Search results for: healthcare data security
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27833

Search results for: healthcare data security

23393 Systematic Review and Meta-Analysis of Mid-Term Survival, and Recurrent Mitral Regurgitation for Robotic-Assisted Mitral Valve Repair

Authors: Ramanen Sugunesegran, Michael L. Williams

Abstract:

Over the past two decades surgical approaches for mitral valve (MV) disease have evolved with the advent of minimally invasive techniques. Robotic mitral valve repair (RMVr) safety and efficacy has been well documented, however, mid- to long-term data are limited. The aim of this review was to provide a comprehensive analysis of the available mid- to long-term term data for RMVr. Electronic searches of five databases were performed to identify all relevant studies reporting minimum 5-year data on RMVr. Pre-defined primary outcomes of interest were overall survival, freedom from MV reoperation and freedom from moderate or worse mitral regurgitation (MR) at 5-years or more post-RMVr. A meta-analysis of proportions or means was performed, utilizing a random effects model, to present the data. Kaplan-Meier curves were aggregated using reconstructed individual patient data. Nine studies totaling 3,300 patients undergoing RMVr were identified. Rates of overall survival at 1-, 5- and 10-years were 99.2%, 97.4% and 92.3%, respectively. Freedom from MV reoperation at 8-years post RMVr was 95.0%. Freedom from moderate or worse MR at 7-years was 86.0%. Rates of early post-operative complications were low with only 0.2% all-cause mortality and 1.0% cerebrovascular accident. Reoperation for bleeding was low at 2.2% and successful RMVr was 99.8%. Mean intensive care unit and hospital stay were 22.4 hours and 5.2 days, respectively. RMVr is a safe procedure with low rates of early mortality and other complications. It can be performed with low complication rates in high volume, experienced centers. Evaluation of available mid-term data post-RMVr suggests favorable rates of overall survival, freedom from MV reoperation and freedom from moderate or worse MR recurrence.

Keywords: mitral valve disease, mitral valve repair, robotic cardiac surgery, robotic mitral valve repair

Procedia PDF Downloads 85
23392 Non-Linear Regression Modeling for Composite Distributions

Authors: Mostafa Aminzadeh, Min Deng

Abstract:

Modeling loss data is an important part of actuarial science. Actuaries use models to predict future losses and manage financial risk, which can be beneficial for marketing purposes. In the insurance industry, small claims happen frequently while large claims are rare. Traditional distributions such as Normal, Exponential, and inverse-Gaussian are not suitable for describing insurance data, which often show skewness and fat tails. Several authors have studied classical and Bayesian inference for parameters of composite distributions, such as Exponential-Pareto, Weibull-Pareto, and Inverse Gamma-Pareto. These models separate small to moderate losses from large losses using a threshold parameter. This research introduces a computational approach using a nonlinear regression model for loss data that relies on multiple predictors. Simulation studies were conducted to assess the accuracy of the proposed estimation method. The simulations confirmed that the proposed method provides precise estimates for regression parameters. It's important to note that this approach can be applied to datasets if goodness-of-fit tests confirm that the composite distribution under study fits the data well. To demonstrate the computations, a real data set from the insurance industry is analyzed. A Mathematica code uses the Fisher information algorithm as an iteration method to obtain the maximum likelihood estimation (MLE) of regression parameters.

Keywords: maximum likelihood estimation, fisher scoring method, non-linear regression models, composite distributions

Procedia PDF Downloads 40
23391 A Framework for Protecting Teenagers from Cyber Crimes and Cyberbullying

Authors: Sultan Alanazi, Adwan Alanazi

Abstract:

Social applications consist of powerful tools that allow people to connect and interact with each other. However, its negative use cannot be ignored. Cyberbullying is a new and serious Internet problem. Cyberbullying is one of the most common risks for teenagers to go online. More than half of young people report that they do not tell their parents when this will occur, which can have significant physiological consequences. Cyberbullying involves the deliberate use of digital media on the Internet to convey false or embarrassing information about others. Therefore, this article provides a way to detect cyber-bullying in social media applications for parents. The purpose of our work is to develop an architectural model for identifying and measuring the state of Cyberbullying faced by children on social media applications. For parents, this will be a good tool for monitoring their children without invading their privacy. Finally, some interesting open-ended questions were raised, suggesting promising ideas for starting new research in this new field.

Keywords: cyberbullying, cyber bullying, internet crimes, social media security, E-crimes

Procedia PDF Downloads 144
23390 Green Procedure for Energy and Emission Balancing of Alternative Scenario Improvements for Cogeneration System: A Case of Hardwood Lumber Manufacturing Process

Authors: Aldona Kluczek

Abstract:

Energy efficient process have become a pressing research field in manufacturing. The arguments for having an effective industrial energy efficiency processes are interacted with factors: economic and environmental impact, and energy security. Improvements in energy efficiency are most often achieved by implementation of more efficient technology or manufacturing process. Current processes of electricity production represents the biggest consumption of energy and the greatest amount of emissions to the environment. The goal of this study is to improve the potential energy-savings and reduce greenhouse emissions related to improvement scenarios for the treatment of hardwood lumber produced by an industrial plant operating in the U.S. through the application of green balancing procedure, in order to find the preferable efficient technology. The green procedure for energy is based on analysis of energy efficiency data. Three alternative scenarios of the cogeneration systems plant (CHP) construction are considered: generation of fresh steam, the purchase of a new boiler with the operating pressure 300 pounds per square inch gauge (PSIG), an installation of a new boiler with a 600 PSIG pressure. In this paper, the application of a bottom-down modelling for energy flow to devise a streamlined Energy and Emission Flow Analyze method for the technology of producing electricity is illustrated. It will identify efficiency or technology of a given process to be reached, through the effective use of energy, or energy management. Results have shown that the third scenario seem to be the efficient alternative scenario considered from the environmental and economic concerns for treating hardwood lumber. The energy conservation evaluation options could save an estimated 6,215.78 MMBtu/yr in each year, which represents 9.5% of the total annual energy usage. The total annual potential cost savings from all recommendations is $143,523/yr, which represents 30.1% of the total annual energy costs. Estimation have presented that energy cost savings are possible up to 43% (US$ 143,337.85), representing 18.6% of the total annual energy costs.

Keywords: alternative scenario improvements, cogeneration system, energy and emission flow analyze, energy balancing, green procedure, hardwood lumber manufacturing process

Procedia PDF Downloads 213
23389 Role of Physiotherapist: How Their Job and Working Area Could Be Known

Authors: Juan Pablo Hervas-Perez, Jesus Guodemar-Perez, Montserrat Ruiz-Lopez, Elena Sonsoles Rodriguez-Lopez, Noemi Mayoral-Gonzalo, Eduardo Cimadevilla Fernandez-Pola, Mario Caballero-Corella

Abstract:

Physiotherapy is a healthcare discipline that covers many fields of action within the recovery and prevention of health. Some are well known, but others, such as working with newborns and premature children are not so. Physical therapist functions are well defined, but the impression of the population is that there are other professionals who can develop them, and a large part are unknown. Objective: To evaluate the level of knowledge of the sample on the role of the physiotherapist in general, and more specifically in the neonatal intensive care (NICU) units, and estimate your level of notions on the development centered care (DCC). Method: A descriptive, transversal, observational and prospective study developed on a 125 participants' sample. Results: From the sample studied, 87.2% had already had contact with physiotherapy previously. An 80.9% believed that the physiotherapist intervention was decisive for the cure, and 84.0% would recommend physiotherapy treatment to others. Of the total surveyed, 98.0% felt that the physiotherapist is who should run the physiotherapeutic treatments, but shares with other professions 71.0% of votes. The field's best-known work is rehabilitation (94.0%); Neonatology is on the 4th place (66.0% of votes). Conclusions: Many areas of work of physical therapy are unknown to a big part of the population, including the own health workers. Less than half of the sample meets the DCC, and only 58% of the interviewed physiotherapists know them.

Keywords: functions of physiotherapist, neonatal intensive care, physiotherapy, prematurity

Procedia PDF Downloads 331
23388 Political Determinants of Sovereign Spread: The Great East-West Divide

Authors: Maruska Vizek, Josip Glaurdic, Marina Tkalec, Goran Vuksic

Abstract:

We empirically explore whether and how taxation affects bilateral real exchange rates in the euro area – relative unit labor costs and relative consumer price indices. We find that employers’ social security contributions and the value added tax changes have the expected effects put forward in the fiscal devaluation literature and simulations. Increases in employers’ contributions appreciate the relative unit labor costs in the short- and the long-run, while value added tax hike appreciates the relative consumer prices. Somewhat surprisingly, for personal income tax increases, we find a short-run depreciating impact on the relative unit labor costs, while increases in employees’ contributions depreciate both measures of real exchange rates in the short-run.

Keywords: sovereign bonds, European Union, developing countries, political determinants

Procedia PDF Downloads 314
23387 The Impact of Artificial Intelligence on Human Rights Legislations and Evolution

Authors: Shenouda Farag Aziz Ibrahim

Abstract:

The relationship between terrorism and human rights has become an important issue in the fight against terrorism worldwide. This is based on the fact that terrorism and human rights are closely linked, so that when the former begins, the latter suffers. This direct link was recognized in the Vienna Declaration and Program of Action adopted by the International Conference on Human Rights held in Vienna on 25 June 1993, which recognized that terrorist acts aim to violate human rights in all their forms and manifestations. . Therefore, terrorism represents an attack on fundamental human rights. For this purpose, the first part of this article focuses on the relationship between terrorism and human rights and aims to show the relationship between these two concepts. In the second part, the concept of cyber threat and its manifestations are discussed. An analysis of the fight against terrorism in the context of human rights was also made..

Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security.

Procedia PDF Downloads 49
23386 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions

Authors: Oscar E. Cariceo, Claudia V. Casal

Abstract:

Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.

Keywords: cyberbullying, evidence based practice, machine learning, social work research

Procedia PDF Downloads 172
23385 Herbal Medicines Used for the Cure of Jaundice among the Some Tribal Populations of Madhya Pradesh, India

Authors: Awdhesh Narayan Sharma

Abstract:

The use of herbal medicines for the cure of various ailments among the tribal population is as old as human origin itself. Most of the tribal populations of Madhya Pradesh inhabit in remote and inaccessible ecological setup. From long back, tribals and forests are interrelated to each other. They use an enormous range of wild plants for their basic needs and medicines. The tribal developed a unique understanding with wild plants, herbs, etc., and earned specialized knowledge of disease pattern and curative therapy-through hard experiences, common sense, trial, and error methods. They have passed this knowledge through traditions, taboos, totems, folklore by words of mouth from generation to generation. Here, an attempt has been made to study the possible aspects of herbal medicine for the cure of Jaundice among the tribal populations of Madhya Pradesh, India, through primary data as well as available secondary data. The data have been collected from the 305 Bharias of Patalkot, Madhya Pradesh, India, and included available secondary source of data by various investigators. It may be concluded that a sizable herbal medicinal plants' wealth exists in Madhya Pradesh, India, which still awaits for scientific exploration. The existing herbal medicines used for the cure of jaundice need an extensive investigation from the pharmaceutical point of view.

Keywords: Bharias, herbal medicine, tribal, Madhya Pradesh

Procedia PDF Downloads 179
23384 Sustainable Agriculture in Nigeria: Integrating Energy Efficiency and Renewables

Authors: Vicx Farm

Abstract:

This paper examines the critical role of energy efficiency management and renewable energy in fostering sustainable agricultural practices in Nigeria. With the growing concerns over energy security, environmental degradation, and climate change, there is an urgent need to transition towards more sustainable energy sources and practices in the agricultural sector. Nigeria, being a significant player in the global agricultural market, stands to benefit immensely from integrating energy efficiency measures and renewable energy solutions into its agricultural activities. This paper discusses the current energy challenges facing Nigerian agriculture, explores the potential benefits of energy efficiency and renewable energy adoption, and proposes strategies for effective implementation. The paper concludes with recommendations for policymakers, stakeholders, and practitioners to accelerate the adoption of energy-efficient and renewable energy technologies in Nigerian agriculture, thereby promoting sustainable development and resilience in the sector.

Keywords: energy, agriculture, sustainability, power

Procedia PDF Downloads 80
23383 Characterization of Internet Exchange Points by Using Quantitative Data

Authors: Yamba Dabone, Tounwendyam Frédéric Ouedraogo, Pengwendé Justin Kouraogo, Oumarou Sie

Abstract:

Reliable data transport over the Internet is one of the goals of researchers in the field of computer science. Data such as videos and audio files are becoming increasingly large. As a result, transporting them over the Internet is becoming difficult. Therefore, it has been important to establish a method to locally interconnect autonomous systems (AS) with each other to facilitate traffic exchange. It is in this context that Internet Exchange Points (IXPs) are set up to facilitate local and even regional traffic. They are now the lifeblood of the Internet. Therefore, it is important to think about the factors that can characterize IXPs. However, other more quantifiable characteristics can help determine the quality of an IXP. In addition, these characteristics may allow ISPs to have a clearer view of the exchange node and may also convince other networks to connect to an IXP. To that end, we define five new IXP characteristics: the attraction rate (τₐₜₜᵣ); and the peering rate (τₚₑₑᵣ); the target rate of an IXP (Objₐₜₜ); the number of IXP links (Nₗᵢₙₖ); the resistance rate τₑ𝒻𝒻 and the attraction failure rate (τ𝒻).

Keywords: characteristic, autonomous system, internet service provider, internet exchange point, rate

Procedia PDF Downloads 101
23382 Statistic Regression and Open Data Approach for Identifying Economic Indicators That Influence e-Commerce

Authors: Apollinaire Barme, Simon Tamayo, Arthur Gaudron

Abstract:

This paper presents a statistical approach to identify explanatory variables linearly related to e-commerce sales. The proposed methodology allows specifying a regression model in order to quantify the relevance between openly available data (economic and demographic) and national e-commerce sales. The proposed methodology consists in collecting data, preselecting input variables, performing regressions for choosing variables and models, testing and validating. The usefulness of the proposed approach is twofold: on the one hand, it allows identifying the variables that influence e- commerce sales with an accessible approach. And on the other hand, it can be used to model future sales from the input variables. Results show that e-commerce is linearly dependent on 11 economic and demographic indicators.

Keywords: e-commerce, statistical modeling, regression, empirical research

Procedia PDF Downloads 230
23381 Feasibility and Acceptability of an Emergency Department Digital Pain Self-Management Intervention: An Randomized Controlled Trial Pilot Study

Authors: Alexandria Carey, Angela Starkweather, Ann Horgas, Hwayoung Cho, Jason Beneciuk

Abstract:

Background/Significance: Over 3.4 million acute axial low back pain (aLBP) cases are treated annually in the United States (US) emergency departments (ED). ED patients with aLBP receive varying verbal and written discharge routine care (RC), leading to ineffective patient self-management. Ineffective self-management increase chronic low back pain (cLPB) transition risks, a chief cause of worldwide disability, with associated costs >$60 million annually. This research addresses this significant problem by evaluating an ED digital pain self-management intervention (EDPSI) focused on improving self-management through improved knowledge retainment, skills, and self-efficacy (confidence) (KSC) thus reducing aLBP to cLBP transition in ED patients discharged with aLBP. The research has significant potential to increase self-efficacy, one of the most potent mechanisms of behavior change and improve health outcomes. Focusing on accessibility and usability, the intervention may reduce discharge disparities in aLBP self-management, especially with low health literacy. Study Questions: This research will answer the following questions: 1) Will an EDPSI focused on improving KSC progress patient self-management behaviors and health status?; 2) Is the EDPSI sustainable to improve pain severity, interference, and pain recurrence?; 3) Will an EDPSI reduce aLBP to cLBP transition in patients discharged with aLBP? Aims: The pilot randomized-controlled trial (RCT) study’s objectives assess the effects of a 12-week digital self-management discharge tool in patients with aLBP. We aim to 1) Primarily assess the feasibility [recruitment, enrollment, and retention], and [intervention] acceptability, and sustainability of EDPSI on participant’s pain self-management; 2) Determine the effectiveness and sustainability of EDPSI on pain severity/interference among participants. 3) Explore patient preferences, health literacy, and changes among participants experiencing the transition to cLBP. We anticipate that EDPSI intervention will increase likelihood of achieving self-management milestones and significantly improve pain-related symptoms in aLBP. Methods: The study uses a two-group pilot RCT to enroll 30 individuals who have been seen in the ED with aLBP. Participants are randomized into RC (n=15) or RC + EDPSI (n=15) and receive follow-up surveys for 12-weeks post-intervention. EDPSI innovative content focuses on 1) highlighting discharge education; 2) provides self-management treatment options; 3) actor demonstration of ergonomics, range of motion movements, safety, and sleep; 4) complementary alternative medicine (CAM) options including acupuncture, yoga, and Pilates; 5) combination therapies including thermal application, spinal manipulation, and PT treatments. The intervention group receives Booster sessions via Zoom to assess and reinforce their knowledge retention of techniques and provide return demonstration reinforcing ergonomics, in weeks two and eight. Outcome Measures: All participants are followed for 12-weeks, assessing pain severity/ interference using the Brief Pain Inventory short-form (BPI-sf) survey, self-management (measuring KSC) using the short 13-item Patient Activation Measure (PAM), and self-efficacy using the Pain Self-Efficacy Questionnaire (PSEQ) weeks 1, 6, and 12. Feasibility is measured by recruitment, enrollment, and retention percentages. Acceptability and education satisfaction are measured using the Education-Preference and Satisfaction Questionnaire (EPSQ) post-intervention. Self-management sustainment is measured including PSEQ, PAM, and patient satisfaction and healthcare utilization (PSHU) requesting patient overall satisfaction, additional healthcare utilization, and pain management related to continued back pain or complications post-injury.

Keywords: digital, pain self-management, education, tool

Procedia PDF Downloads 56
23380 Validation of Electrical Field Effect on Electrostatic Desalter Modeling with Experimental Laboratory Data

Authors: Fatemeh Yazdanmehr, Iulian Nistor

Abstract:

The scope of the current study is the evaluation of the electric field effect on electrostatic desalting mathematical modeling with laboratory data. This research study was focused on developing a model for an existing operation desalting unit of one of the Iranian heavy oil field with a 75 MBPD production capacity. The high temperature of inlet oil to dehydration unit reduces the oil recovery, so the mathematical modeling of desalter operation parameters is very significant. The existing production unit operating data has been used for the accuracy of the mathematical desalting plant model. The inlet oil temperature to desalter was decreased from 110 to 80°C, and the desalted electrical field was increased from 0.75 to 2.5 Kv/cm. The model result shows that the desalter parameter changes meet the water-oil specification and also the oil production and consequently annual income is increased. In addition to that, changing desalter operation conditions reduces environmental footprint because of flare gas reduction. Following to specify the accuracy of selected electrostatic desalter electrical field, laboratory data has been used. Experimental data are used to ensure the effect of electrical field change on desalter. Therefore, the lab test is done on a crude oil sample. The results include the dehydration efficiency in the presence of a demulsifier and under electrical field (0.75 Kv) conditions at various temperatures. Comparing lab experimental and electrostatic desalter mathematical model results shows 1-3 percent acceptable error which confirms the validity of desalter specification and operation conditions changes.

Keywords: desalter, electrical field, demulsification, mathematical modeling, water-oil separation

Procedia PDF Downloads 146
23379 Framework to Quantify Customer Experience

Authors: Anant Sharma, Ashwin Rajan

Abstract:

Customer experience is measured today based on defining a set of metrics and KPIs, setting up thresholds and defining triggers across those thresholds. While this is an effective way of measuring against a Key Performance Indicator ( referred to as KPI in the rest of the paper ), this approach cannot capture the various nuances that make up the overall customer experience. Customers consume a product or service at various levels, which is not reflected in metrics like Customer Satisfaction or Net Promoter Score, but also across other measurements like recurring revenue, frequency of service usage, e-learning and depth of usage. Here we explore an alternative method of measuring customer experience by flipping the traditional views. Rather than rolling customers up to a metric, we roll up metrics to hierarchies and then measure customer experience. This method allows any team to quantify customer experience across multiple touchpoints in a customer’s journey. We make use of various data sources which contain information for metrics like CXSAT, NPS, Renewals, and depths of service usage collected across a customer lifecycle. This data can be mined systematically to get linkages between different data points like geographies, business groups, products and time. Additional views can be generated by blending synthetic contexts into the data to show trends and top/bottom types of reports. We have created a framework that allows us to measure customer experience using the above logic.

Keywords: analytics, customers experience, BI, business operations, KPIs, metrics

Procedia PDF Downloads 80
23378 Nursing Students’ Opinions about Theoretical Lessons and Clinical Area: A Survey in a Nursing Department

Authors: Ergin Toros, Manar Aslan

Abstract:

This study was planned as a descriptive study in order to learn the opinions of the students who are studying in nursing undergraduate program about their theoretical/practical lessons and departments. The education in the undergraduate nursing programs has great importance because it contains the knowledge and skills to prepare student nurses to the clinic in the future. In order to provide quality-nursing services in the future, the quality of nursing education should be measured, and opinions of student nurses about education should be taken. The research population was composed of students educated in a university with 1-4 years of theoretical and clinical education (N=550), and the sample was composed of 460 students that accepted to take part in the study. It was reached to 83.6% of target population. Data collected through a survey developed by the researchers. Survey consists of 48 questions about sociodemographic characteristics (9 questions), theoretical courses (9 questions), laboratory applications (7 questions), clinical education (14 questions) and services provided by the faculty (9 questions). It was determined that 83.3% of the nursing students found the nursing profession to be suitable for them, 53% of them selected nursing because of easy job opportunity, and 48.9% of them stayed in state dormitory. Regarding the theoretical courses, 84.6% of the students were determined to agree that the question ‘Course schedule is prepared before the course and published on the university web page.’ 28.7% of them were determined to do not agree that the question ‘Feedback is given to students about the assignments they prepare.’. It has been determined that 41,5% of the students agreed that ‘The time allocated to laboratory applications is sufficient.’ Students said that physical conditions in laboratory (41,5%), and the materials used are insufficient (44.6%), and ‘The number of students in the group is not appropriate for laboratory applications.’ (45.2%). 71.3% of the students think that the nurses view in the clinics the students as a tool to remove the workload, 40.7% of them reported that nurses in the clinic area did not help through the purposes of the course, 39.6% of them said that nurses' communication with students is not good. 37.8% of students stated that nurses did not provide orientation to students, 37.2% of them think that nurses are not role models for students. 53.7% of the students stated that the incentive and support for the student exchange program were insufficient., %48 of the students think that career planning services, %47.2 security services,%45.4 the advisor spent time with students are not enough. It has been determined that nursing students are most disturbed by the approach of the nurses in the clinical area within the undergraduate education program. The clinical area education which is considered as an integral part of nursing education is important and affect to student satisfaction.

Keywords: nursing education, student, clinical area, opinion

Procedia PDF Downloads 178
23377 Analysis of Noodle Production Process at Yan Hu Food Manufacturing: Basis for Production Improvement

Authors: Rhadinia Tayag-Relanes, Felina C. Young

Abstract:

This study was conducted to analyze the noodle production process at Yan Hu Food Manufacturing for the basis of production improvement. The study utilized the PDCA approach and record review in the gathering of data for the calendar year 2019 from August to October data of the noodle products miki, canton, and misua. Causal-comparative research was used in this study; it attempts to establish cause-effect relationships among the variables such as descriptive statistics and correlation, both were used to compute the data gathered. The study found that miki, canton, and misua production has different cycle time sets for each production and has different production outputs in every set of its production process and a different number of wastages. The company has not yet established its allowable rejection rate/ wastage; instead, this paper used a 1% wastage limit. The researcher recommended the following: machines used for each process of the noodle product must be consistently maintained and monitored; an assessment of all the production operators by checking their performance statistically based on the output and the machine performance; a root cause analysis for finding the solution must be conducted; and an improvement on the recording system of the input and output of the production process of noodle product should be established to eliminate the poor recording of data.

Keywords: continuous improvement, process, operations, PDCA

Procedia PDF Downloads 78
23376 The Effect of Slum Neighborhoods on Pregnancy Outcomes in Tanzania: Secondary Analysis of the 2015-2016 Tanzania Demographic and Health Survey Data

Authors: Luisa Windhagen, Atsumi Hirose, Alex Bottle

Abstract:

Global urbanization has resulted in the expansion of slums, leaving over 10 million Tanzanians in urban poverty and at risk of poor health. Whilst rural residence has historically been associated with an increased risk of adverse pregnancy outcomes, recent studies found higher perinatal mortality rates in urban Tanzania. This study aims to understand to what extent slum neighborhoods may account for the spatial disparities seen in Tanzania. We generated a slum indicator based on UN-HABITAT criteria to identify slum clusters within the 2015-2016 Tanzania Demographic and Health Survey. Descriptive statistics, disaggregated by urban slum, urban non-slum, and rural areas, were produced. Simple and multivariable logistic regression examined the association between cluster residence type and neonatal mortality and stillbirth. For neonatal mortality, we additionally built a multilevel logistic regression model, adjusting for confounding and clustering. The neonatal mortality ratio was highest in slums (38.3 deaths per 1000 live births); the stillbirth rate was three times higher in slums (32.4 deaths per 1000 births) than in urban non-slums. Neonatal death was more likely to occur in slums than in urban non-slums (aOR=2.15, 95% CI=1.02-4.56) and rural areas (aOR=1.78, 95% CI=1.15-2.77). Odds of stillbirth were over five times higher among rural than urban non-slum residents (aOR=5.25, 95% CI=1.31-20.96). The results suggest that slums contribute to the urban disadvantage in Tanzanian neonatal health. Higher neonatal mortality in slums may be attributable to lack of education, lower socioeconomic status, poor healthcare access, and environmental factors, including indoor and outdoor air pollution and unsanitary conditions from inadequate housing. However, further research is required to ascertain specific causalities as well as significant associations between residence type and other pregnancy outcomes. The high neonatal mortality, stillbirth, and slum formation rates in Tanzania signify that considerable change is necessary to achieve international goals for health and human settlements. Disparities in access to adequate housing, safe water and sanitation, high standard antenatal, intrapartum, and neonatal care, and maternal education need to urgently be addressed. This study highlights the spatial neonatal mortality shift from rural settings to urban informal settlements in Tanzania. Importantly, other low- and middle-income countries experiencing overwhelming urbanization and slum expansion may also be at risk of a reversing trend in residential neonatal health differences.

Keywords: urban health, slum residence, neonatal mortality, stillbirth, global urbanisation

Procedia PDF Downloads 67
23375 Modelling the Indonesian Goverment Securities Yield Curve Using Nelson-Siegel-Svensson and Support Vector Regression

Authors: Jamilatuzzahro, Rezzy Eko Caraka

Abstract:

The yield curve is the plot of the yield to maturity of zero-coupon bonds against maturity. In practice, the yield curve is not observed but must be extracted from observed bond prices for a set of (usually) incomplete maturities. There exist many methodologies and theory to analyze of yield curve. We use two methods (the Nelson-Siegel Method, the Svensson Method, and the SVR method) in order to construct and compare our zero-coupon yield curves. The objectives of this research were: (i) to study the adequacy of NSS model and SVR to Indonesian government bonds data, (ii) to choose the best optimization or estimation method for NSS model and SVR. To obtain that objective, this research was done by the following steps: data preparation, cleaning or filtering data, modeling, and model evaluation.

Keywords: support vector regression, Nelson-Siegel-Svensson, yield curve, Indonesian government

Procedia PDF Downloads 249
23374 Segmentation of Liver Using Random Forest Classifier

Authors: Gajendra Kumar Mourya, Dinesh Bhatia, Akash Handique, Sunita Warjri, Syed Achaab Amir

Abstract:

Nowadays, Medical imaging has become an integral part of modern healthcare. Abdominal CT images are an invaluable mean for abdominal organ investigation and have been widely studied in the recent years. Diagnosis of liver pathologies is one of the major areas of current interests in the field of medical image processing and is still an open problem. To deeply study and diagnose the liver, segmentation of liver is done to identify which part of the liver is mostly affected. Manual segmentation of the liver in CT images is time-consuming and suffers from inter- and intra-observer differences. However, automatic or semi-automatic computer aided segmentation of the Liver is a challenging task due to inter-patient Liver shape and size variability. In this paper, we present a technique for automatic segmenting the liver from CT images using Random Forest Classifier. Random forests or random decision forests are an ensemble learning method for classification that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes of the individual trees. After comparing with various other techniques, it was found that Random Forest Classifier provide a better segmentation results with respect to accuracy and speed. We have done the validation of our results using various techniques and it shows above 89% accuracy in all the cases.

Keywords: CT images, image validation, random forest, segmentation

Procedia PDF Downloads 319
23373 Influencers of E-Learning Readiness among Palestinian Secondary School Teachers: An Explorative Study

Authors: Fuad A. A. Trayek, Tunku Badariah Tunku Ahmad, Mohamad Sahari Nordin, Mohammed AM Dwikat

Abstract:

This paper reports on the results of an exploratory factor analysis procedure applied on the e-learning readiness data obtained from a survey of four hundred and seventy-nine (N = 479) teachers from secondary schools in Nablus, Palestine. The data were drawn from a 23-item Likert questionnaire measuring e-learning readiness based on Chapnick's conception of the construct. Principal axis factoring (PAF) with Promax rotation applied on the data extracted four distinct factors supporting four of Chapnick's e-learning readiness dimensions, namely technological readiness, psychological readiness, infrastructure readiness and equipment readiness. Together these four dimensions explained 56% of the variance. These findings provide further support for the construct validity of the items and for the existence of these four factors that measure e-learning readiness.

Keywords: e-learning, e-learning readiness, technological readiness, psychological readiness, principal axis factoring

Procedia PDF Downloads 404
23372 The Sense of Recognition of Muslim Women in Western Academia

Authors: Naima Mohammadi

Abstract:

The present paper critically reports on the emergency of Iranian international students in a large public university in Italy. Although the most sizeable diaspora of Iranians dates back to the 1979 revolution, a huge wave of Iranian female students travelled abroad after the Iranian Green Movement (2009) due to the intensification of gender discrimination and Islamization. To explore the experience of Iranian female students at an Italian public university, two complementary methods were adopted: a focus group and individual interviews. Focus groups yield detailed collective conversations and provide researchers with an opportunity to observe the interaction between participants, rather than between participant and researcher, which generates data. Semi-structured interviews allow participants to share their stories in their own words and speak about personal experiences and opinions. Research participants were invited to participate through a public call in a Telegram group of Iranian students. Theoretical and purposive sampling was applied to select participants. All participants were assured that full anonymity would be ensured and they consented to take part in the research. A two-hour focus group was held in English with participants in the presence and some online. They were asked to share their motivations for studying in Italy and talk about their experiences both within and outside the university context. Each of these interviews lasted from 45 to 60 minutes and was mostly carried out online and in Farsi. The focus group consisted of 8 Iranian female post-graduate students. In analyzing the data a blended approach was adopted, with a combination of deductive and inductive coding. According to research findings, although 9/11 was the beginning of the West’s challenges against Muslims, the nuclear threats of Islamic regimes promoted the toughest international sanctions against Iranians as a nation across the world. Accordingly, carrying an Iranian identity contributes to social, political, and economic exclusion. Research findings show that geopolitical factors such as international sanctions and Islamophobia, and a lack of reciprocity in terms of recognition, have created a sense of stigmatization for veiled and unveiled Iranian female students who are the largest groups of ‘non-European Muslim international students’ enrolled in Italian universities. Participants addressed how their nationality has devalued their public image and negatively impacted their self-confidence and self-realization in academia. They highlighted the experience of an unwelcoming atmosphere by different groups of people and institutes, such as receiving marked students’ badges, rejected bank account requests, failed visa processes, secondary security screening selection, and hyper-visibility of veiled students. This study corroborates the need for institutions to pay attention to geopolitical factors and religious diversity in student recruitment and provide support mechanisms and access to basic rights. Accordingly, it is suggested that Higher Education Institutions (HEIs) have a social and moral responsibility towards the discrimination and both social and academic exclusion of Iranian students.

Keywords: Iranian diaspora, female students, recognition theory, inclusive university

Procedia PDF Downloads 80
23371 Design of SAE J2716 Single Edge Nibble Transmission Digital Sensor Interface for Automotive Applications

Authors: Jongbae Lee, Seongsoo Lee

Abstract:

Modern sensors often embed small-size digital controller for sensor control, value calibration, and signal processing. These sensors require digital data communication with host microprocessors, but conventional digital communication protocols are too heavy for price reduction. SAE J2716 SENT (single edge nibble transmission) protocol transmits direct digital waveforms instead of complicated analog modulated signals. In this paper, a SENT interface is designed in Verilog HDL (hardware description language) and implemented in FPGA (field-programmable gate array) evaluation board. The designed SENT interface consists of frame encoder/decoder, configuration register, tick period generator, CRC (cyclic redundancy code) generator/checker, and TX/RX (transmission/reception) buffer. Frame encoder/decoder is implemented as a finite state machine, and it controls whole SENT interface. Configuration register contains various parameters such as operation mode, tick length, CRC option, pause pulse option, and number of nibble data. Tick period generator generates tick signals from input clock. CRC generator/checker generates or checks CRC in the SENT data frame. TX/RX buffer stores transmission/received data. The designed SENT interface can send or receives digital data in 25~65 kbps at 3 us tick. Synthesized in 0.18 um fabrication technologies, it is implemented about 2,500 gates.

Keywords: digital sensor interface, SAE J2716, SENT, verilog HDL

Procedia PDF Downloads 311
23370 Teaching Translation during Covid-19 Outbreak: Challenges and Discoveries

Authors: Rafat Alwazna

Abstract:

Translation teaching is a particular activity that includes translators and interpreters training either inside or outside institutionalised settings, such as universities. It can also serve as a means of teaching other fields, such as foreign languages. Translation teaching began in the twentieth century. Teachers of translation hold the responsibilities of educating students, developing their translation competence and training them to be professional translators. The activity of translation teaching involves various tasks, including curriculum design, course delivery, material writing as well as application and implementation. The present paper addresses translation teaching during COVID-19 outbreak, seeking to find out the challenges encountered by translation teachers in online translation teaching and the discoveries/solutions arrived at to resolve them. The paper makes use of a comprehensive questionnaire, containing closed-ended and open-ended questions to elicit both quantitative as well as qualitative data from about sixty translation teachers who have been teaching translation at BA and MA levels during COVID-19 outbreak. The data shows that about 40% of the participants evaluate their online translation teaching experience during COVID-19 outbreak as enjoyable and exhilarating. On the contrary, no participant has evaluated his/her online translation teaching experience as being not good, nor has any participant evaluated his/her online translation teaching experience as being terrible. The data also presents that about 23.33% of the participants evaluate their online translation teaching experience as very good, and the same percentage applies to those who evaluate their online translation teaching experience as good to some extent. Moreover, the data indicates that around 13.33% of the participants evaluate their online translation teaching experience as good. The data also demonstrates that the majority of the participants have encountered obstacles in online translation teaching and have concurrently proposed solutions to resolve them.

Keywords: online translation teaching, electronic learning platform, COVID-19 outbreak, challenges, solutions

Procedia PDF Downloads 227
23369 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem

Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq

Abstract:

High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.

Keywords: artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch

Procedia PDF Downloads 193
23368 Gnss Aided Photogrammetry for Digital Mapping

Authors: Muhammad Usman Akram

Abstract:

This research work based on GNSS-Aided Photogrammetry for Digital Mapping. It focuses on topographic survey of an area or site which is to be used in future Planning & development (P&D) or can be used for further, examination, exploration, research and inspection. Survey and Mapping in hard-to-access and hazardous areas are very difficult by using traditional techniques and methodologies; as well it is time consuming, labor intensive and has less precision with limited data. In comparison with the advance techniques it is saving with less manpower and provides more precise output with a wide variety of multiple data sets. In this experimentation, Aerial Photogrammetry technique is used where an UAV flies over an area and captures geocoded images and makes a Three-Dimensional Model (3-D Model), UAV operates on a user specified path or area with various parameters; Flight altitude, Ground sampling distance (GSD), Image overlapping, Camera angle etc. For ground controlling, a network of points on the ground would be observed as a Ground Control point (GCP) using Differential Global Positioning System (DGPS) in PPK or RTK mode. Furthermore, that raw data collected by UAV and DGPS will be processed in various Digital image processing programs and Computer Aided Design software. From which as an output we obtain Points Dense Cloud, Digital Elevation Model (DEM) and Ortho-photo. The imagery is converted into geospatial data by digitizing over Ortho-photo, DEM is further converted into Digital Terrain Model (DTM) for contour generation or digital surface. As a result, we get Digital Map of area to be surveyed. In conclusion, we compared processed data with exact measurements taken on site. The error will be accepted if the amount of error is not breached from survey accuracy limits set by concerned institutions.

Keywords: photogrammetry, post processing kinematics, real time kinematics, manual data inquiry

Procedia PDF Downloads 37
23367 Opportunities for Effective Communication Through the Delivery of an Autism Spectrum Disorder Diagnosis: A Scoping Review

Authors: M. D. Antoine

Abstract:

When a child is diagnosed with an illness, condition, or developmental disorder, the process involved in understanding and accepting this diagnosis can be a very stressful and isolating experience for parents and families. The healthcare providers’ ability to effectively communicate in such situations represents a vital lifeline for parents. In this context, communication becomes a crucial element not only for getting through the period of grief but also for the future. We mobilized the five stages of grief model to summarize existing literature regarding the ways in which the experience ofan autism spectrum disorder diagnosis disclosurealigns with the experience of grief to explore how this can inform best practices for effective communication with parents through the diagnosis disclosure. Fifteen publications met inclusion criteria. Findings from the scoping review of empirical studies show that parents/families experience grief-like emotions during the diagnosis disclosure. However, grief is not an outcome of the encounter itself. In fact, the experience of the encounter can help mitigate the grief experience. The way parents/families receive and react to the ‘news’ depends on their preparedness, knowledge, and the support received through the experience. Individual communication skills, as well as policies and regulations, should be examined to alleviate adverse reactions in this context. These findings highlight the importance of further research into effective parent-provider communication strategies and their place in supporting quality autism care.

Keywords: autism spectrum disorder, autism spectrum disorder diagnosis, diagnosis disclosure, parent-provider communication, parental grief

Procedia PDF Downloads 178
23366 Digital Reconstruction of the Cultural Landscape: Chengde Summer Resort as a Case Study

Authors: Jingsen Lian, Steffen Nijhuis, Gregory Bracken, Kai Lan

Abstract:

This study explores the digital reconstruction of the Chengde Mountain Resort (CMR), a UNESCO World Heritage Site recognized for its cultural landscape significance. Using mixed methods, the research combines spatial, textual, and graphical data to reconstruct the historical evolution of CMR's landscape across four phases from 1704 to the present. Data acquisition includes 3D point clouds, historical maps, traditional paintings, poetry, land-use records, academic papers, engineering drawings, and old photographs. Interdisciplinary techniques such as georectification, 3D modeling, and textual analysis were employed to integrate these diverse datasets into a cohesive Web-GIS platform. The reconstructed data illustrates dynamic landscape changes, reflecting shifting cultural and ecological priorities. The Web-GIS platform facilitates data visualization, querying, and customization, serving multiple stakeholders, including researchers, government planners, and local communities. This study underscores the value of digital tools in cultural heritage preservation, offering a model for adaptive and participatory management of historical sites while promoting open access and stakeholder engagement.

Keywords: landscape mapping, cultural landscape, heritage, case study, mixed methods

Procedia PDF Downloads 14
23365 Problems and Challenges in Social Economic Research after COVID-19: The Case Study of Province Sindh

Authors: Waleed Baloch

Abstract:

This paper investigates the problems and challenges in social-economic research in the case study of the province of Sindh after the COVID-19 pandemic; the pandemic has significantly impacted various aspects of society and the economy, necessitating a thorough examination of the resulting implications. The study also investigates potential strategies and solutions to mitigate these challenges, ensuring the continuation of robust social and economic research in the region. Through an in-depth analysis of data and interviews with key stakeholders, the study reveals several significant findings. Firstly, researchers encountered difficulties in accessing primary data due to disruptions caused by the pandemic, leading to limitations in the scope and accuracy of their studies. Secondly, the study highlights the challenges faced in conducting fieldwork, such as restrictions on travel and face-to-face interactions, which impacted the ability to gather reliable data. Lastly, the research identifies the need for innovative research methodologies and digital tools to adapt to the new research landscape brought about by the pandemic. The study concludes by proposing recommendations to address these challenges, including utilizing remote data collection methods, leveraging digital technologies for data analysis, and establishing collaborations among researchers to overcome resource constraints. By addressing these issues, researchers in the social economic field can effectively navigate the post-COVID-19 research landscape, facilitating a deeper understanding of the socioeconomic impacts and facilitating evidence-based policy interventions.

Keywords: social economic, sociology, developing economies, COVID-19

Procedia PDF Downloads 67
23364 Smart Meter Incorporating UWB Technology

Authors: T. A. Khan, A. B. Khan, M. Babar, T. A. Taj, Imran Ijaz Imran

Abstract:

Smart Meter is a key element in the evolving concept of Smart Grid, which plays an important role in interaction between the consumer and the supplier. In general, the smart meter is an intelligent digital energy meter that measures the consumption of electrical energy and provides other additional services as compared to the conventional energy meters. One of the important element that makes a meter smart and different is its communication module. Smart meters usually have two way and real-time communication between the consumer and the supplier through which its transfer data and information. In this paper, Ultra Wide Band (UWB) is recommended as communication platform because of its high data-rate and presents the physical layer, which could be easily incorporated in existing Smart Meters. The physical layer is simulated in MATLAB Simulink and the results are provided.

Keywords: Ultra Wide Band (UWB), Smart Meter, MATLAB, transfer data

Procedia PDF Downloads 521