Khalifa Formation is a transgressive shale, it is an effective regional top seal. Lithofacies variations in Khalifa Shale, from shales to limestones in the southern shelf in R1-71 well approximately 50-75% of the secession is limestone. About 47 million barrel of hydrocarbon recoverable reserves is expected to be trapped in structural and stratigraphic traps in Beda Formation in the study area.Keywords: Sirte basin, Beda formation, concession 71, petroleum play fairway analysis
Procedia PDF Downloads 884153 FACTS Based Stabilization for Smart Grid Applications
Authors: Adel. M. Sharaf, Foad H. Gandoman
Abstract:
Nowadays, Photovoltaic-PV Farms/ Parks and large PV-Smart Grid Interface Schemes are emerging and commonly utilized in Renewable Energy distributed generation. However, PV-hybrid-Dc-Ac Schemes using interface power electronic converters usually has negative impact on power quality and stabilization of modern electrical network under load excursions and network fault conditions in smart grid. Consequently, robust FACTS based interface schemes are required to ensure efficient energy utilization and stabilization of bus voltages as well as limiting switching/fault onrush current condition. FACTS devices are also used in smart grid-Battery Interface and Storage Schemes with PV-Battery Storage hybrid systems as an elegant alternative to renewable energy utilization with backup battery storage for electric utility energy and demand side management to provide needed energy and power capacity under heavy load conditions. The paper presents a robust interface PV-Li-Ion Battery Storage Interface Scheme for Distribution/Utilization Low Voltage Interface using FACTS stabilization enhancement and dynamic maximum PV power tracking controllers. Digital simulation and validation of the proposed scheme is done using MATLAB/Simulink software environment for Low Voltage- Distribution/Utilization system feeding a hybrid Linear-Motorized inrush and nonlinear type loads from a DC-AC Interface VSC-6-pulse Inverter Fed from the PV Park/Farm with a back-up Li-Ion Storage Battery.Keywords: AC FACTS, smart grid, stabilization, PV-battery storage, Switched Filter-Compensation (SFC)
Procedia PDF Downloads 4124152 The Impact of Improved Grain Storage Technology on Marketing Behaviour and Livelihoods of Maize Farmers: A Randomized Controlled Trial in Ethiopia
Authors: Betelhem M. Negede, Maarten Voors, Hugo De Groote, Bart Minten
Abstract:
Farmers in Ethiopia produce most of their own food during one agricultural season per year. Therefore, they need to use on-farm storage technologies to bridge the lean season and benefit from price arbitrage. Maize stored using traditional storage bags offer no protection from insects and molds, leading to high storage losses. In Ethiopia access to and use of modern storage technologies are still limited, restraining farmers to benefit from local maize price fluctuations. We used a randomized controlled trial among 871 maize farmers to evaluate the impacts of Purdue Improved Crop Storage (PICS) bags, also known as hermetic bags, on storage losses, and especially on behavioral changes with respect to consumption, marketing, and income among maize farmers in Ethiopia. This study builds upon the limited previous experimental research that has tried to understand farmers’ grain storage and post-harvest losses and identify mechanisms behind the persistence of these challenges. Our main hypothesis is that access to PICS bags allows farmers to increase production, storage and maize income. Also delay the length of maize storage, reduce maize post-harvest losses and improve their food security. Our results show that even though farmers received only three PICS bags that represent 10percent of their total maize stored, they delay their length of maize storage for sales by two weeks. However, we find no treatment effect on maize income, suggesting that the arbitrage of two weeks is too small. Also, we do not find any reduction in storage losses due to farmers’ reaction by selling early and by using cheap and readily available but potentially harmful storage chemicals. Looking at the heterogeneity treatment effects between the treatment variable and highland and lowland villages, we find a decrease in the percentage of maize stored by 4 percent in the highland villages. This confirms that location specific factors, such as agro-ecology and proximity to markets are important factors that influence whether and how much of the harvest a farmer stores. These findings highlight the benefits of hermetic storage bags, by allowing farmers to make inter-temporal arbitrage and by reducing potential health risks from storage chemicals. The main policy recommendation that emanates from our study is that postharvest losses reduction throughout the whole value chain is an important pathway to food and income security in Sub-Saharan Africa (SSA). However, future storage loss interventions with hermetic storage technologies should take into account the agro-ecology of the study area and quantify storage losses beyond farmers self-reported losses, such as the count and weigh method. Finally, studies on hermetic storage technologies indicate positive impacts on post-harvest losses and in improving food security, but the adoption and use of these technologies is currently still low in SSA. Therefore, future works on the scaling up of hermetic bags, should consider reasons why farmers only use PICS bags to store grains for consumption, which is usually related to a safety-first approach or due to lack of incentives (higher price from maize not treated with chemicals), and no grain quality check.Keywords: arbitrage, PICS hermetic bags, post-harvest storage loss, RCT
Procedia PDF Downloads 1364151 Oxidation Assessment of Mayonnaise with Headspace Single-Drop Microextarction (HS-SDME) Coupled with Gas Chromatography-Mass Spectrometry (GC-MS) during Shelf-Life
Authors: Kooshan Nayebzadeh, Maryam Enteshari, Abdorreza Mohammadi
Abstract:
The oxidative stability of mayonnaise under different storage temperatures (4 and 25˚C) during 6-month shelf-life was investigated by different analytical methods. In this study, headspace single-drop microextarction (HS-SDME) combined with gas chromatography-mass spectrometry (GC-MS) as a green, sensitive and rapid technique was applied to evaluate oxidative state in mayonnaise. Oxidation changes of extracted oil from mayonnaise were monitored by analytical parameters including peroxide value (PV), p-Anisidine value (p-An V), thiobarbituric acid value (TBA), and oxidative stability index (OSI). Hexanal and heptanal as secondary volatile oxidation compounds were determined by HS-SDME/GC-MS method in mayonnaise matrix. The rate of oxidation in mayonnaises increased during storage and it was determined greater at 25 ˚C. The values of Anisidine and TBA were gradually enhanced during 6 months, while the amount of OSI decreased. At both temperatures, the content of hexanal was higher than heptanal during all storage periods. Also significant increments in hexanal and heptanal concentrations in the second and sixth month of storage have been observed. Hexanal concentrations in mayonnaises which were stored at 25 ˚C and during storage time showed the highest values. It can be concluded that the temperature and duration of storage time are definitive parameters which affect on quality and oxidative stability of mayonnaise. Additionally, hexanal content in comparison to heptanal is a more reliable oxidative indicator and HS-SDME/GC-MS can be applied in a quick and simple manner.Keywords: oxidative stability, mayonnaise, headspace single-drop microextarction (HS-SDME), shelf-life
Procedia PDF Downloads 4194150 A Parallel Poromechanics Finite Element Method (FEM) Model for Reservoir Analyses
Authors: Henrique C. C. Andrade, Ana Beatriz C. G. Silva, Fernando Luiz B. Ribeiro, Samir Maghous, Jose Claudio F. Telles, Eduardo M. R. Fairbairn
Abstract:
The present paper aims at developing a parallel computational model for numerical simulation of poromechanics analyses of heterogeneous reservoirs. In the context of macroscopic poroelastoplasticity, the hydromechanical coupling between the skeleton deformation and the fluid pressure is addressed by means of two constitutive equations. The first state equation relates the stress to skeleton strain and pore pressure, while the second state equation relates the Lagrangian porosity change to skeleton volume strain and pore pressure. A specific algorithm for local plastic integration using a tangent operator is devised. A modified Cam-clay type yield surface with associated plastic flow rule is adopted to account for both contractive and dilative behavior.Keywords: finite element method, poromechanics, poroplasticity, reservoir analysis
Procedia PDF Downloads 3914149 Optimal Sizes of Energy Storage for Economic Operation Management
Authors: Rohalla Moghimi, Sirus Mohammadi
Abstract:
Batteries for storage of electricity from solar and wind generation farms are a key element in the success of sustainability. In recent years, due to large integration of Renewable Energy Sources (RESs) like wind turbine and photovoltaic unit into the Micro-Grid (MG), the necessity of Battery Energy Storage (BES) has increased dramatically. The BES has several benefits and advantages in the MG-based applications such as short term power supply, power quality improvement, facilitating integration of RES, ancillary service and arbitrage. This paper presents the cost-based formulation to determine the optimal size of the BES in the operation management of MG. Also, some restrictions, i.e. power capacity of Distributed Generators (DGs), power and energy capacity of BES, charge/discharge efficiency of BES, operating reserve and load demand satisfaction should be considered as well. In this paper, a methodology is proposed for the optimal allocation and economic analysis of ESS in MGs on the basis of net present value (NPV). As the optimal operation of an MG strongly depends on the arrangement and allocation of its ESS, economic operation strategies and optimal allocation methods of the ESS devices are required for the MG.Keywords: microgrid, energy storage system, optimal sizing, net present value
Procedia PDF Downloads 5564148 Critical Evaluation of the Transformative Potential of Artificial Intelligence in Law: A Focus on the Judicial System
Authors: Abisha Isaac Mohanlal
Abstract:
Amidst all suspicions and cynicism raised by the legal fraternity, Artificial Intelligence has found its way into the legal system and has revolutionized the conventional forms of legal services delivery. Be it legal argumentation and research or resolution of complex legal disputes; artificial intelligence has crept into all legs of modern day legal services. Its impact has been largely felt by way of big data, legal expert systems, prediction tools, e-lawyering, automated mediation, etc., and lawyers around the world are forced to upgrade themselves and their firms to stay in line with the growth of technology in law. Researchers predict that the future of legal services would belong to artificial intelligence and that the age of human lawyers will soon rust. But as far as the Judiciary is concerned, even in the developed countries, the system has not fully drifted away from the orthodoxy of preferring Natural Intelligence over Artificial Intelligence. Since Judicial decision-making involves a lot of unstructured and rather unprecedented situations which have no single correct answer, and looming questions of legal interpretation arise in most of the cases, discretion and Emotional Intelligence play an unavoidable role. Added to that, there are several ethical, moral and policy issues to be confronted before permitting the intrusion of Artificial Intelligence into the judicial system. As of today, the human judge is the unrivalled master of most of the judicial systems around the globe. Yet, scientists of Artificial Intelligence claim that robot judges can replace human judges irrespective of how daunting the complexity of issues is and how sophisticated the cognitive competence required is. They go on to contend that even if the system is too rigid to allow robot judges to substitute human judges in the recent future, Artificial Intelligence may still aid in other judicial tasks such as drafting judicial documents, intelligent document assembly, case retrieval, etc., and also promote overall flexibility, efficiency, and accuracy in the disposal of cases. By deconstructing the major challenges that Artificial Intelligence has to overcome in order to successfully invade the human- dominated judicial sphere, and critically evaluating the potential differences it would make in the system of justice delivery, the author tries to argue that penetration of Artificial Intelligence into the Judiciary could surely be enhancive and reparative, if not fully transformative.Keywords: artificial intelligence, judicial decision making, judicial systems, legal services delivery
Procedia PDF Downloads 2244147 Theoretical and Experimental Investigations of Binary Systems for Hydrogen Storage
Authors: Gauthier Lefevre, Holger Kohlmann, Sebastien Saitzek, Rachel Desfeux, Adlane Sayede
Abstract:
Hydrogen is a promising energy carrier, compatible with the sustainable energy concept. In this context, solid-state hydrogen-storage is the key challenge in developing hydrogen economy. The capability of absorption of large quantities of hydrogen makes intermetallic systems of particular interest. In this study, efforts have been devoted to the theoretical investigation of binary systems with constraints consideration. On the one hand, besides considering hydrogen-storage, a reinvestigation of crystal structures of the palladium-arsenic system shows, with experimental validations, that binary systems could still currently present new or unknown relevant structures. On the other hand, various binary Mg-based systems were theoretically scrutinized in order to find new interesting alloys for hydrogen storage. Taking the effect of pressure into account reveals a wide range of alternative structures, changing radically the stable compounds of studied binary systems. Similar constraints, induced by Pulsed Laser Deposition, have been applied to binary systems, and results are presented.Keywords: binary systems, evolutionary algorithm, first principles study, pulsed laser deposition
Procedia PDF Downloads 2714146 Investigating the Effect of the Shape of the Side Supports of the Gates of the Gotvand Reservoir Dam (from the Peak Overflows) on the Narrowing Coefficients
Authors: M. Abbasi
Abstract:
A spillway structure is used to pass excess water and floods from upstream or upstream to downstream or tributary. The spillway is considered one of the most key members of the dam, and the failure of many dams is attributed to the inefficiency of their spillway. Weirs should be selected as strong, reliable and high-performance structures, and weirs should be ready for use in all conditions and able to drain the flood so that we do not witness many casualties and financial losses when a flood occurs. The purpose of this study is to simulate the flow pattern passing over the peak spillway in order to optimize and adjust the height of the spillway walls. In this research, the effect of the shape of the side wings on the flow pattern over the peak spillways of the Gotvand reservoir dam was simulated and modelled using Flow3D software. In this research, side wings with rounded walls with six different approach angles were used. In addition, the different value of H/Hd was used to check the effect of the tank head. The results showed that with the constant H/Hd ratio and the increase of the approach angle of the side wing, the flow depth first decreases and then increases. These changes were the opposite regarding the depth average speed of the flow and the depth average concentration of the air entering the flow. At the same time, with the constant angle of approach of the side wing and with the increase of H/Hd ratio, the flow depth increases. In general, a correct understanding of the operation of overflows and a correct design can significantly reduce construction costs and solve flooding problems.Keywords: effect of the shape, gotvand reservoir dam, narrowing coefficients, supports of the gates
Procedia PDF Downloads 664145 Predicting Durability of Self Compacting Concrete Using Artificial Neural Network
Authors: R. Boudjelthia
Abstract:
The aim of this study is to determine the influence of mix composition of concrete as the content of water and cement, water–binder ratio, and the replacement of fly ash on the durability of self compacting concrete (SCC) by using artificial neural networks (ANNs). To achieve this, an ANNs model is developed to predict the durability of self compacting concrete which is expressed in terms of chloride ions permeability in accordance with ASTM C1202-97 or AASHTO T277. Database gathered from the literature for the training and testing the model. A sensitivity analysis was also conducted using the trained and tested ANN model to investigate the effect of fly ash on the durability of SCC. The results indicate that the developed model is reliable and accurate. the durability of SCC expressed in terms of total charge passed over a 6-h period can be significantly improved by using at least 25% fly ash as replacement of cement. This study show that artificial neural network have strong potentialas a feasible tool for predicting accurately the durability of SCC containing fly ash.Keywords: artificial neural networks, durability, chloride ions permeability, self compacting concrete
Procedia PDF Downloads 3784144 DNA Multiplier: A Design Architecture of a Multiplier Circuit Using DNA Molecules
Authors: Hafiz Md. Hasan Babu, Khandaker Mohammad Mohi Uddin, Nitish Biswas, Sarreha Tasmin Rikta, Nuzmul Hossain Nahid
Abstract:
Nanomedicine and bioengineering use biological systems that can perform computing operations. In a biocomputational circuit, different types of biomolecules and DNA (Deoxyribose Nucleic Acid) are used as active components. DNA computing has the capability of performing parallel processing and a large storage capacity that makes it diverse from other computing systems. In most processors, the multiplier is treated as a core hardware block, and multiplication is one of the time-consuming and lengthy tasks. In this paper, cost-effective DNA multipliers are designed using algorithms of molecular DNA operations with respect to conventional ones. The speed and storage capacity of a DNA multiplier are also much higher than a traditional silicon-based multiplier.Keywords: biological systems, DNA multiplier, large storage, parallel processing
Procedia PDF Downloads 2144143 Flywheel Energy Storage Control Using SVPWM for Small Satellites Application
Authors: Noha El-Gohary, Thanaa El-Shater, A. A. Mahfouz, M. M. Sakr
Abstract:
Searching for high power conversion efficiency and long lifetime are important goals when designing a power supply subsystem for satellite applications. To fulfill these goals, this paper presents a power supply subsystem for small satellites in which flywheel energy storage system is used as a secondary power source instead of chemical battery. In this paper, the model of flywheel energy storage system is introduced; a DC bus regulation control algorithm for charging and discharging of flywheel based on space vector pulse width modulation technique and motor current control is also introduced. Simulation results showed the operation of the flywheel for charging and discharging mode during illumination and shadowed period. The advantages of the proposed system are confirmed by the simulation results of the power supply system.Keywords: small-satellites, flywheel energy storage system, space vector pulse width modulation, power conversion
Procedia PDF Downloads 4004142 Operation Strategy of Multi-Energy Storage System Considering Power System Reliability
Authors: Wook-Won Kim, Je-Seok Shin, Jin-O Kim
Abstract:
As the penetration of Energy Storage System (ESS) increases in the power system due to higher performance and lower cost than ever, ESS is expanding its role to the ancillary service as well as the storage of extra energy from the intermittent renewable energy resources. For multi-ESS with different capacity and SOC level each other, it is required to make the optimal schedule of SOC level use the multi-ESS effectively. This paper proposes the energy allocation method for the multiple battery ESS with reliability constraint, in order to make the ESS discharge the required energy as long as possible. A simple but effective method is proposed in this paper, to satisfy the power for the spinning reserve requirement while improving the system reliability. Modelling of ESS is also proposed, and reliability is evaluated by using the combined reliability model which includes the proposed ESS model and conventional generation one. In the case study, it can be observed that the required power is distributed to each ESS adequately and accordingly, the SOC is scheduled to improve the reliability indices such as Loss of Load Probability (LOLP) and Loss of Load Expectation (LOLE).Keywords: multiple energy storage system (MESS), energy allocation method, SOC schedule, reliability constraints
Procedia PDF Downloads 3684141 Artificial intelligence and Law
Authors: Mehrnoosh Abouzari, Shahrokh Shahraei
Abstract:
With the development of artificial intelligence in the present age, intelligent machines and systems have proven their actual and potential capabilities and are mindful of increasing their presence in various fields of human life in the fields of industry, financial transactions, marketing, manufacturing, service affairs, politics, economics and various branches of the humanities .Therefore, despite the conservatism and prudence of law enforcement, the traces of artificial intelligence can be seen in various areas of law. Including judicial robotics capability estimation, intelligent judicial decision making system, intelligent defender and attorney strategy adjustment, dissemination and regulation of different and scattered laws in each case to achieve judicial coherence and reduce opinion, reduce prolonged hearing and discontent compared to the current legal system with designing rule-based systems, case-based, knowledge-based systems, etc. are efforts to apply AI in law. In this article, we will identify the ways in which AI is applied in its laws and regulations, identify the dominant concerns in this area and outline the relationship between these two areas in order to answer the question of how artificial intelligence can be used in different areas of law and what the implications of this application will be. The authors believe that the use of artificial intelligence in the three areas of legislative, judiciary and executive power can be very effective in governments' decisions and smart governance, and helping to reach smart communities across human and geographical boundaries that humanity's long-held dream of achieving is a global village free of violence and personalization and human error. Therefore, in this article, we are going to analyze the dimensions of how to use artificial intelligence in the three legislative, judicial and executive branches of government in order to realize its application.Keywords: artificial intelligence, law, intelligent system, judge
Procedia PDF Downloads 1194140 Seismic Interpretation and Petrophysical Evaluation of SM Field, Libya
Authors: Abdalla Abdelnabi, Yousf Abushalah
Abstract:
The G Formation is a major gas producing reservoir in the SM Field, eastern, Libya. It is called G limestone because it consists of shallow marine limestone. Well data and 3D-Seismic in conjunction with the results of a previous study were used to delineate the hydrocarbon reservoir of Middle Eocene G-Formation of SM Field area. The data include three-dimensional seismic data acquired in 2009. It covers approximately an area of 75 mi² and with more than 9 wells penetrating the reservoir. Seismic data are used to identify any stratigraphic and structural and features such as channels and faults and which may play a significant role in hydrocarbon traps. The well data are used to calculation petrophysical analysis of S field. The average porosity of the Middle Eocene G Formation is very good with porosity reaching 24% especially around well W 6. Average water saturation was calculated for each well from porosity and resistivity logs using Archie’s formula. The average water saturation for the whole well is 25%. Structural mapping of top and bottom of Middle Eocene G formation revealed the highest area in the SM field is at 4800 ft subsea around wells W4, W5, W6, and W7 and the deepest point is at 4950 ft subsea. Correlation between wells using well data and structural maps created from seismic data revealed that net thickness of G Formation range from 0 ft in the north part of the field to 235 ft in southwest and south part of the field. The gas water contact is found at 4860 ft using the resistivity log. The net isopach map using both the trapezoidal and pyramid rules are used to calculate the total bulk volume. The original gas in place and the recoverable gas were calculated volumetrically to be 890 Billion Standard Cubic Feet (BSCF) and 630 (BSCF) respectively.Keywords: 3D seismic data, well logging, petrel, kingdom suite
Procedia PDF Downloads 1494139 Responses to Germination and Seedling Emergence Capacity of Durum Wheat Cultivars in Long Term Storage
Authors: S. Ahmet Bagci, Hayati Akman
Abstract:
This study was conducted at the research laboratory and greenhouse conditions to determine the effect on germination and emergency values of long-term stored seed (7 years) and non-stored seed (control) of nine durum wheat varieties. Three replicates of 20 seeds were germinated between double layered rolled germination papers in the Petri plates. Seeds were allowed to germinate at 20±1°C in the dark for 8 days. The seeds were counted on the 8th day as per ISTA rules and calculated in percent to determine germination capacity. Seedling emergency values were determined by testing 20 seeds placed into the sands with three replications of pots. Plants were counted on the 7th day and 12th day to determined seedling emergency rate and capacity, respectively. According to results, there are significant differences among the varieties in terms of germination capacity, seedling emergency rate and capacity of long-term stored and non-stored seeds. Germination capacity values declined from 100% to 93,3% of non-stored seeds whereas they were from 96,7% to 71,7% of long-term stored seeds. Percentage of seedling emergency capacity varied from 65,0% to 93,3% for non-stored seeds, however, the percentage of it was between 11,7 and 86,7% for long-term stored seeds. Results indicate that germination and emergence values responses to long-term stored condition varied significantly among durum wheat cultivars. Research results showed that the long-term-storage resulted in significant decrease with 13.5 % for germination, 36.4 % for emergence on the seventh day and 32.4 % for emergence on the twelfth day. Germination values ranged from 93.3 to 100.0 % for control and 71.7 to 96.7 % for storage. Emergence values in seventh day varied between 51.7 % and 90.0 % for control and 75.0 % and 10.0 % for storage, however values in twelfth day were between 93.3 % and 65.0 % for control and 86.7 % and 11.7 % for storage. According to research results, germination and emergence responses to long-term storage condition varied significantly among durum wheat cultivars.Keywords: germination, emergence, long-term-storage, durum wheat
Procedia PDF Downloads 3574138 Effect of Knowledge of Bubble Point Pressure on Estimating PVT Properties from Correlations
Authors: Ahmed El-Banbi, Ahmed El-Maraghi
Abstract:
PVT properties are needed as input data in all reservoir, production, and surface facilities engineering calculations. In the absence of PVT reports on valid reservoir fluid samples, engineers rely on PVT correlations to generate the required PVT data. The accuracy of PVT correlations varies, and no correlation group has been found to provide accurate results for all oil types. The effect of inaccurate PVT data can be significant in engineering calculations and is well documented in the literature. Bubble point pressure can sometimes be obtained from external sources. In this paper, we show how to utilize the known bubble point pressure to improve the accuracy of calculated PVT properties from correlations. We conducted a systematic study using around 250 reservoir oil samples to quantify the effect of pre-knowledge of bubble point pressure. The samples spanned a wide range of oils, from very volatile oils to black oils and all the way to low-GOR oils. A method for shifting both undersaturated and saturated sections of the PVT properties curves to the correct bubble point is explained. Seven PVT correlation families were used in this study. All PVT properties (e.g., solution gas-oil ratio, formation volume factor, density, viscosity, and compressibility) were calculated using the correct bubble point pressure and the correlation estimated bubble point pressure. Comparisons between the calculated PVT properties and actual laboratory-measured values were made. It was found that pre-knowledge of bubble point pressure and using the shifting technique presented in the paper improved the correlation-estimated values by 10% to more than 30%. The most improvement was seen in the solution gas-oil ratio and formation volume factor.Keywords: PVT data, PVT properties, PVT correlations, bubble point pressure
Procedia PDF Downloads 634137 Heat and Flow Analysis of Solar Air Heaters with Artificial Roughness on the Absorber
Authors: Amel Boulemtafes-Boukadoum, Ahmed Benzaoui
Abstract:
Solar air heaters (SAH) are widely used in heating and drying applications using solar energy. Their efficiency needs to be improved to be competitive towards solar water heater. In this work, our goal is to study heat transfer enhancement in SAHs by the use of artificial roughness on the absorber. For this purpose, computational fluid dynamics (CFD) simulations were carried out to analyze the flow and heat transfer in the air duct of a solar air heater provided with transverse ribs. The air flows in forced convection and the absorber is heated with uniform flux. The effect of major parameters (Reynolds number, solar radiation, air inlet temperature, geometry of roughness) is examined and discussed. To highlight the effect of artificial roughness, we plotted the distribution of the important parameters: Nusselt number, friction factor, global thermohydraulic performance parameter etc. The results obtained are concordant to those found in the literature and shows clearly the heat transfer enhancement due to artifical roughness.Keywords: solar air heater, artificial roughness, heat transfer enhancement, CFD
Procedia PDF Downloads 5704136 Artificial Intelligence Impact on Strategic Stability
Authors: Darius Jakimavicius
Abstract:
Artificial intelligence is the subject of intense debate in the international arena, identified both as a technological breakthrough and as a component of the strategic stability effect. Both the kinetic and non-kinetic development of AI and its application in the national strategies of the great powers may trigger a change in the security situation. Artificial intelligence is generally faster, more capable and more efficient than humans, and there is a temptation to transfer decision-making and control responsibilities to artificial intelligence. Artificial intelligence, which, once activated, can select and act on targets without further intervention by a human operator, blurs the boundary between human or robot (machine) warfare, or perhaps human and robot together. Artificial intelligence acts as a force multiplier that speeds up decision-making and reaction times on the battlefield. The role of humans is increasingly moving away from direct decision-making and away from command and control processes involving the use of force. It is worth noting that the autonomy and precision of AI systems make the process of strategic stability more complex. Deterrence theory is currently in a phase of development in which deterrence is undergoing further strain and crisis due to the complexity of the evolving models enabled by artificial intelligence. Based on the concept of strategic stability and deterrence theory, it is appropriate to develop further research on the development and impact of AI in order to assess AI from both a scientific and technical perspective: to capture a new niche in the scientific literature and academic terminology, to clarify the conditions for deterrence, and to identify the potential uses, impacts and possibly quantities of AI. The research problem is the impact of artificial intelligence developed by great powers on strategic stability. This thesis seeks to assess the impact of AI on strategic stability and deterrence principles, with human exclusion from the decision-making and control loop as a key axis. The interaction between AI and human actions and interests can determine fundamental changes in great powers' defense and deterrence, and the development and application of AI-based great powers strategies can lead to a change in strategic stability.Keywords: artificial inteligence, strategic stability, deterrence theory, decision making loop
Procedia PDF Downloads 404135 Gravitational Energy Storage by Using Concrete Stacks
Authors: Anusit Punsirichaiyakul, Tosaphol Ratniyomchai, Thanatchai Kulworawanichpong
Abstract:
The paper aims to study the energy storage system in the form of gravity energy by the weight of concrete stacks. This technology has the potential to replace expensive battery storage. This paper is a trial plan in abandoned mines in Thailand. This is to start with construct concrete boxes to be stacked vertically or obliquely to form appropriate shapes and, therefore, to store the potential energy. The stored energy can be released or discharged back to the system by deploying the concrete stacks to the ground. This is to convert the potential energy stored in the concrete stacks to the kinetic energy of the concrete box movement. This design is incorporating mechanical transmission to reduce the height of the concrete stacks. This study also makes a comparison between the energy used to construct concrete stacks in various shapes and the energy to deploy all the concrete boxes to ground. This paper consists of 2 test systems. The first test is to stack the concrete in vertical shape. The concrete stack has a maximum height of 50 m with a gear ratio of 1:200. The concrete box weight is 115 tons/piece with a total stored energy of 1800 kWh. The oblique system has a height of 50 m with a similar gear ratio of 1:200. The weight of the concrete box is 90 tons/piece and has a total stored energy of 1440 kWh. Also, it has an overall efficiency of 65% and a lifetime of 50 years. This storage has higher storage densities compared to other systems.Keywords: gravity, concrete stacks, vertical, oblique
Procedia PDF Downloads 1654134 Factors Impacting Geostatistical Modeling Accuracy and Modeling Strategy of Fluvial Facies Models
Authors: Benbiao Song, Yan Gao, Zhuo Liu
Abstract:
Geostatistical modeling is the key technic for reservoir characterization, the quality of geological models will influence the prediction of reservoir performance greatly, but few studies have been done to quantify the factors impacting geostatistical reservoir modeling accuracy. In this study, 16 fluvial prototype models have been established to represent different geological complexity, 6 cases range from 16 to 361 wells were defined to reproduce all those 16 prototype models by different methodologies including SIS, object-based and MPFS algorithms accompany with different constraint parameters. Modeling accuracy ratio was defined to quantify the influence of each factor, and ten realizations were averaged to represent each accuracy ratio under the same modeling condition and parameters association. Totally 5760 simulations were done to quantify the relative contribution of each factor to the simulation accuracy, and the results can be used as strategy guide for facies modeling in the similar condition. It is founded that data density, geological trend and geological complexity have great impact on modeling accuracy. Modeling accuracy may up to 90% when channel sand width reaches up to 1.5 times of well space under whatever condition by SIS and MPFS methods. When well density is low, the contribution of geological trend may increase the modeling accuracy from 40% to 70%, while the use of proper variogram may have very limited contribution for SIS method. It can be implied that when well data are dense enough to cover simple geobodies, few efforts were needed to construct an acceptable model, when geobodies are complex with insufficient data group, it is better to construct a set of robust geological trend than rely on a reliable variogram function. For object-based method, the modeling accuracy does not increase obviously as SIS method by the increase of data density, but kept rational appearance when data density is low. MPFS methods have the similar trend with SIS method, but the use of proper geological trend accompany with rational variogram may have better modeling accuracy than MPFS method. It implies that the geological modeling strategy for a real reservoir case needs to be optimized by evaluation of dataset, geological complexity, geological constraint information and the modeling objective.Keywords: fluvial facies, geostatistics, geological trend, modeling strategy, modeling accuracy, variogram
Procedia PDF Downloads 2644133 Prediction of Rolling Forces and Real Exit Thickness of Strips in the Cold Rolling by Using Artificial Neural Networks
Authors: M. Heydari Vini
Abstract:
There is a complicated relation between effective input parameters of cold rolling and output rolling force and exit thickness of strips.in many mathematical models, the effect of some rolling parameters have been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips,the width of the strips,rolling speeds,mandrill tensions and the required exit thickness of strips with rolling force and the real exit thickness of the rolled strip. First of all, in this paper the effective parameters of cold rolling process modeled using an artificial neural network according to the optimum network achieved by using a written program in MATLAB,it has been shown that the prediction of rolling stand parameters with different properties and new dimensions attained from prior rolled strips by an artificial neural network is applicable.Keywords: cold rolling, artificial neural networks, rolling force, real rolled thickness of strips
Procedia PDF Downloads 505